3,001 research outputs found

    Star formation activity of intermediate redshift cluster galaxies out to the infall regions

    Full text link
    We present a spectroscopic analysis of two galaxy clusters out to ~4Mpc at z~0.2. The two clusters VMF73 and VMF74 identified by Vikhlinin et al. (1998) were observed with MOSCA at the Calar Alto 3.5m telescope. Both clusters lie in the ROSAT PSPC field R285 and were selected from the X-ray Dark Cluster Survey (Gilbank et al. 2004) that provides optical V- and I-band data. VMF73 and VMF74 are located at respective redshifts of z=0.25 and z=0.18 with velocity dispersions of 671 km/s and 442 km/s, respectively. The spectroscopic observations reach out to ~2.5 virial radii. Line strength measurements of the emission lines H_alpha and [OII]3727 are used to assess the star formation activity of cluster galaxies which show radial and density dependences. The mean and median of both line strength distributions as well as the fraction of star forming galaxies increase with increasing clustercentric distance and decreasing local galaxy density. Except for two galaxies with strong H_alpha and [OII] emission, all of the cluster galaxies are normal star forming or passive galaxies. Our results are consistent with other studies that show the truncation in star formation occurs far from the cluster centre.Comment: 15 pages, 12 figures. A&A in pres

    Pre-Heated Isentropic Gas in Groups of Galaxies

    Get PDF
    We confirm that the standard assumption of isothermal, shock-heated gas in cluster potentials is unable to reproduce the observed X-ray luminosity- temperature relation of groups of galaxies. As an alternative, we construct a physically motivated model for the adiabatic collapse of pre-heated gas into an isothermal potential that improves upon the original work of Kaiser (1991). The luminosity and temperature of the gas is calculated, assuming an appropriate distribution of halo formation times and radiation due to both bremsstrahlung and recombination processes. This model successfully reproduces the slope and dispersion of the luminosity-temperature relation of galaxy groups. We also present calculations of the temperature and luminosity functions for galaxy groups under the prescription of this model. This model makes two strong predictions for haloes with total masses M<10^13 M_sun, which are not yet testable with current data: (1) the gas mass fraction will increase in direct proportion to the halo mass; (2) the gas temperature will be larger than the virial temperature of the mass. The second effect is strong enough that group masses determined from gas temperatures will be overestimated by about an order of magnitude if it is assumed that the gas temperature is the virial temperature. The entropy required to match observations can be obtained by heating the gas at the turnaround time, for example, to about 3 X 10^6 K at z=1, which is too high to be generated by a normal rate of supernova explosions. This model breaks down on the scale of low mass clusters, but this is an acceptable limitation, as we expect accretion shocks to contribute significantly to the entropy of the gas in such objects.Comment: Final, refereed version, accepted by MNRAS. One new figure and several clarifying statements have been added. Uses mn.a4.sty (hacked mn.sty). Also available from http://astrowww.phys.uvic.ca/~balogh/entropy.ps.g

    Problémamegoldás, alkalmazás és tudásátvitel a középiskolai fizikában

    Get PDF

    Magnetic and Transport Properties of Fe-Ag granular multilayers

    Full text link
    Results of magnetization, magnetotransport and Mossbauer spectroscopy measurements of sequentially evaporated Fe-Ag granular composites are presented. The strong magnetic scattering of the conduction electrons is reflected in the sublinear temperature dependence of the resistance and in the large negative magnetoresistance. The simultaneous analysis of the magnetic properties and the transport behavior suggests a bimodal grain size distribution. A detailed quantitative description of the unusual features observed in the transport properties is given

    Sorption behaviours and transport potentials for selected pharmaceuticals and triclosan in two sterilised soils

    Get PDF
    Purpose: Pharmaceuticals and personal care products (PPCPs) are emerging environmental pollutants, which in addition to direct deposition processes, can find their way into surface soils through the agricultural application of sewage sludge and irrigation practices using contaminated wastewater. Therefore, it is important to assess the extent to which soils are able to retain PPCPs and to prevent their downward migration towards groundwaters. Materials and methods: To further our understanding in this area, batch sorption experiments and artificial rainwater leaching experiments have been performed using five compounds (bezafibrate, carbamazepine, chloramphenicol, diclofenac and triclosan) possessing a range of physicochemical properties in two soils with differing acidities and organic carbon contents. Results and discussion: The determined Koc values for triclosan and diclofenac consistently demonstrated their lower potential mobilities in both soils. The predicted high mobility of chloramphenicol is supported by its efficient leaching potential (89-100%) in both soils whereas bezafibrate, diclofenac and carbamazepine demonstrate slightly lower affinities for the leachate (61-96%) for soil A and are strongly retained (>99%) by soil B. The amount of PPCP in the leachate, the rate of leaching and the depth of soil penetration are explained in terms of the soil characteristics and the properties of the individual PPCPs (such as solubility and pKa) with soil organic content being shown to be a critical factor controlling the ability of a soil to retain a PPCP in the surface layers. Conclusions: The findings contribute to the scientific knowledge required by practitioners and regulators as they consider future sub-soil contamination by PPCPs and subsequent possible threats to groundwater resources and surface water habitats

