198 research outputs found

    Key mechanistic features of swelling and blistering of helium-ion-irradiated tungsten

    Get PDF
    Helium-ion-induced swelling and blistering of single-crystal tungsten is investigated using a Helium Ion Microscope for site-specific dose-controlled irradiation (at 25 keV) with analysis by Helium Ion Microscopy, Atomic Force Microscopy and Transmission Electron Microscopy (cross-sectioning by Focused Ion Beam milling). We show that the blister cavity forms at a depth close to the simulated helium peak and that nanobubbles coalesce to form nanocracks within the envelope of the ion stopping range, swelling the blister shell. These results provide the first direct experimental evidence for the interbubble fracture mechanism proposed in the framework of the gas pressure model for blister formation

    An eigenvalue-eigenvector method for solving a system of fractional differential equations with uncertainty

    Get PDF
    A new method is proposed for solving systems of fuzzy fractional differential equations (SFFDEs) with fuzzy initial conditions involving fuzzy Caputo differentiability. For this purpose, three cases are introduced based on the eigenvalue-eigenvector approach; then it is shown that the solution of system of fuzzy fractional differential equations is vector of fuzzy-valued functions. Then the method is validated by solving several examples

    Scanning Tunneling Microscope Images of Adenine and Thymine at Atomic Resolution

    Get PDF
    The scanning tunneling microscope has been used to obtain images of DNA that reveal its major and minor grooves and the direction of helical coiling, but sufficient resolution has not yet been achieved to identify its bases. To determine if this technology is capable of identifying individual DNA bases, we have examined the molecular arrangements of adenine and thymine attached to the basal plane of highly oriented pyrolytic graphite. Both molecules form highly organized lattices following deposition on heated graphite. Lattice dimensions, structural periodicities, and the epitaxy of adenine and thymine molecules with respect to the basal plane of graphite have been determined. Images of these molecules at atomic resolution reveal that the aromatic regions are strongly detected in both molecules while the various side-groups are not well-resolved. These studies provide the first evidence that tunneling microscopy can be used to discriminate between purines and pyrimidines

    On Solutions of Linear Fractional Differential Equations with Uncertainty

    Get PDF
    The solutions of linear fuzzy fractional differential equations (FFDEs) under the Caputo differentiability have been investigated. To this end, the fuzzy Laplace transform was used to obtain the solutions of FFDEs. Then, some new results regarding the relation between some types of differentiability have been obtained. Finally, some applicable examples are solved in order to show the ability of the proposed method

    Functional Remineralization of Dentin Lesions Using Polymer-Induced Liquid-Precursor Process

    Get PDF
    It was hypothesized that applying the polymer-induced liquid-precursor (PILP) system to artificial lesions would result in time-dependent functional remineralization of carious dentin lesions that restores the mechanical properties of demineralized dentin matrix. 140 µm deep artificial caries lesions were remineralized via the PILP process for 7–28 days at 37°C to determine temporal remineralization characteristics. Poly-L-aspartic acid (27 KDa) was used as the polymeric process-directing agent and was added to the remineralization solution at a calcium-to-phosphate ratio of 2.14 (mol/mol). Nanomechanical properties of hydrated artificial lesions had a low reduced elastic modulus (ER = 0.2 GPa) region extending about 70 μm into the lesion, with a sloped region to about 140 μm where values reached normal dentin (18–20 GPa). After 7 days specimens recovered mechanical properties in the sloped region by 51% compared to the artificial lesion. Between 7–14 days, recovery of the outer portion of the lesion continued to a level of about 10 GPa with 74% improvement. 28 days of PILP mineralization resulted in 91% improvement of ER compared to the artificial lesion. These differences were statistically significant as determined from change-point diagrams. Mineral profiles determined by micro x-ray computed tomography were shallower than those determined by nanoindentation, and showed similar changes over time, but full mineral recovery occurred after 14 days in both the outer and sloped portions of the lesion. Scanning electron microscopy and energy dispersive x-ray analysis showed similar morphologies that were distinct from normal dentin with a clear line of demarcation between the outer and sloped portions of the lesion. Transmission electron microscopy and selected area electron diffraction showed that the starting lesions contained some residual mineral in the outer portions, which exhibited poor crystallinity. During remineralization, intrafibrillar mineral increased and crystallinity improved with intrafibrillar mineral exhibiting the orientation found in normal dentin or bone

    Strain dependent differences in glucocorticoid-induced bone loss between C57BL/6J and CD-1 mice

    Get PDF
    We have investigated the effect of long-term glucocorticoid (GC) administration on bone turnover in two frequently used mouse strains; C57BL/6J and CD1, in order to assess the influence of their genetic background on GC-induced osteoporosis (GIO). GIO was induced in 12 weeks old female C57BL/6J and CD1 mice by subcutaneous insertion of long-term release prednisolone or placebo pellets. Biomechanical properties as assessed by three point bent testing revealed that femoral elasticity and strength significantly decreased in CD1 mice receiving GC, whereas C57BL/6J mice showed no differences between placebo and prednisolone treatment. Bone turnover assessed by microcomputer tomography revealed that contrary to C57BL/6J mice, prednisolone treated CD1 mice developed osteoporosis. In vitro experiments have underlined that, at a cellular level, C57BL/6J mice osteoclasts and osteoblasts were less responsive to GC treatment and tolerated higher doses than CD1 cells. Whilst administration of long-term release prednisolone pellets provided a robust GIO animal model in 12 weeks old CD1 mice, age matched C57BL/6J mice were not susceptible to the bone changes associated with GIO. This study indicates that for the induction of experimental GIO, the mouse strain choice together with other factors such as age should be carefully evaluated
    corecore