    The Routing of Complex Contagion in Kleinberg's Small-World Networks

    Full text link
    In Kleinberg's small-world network model, strong ties are modeled as deterministic edges in the underlying base grid and weak ties are modeled as random edges connecting remote nodes. The probability of connecting a node uu with node vv through a weak tie is proportional to 1/uvα1/|uv|^\alpha, where uv|uv| is the grid distance between uu and vv and α0\alpha\ge 0 is the parameter of the model. Complex contagion refers to the propagation mechanism in a network where each node is activated only after k2k \ge 2 neighbors of the node are activated. In this paper, we propose the concept of routing of complex contagion (or complex routing), where we can activate one node at one time step with the goal of activating the targeted node in the end. We consider decentralized routing scheme where only the weak ties from the activated nodes are revealed. We study the routing time of complex contagion and compare the result with simple routing and complex diffusion (the diffusion of complex contagion, where all nodes that could be activated are activated immediately in the same step with the goal of activating all nodes in the end). We show that for decentralized complex routing, the routing time is lower bounded by a polynomial in nn (the number of nodes in the network) for all range of α\alpha both in expectation and with high probability (in particular, Ω(n1α+2)\Omega(n^{\frac{1}{\alpha+2}}) for α2\alpha \le 2 and Ω(nα2(α+2))\Omega(n^{\frac{\alpha}{2(\alpha+2)}}) for α>2\alpha > 2 in expectation), while the routing time of simple contagion has polylogarithmic upper bound when α=2\alpha = 2. Our results indicate that complex routing is harder than complex diffusion and the routing time of complex contagion differs exponentially compared to simple contagion at sweetspot.Comment: Conference version will appear in COCOON 201

    Soil mobility of surface applied polyaromatic hydrocarbons in response to simulated rainfall

    Get PDF
    Polyaromatic hydrocarbons (PAHs) are emitted from a variety of sources and can accumulate on and within surface soil layers. To investigate the level of potential risk posed by surface contaminated soils, vertical soil column experiments were conducted to assess the mobility, when leached with simulated rainwater, of six selected PAHs (naphthalene, phenanthrene, fluoranthene, pyrene, benzo(e)pyrene and benzo(ghi)perylene) with contrasting hydrophobic characteristics and molecular weights/sizes. The only PAH found in the leachate within the experimental period of 26 days was naphthalene. The lack of migration of the other applied PAHs were consistent with their low mobilities within the soil columns which generally parallelled their log Koc values. Thus only 2.3% of fluoranthene, 1.8% of pyrene, 0.2% of benzo(e)pyrene and 0.4% of benzo(ghi)perylene were translocated below the surface layer. The PAH distributions in the soil columns followed decreasing power relationships with 90% reductions in the starting levels being shown to occur within a maximum average depth of 0.94 cm compared to an average starting depth of 0.5 cm. A simple predictive model identifies the extensive time periods, in excess of 10 years, required to mobilise 50% of the benzo(e)pyrene and benzo(ghi)perylene from the surface soil layer. Although this reduces to between 2 and 7 years for fluoranthene and pyrene, it is concluded that the possibility of surface applied PAHs reaching and contaminating a groundwater aquifer is unlikely

    The Spatial and Kinematic Distributions of Cluster Galaxies in a LCDM Universe -- Comparison with Observations

    Get PDF
    We combine dissipationless N-body simulations and semi-analytic models of galaxy formation to study the spatial and kinematic distributions of cluster galaxies in a LCDM cosmology. We investigate how the star formation rates, colours and morphologies of galaxies vary as a function of distance from the cluster centre and compare our results with the CNOC1 survey of galaxies from 15 X-ray luminous clusters in the redshift range 0.18 to 0.55. In our model, gas no longer cools onto galaxies after they fall into the cluster and their star formation rates decline on timescales of 1-2 Gyr. Galaxies in cluster cores have lower star formation rates and redder colours than galaxies in the outer regions because they were accreted earlier. Our colour and star formation gradients agree with those those derived from the data. The difference in velocity dispersions between red and blue galaxies observed in the CNOC1 clusters is also well reproduced by the model. We assume that the morphologies of cluster galaxies are determined solely by their merging histories. Morphology gradients in clusters arise naturally, with the fraction of bulge- dominated galaxies highest in cluster cores. We compare these gradients with the CNOC1 data and find excellent agreement for bulge-dominated galaxies. The simulated clusters contain too few galaxies of intermediate bulge-to-disk ratio, suggesting that additional processes may influence the morphological evolution of disk-dominated galaxies in clusters. Although the properties of the cluster galaxies in our model agree extremely well with the data, the same is not true of field galaxies. Both the star formation rates and the colours of bright field galaxies appear to evolve much more strongly from redshift 0.2 to 0.4 in the CNOC1 field sample than in our simulations.Comment: 17 pages, sumitted to MNRAS. Simulation outputs, halo catalogs, merger trees and galaxy catalogs are now available at http://www.mpa-garching.mpg.de/GIF

    Factors influencing the infiltration of pharmaceuticals through soils

    Get PDF
    Pharmaceuticals and personal care products (PPCPs) are emerging environmental contaminants but studies of their environmental fate have focused on their behaviour during wastewater treatment processes. Little is known about the behaviour of PPCPs in soils and this is important to provide an understanding of how these compounds will be distributed during the infiltration processes which occur both naturally and under a number of treatment procedures. In this study four PPCP compounds (bezafibrate, carbamazepine, chloramphenicol and diclofenac) have been selected for investigation to determine their mobility and leaching behaviour in two types of soils. Under experimental conditions, chloramphenicol showed the highest potential to leach through the soils followed by carbamazepine, bezafibrate and diclofenac, which mirrors the order of their increasing organic carbon adsorption coefficients (Koc). The results suggest that ionic strength, pH and soil organic matter (SOM) are notable factors affecting the sorption and therefore the overall fate of pharmaceutical compounds in the soil environment
    corecore