137 research outputs found

    Nanoparticles and Taylor dispersion as a linear time-invariant system

    Get PDF
    The physical principles underpinning Taylor dispersion offer a high dynamic range to characterize the hydrodynamic radius of particles. While Taylor dispersion grants the ability to measure radius within nearly 5 orders of magnitude, the detection of particles is never instantaneous. It requires a finite sample volume, a finite detector area, and a finite detection time for measuring absorbance. First we show that these practical requirements bias the analysis when the self-diffusion coefficient of particles is high, which is typically the case of small nanoparticles. Second we show that the accuracy of the technique may be recovered by treating Taylor dispersion as a linear time- invariant system, which we prove by analyzing the Taylor dispersion spectra of two iron-oxide nanoparticles measured under identical experimental conditions. The consequence is that such treatment may be necessary whenever Taylor dispersion analysis is not optimized for a given size but dedicated to characterize broad groups of particles of varying size and material

    Rheological characterization of nanostructured material based on Polystyrene-b-poly(ethylene-butylene)-b-polystyrene (SEBS) block copolymer: Effect of block copolymer composition and nanoparticle geometry

    Get PDF
    Block copolymer (BCP) nanocomposite systems are of broad interest; however, reports on the role of nanoparticles on microphase separation behavior are rare. The goal of present study is to investigate the preparation of composite nanostructured materials containing Multi-Walled Carbon Nanotubes (MWCNTs) or graphene nanoplates. BCP nanocomposites based on the linear triblock copolymer, Polystyrene-b-poly(ethylene-butylene)-b-polystyrene (SEBS), with different morphological structure were prepared by melt mixing. The results of temperature sweep experiments showed an enhancing effect of both MWCNT and graphene nanosheets on increasing the microphase separation temperature as well as accelerating its kinetic, resulting from the confinement of BCP segments, with graphene nanosheets providing a more severely confined geometry for polystyrene segments in contrast to MWCNTs. Additionally, DMTA results indicated a promotion of the BCP microphase separation by incorporation of nanoparticles. Transient flow measurements followed by time sweep test suggested the existence of a special 3D network microstructure caused by nanoparticles/domain interactions

    Synthesis of poly(sulfonate ester)s by ADMET polymerization

    Get PDF
    Many hydrocarbon polymers containing heteroatom defects in the main chain have been investigated as degradable polyethylene-like materials, including aliphatic polyesters. Here, acyclic diene metathesis (ADMET) polymerization was used for the synthesis of aliphatic poly(sulfonate ester)s. The requisite sulfonate ester containing α,ω-diene monomers with varying numbers of methylene groups were synthesized, and their polymerization in the presence of ruthenium-N-heterocyclic (Ru-NHC) alkylidene catalysts was studied. A clear negative neighboring group effect (NNGE) was observed for shorter dienes, either inhibiting polymerization or resulting in low- molecular-weight oligomers. The effect was absent when undec-10-en-1-yl undec-10- ene-1-sulfonate was employed as the monomer, and its ADMET polymerization afforded polymers with appreciable number-average molecular weights of up to 37,000 g/mol and a dispersity Đ of 1.8. These polymers were hydrogenated to afford the desired polyethylene-like systems. The thermal and morphological properties of both saturated and unsaturated polymers were investigated. The incorporation of sulfonate ester groups in the polymer backbone offers an interesting alternative to other heteroatoms and helps further the understanding of the effects of these defects on the overall polymer properties

    Light-responsive azo-containing organogels

    Get PDF
    While azo compounds are widely employed as radical initiators, they have rarely been used as stimuli-responsive motifs in macromolecular constructs. In this study, an azo-based cross-linker was prepared and reacted with poly(vinyl alcohol) to afford a series of stimuli-responsive organogels. Irradiation of these materials with UV light causes de-cross-linking and triggers a solid-to-liquid phase transition. Model adhesives with de-bonding-on-demand capability based on this design were explored

    Structural behavior of cylindrical polystyrene-block-poly(ethylene-butylene)-block-polystyrene (SEBS) triblock copolymer containing MWCNTs: on the influence of nanoparticle surface modification

    Get PDF
    In this work, the influence of carbon nanotubes (CNTs) on the self-assembly of nanocomposite materials made of cylinder-forming polystyrene-block-poly(ethylene- butylene)-block-polystyrene (SEBS) is studied. CNTs are modified with polystyrene (PS) brushes by surface-initiated atom transfer radical polymerization to facilitate both their dispersion and the orientation of neighboring PS domains of the block copolymer (BCP) along modified CNT-PS. Dynamic rheology is utilized to probe the viscoelastic and thermal response of the nanoscopic structure of BCP nanocomposites. The results indicate that nonmodified CNTs increase the BCP microphase separation temperature because of BCP segmental confinement in the existing 3D network formed between CNTs, while the opposite holds for the samples filled with modified CNT-PS. This is explained by severely retarded segmental motion of the matrix chains due to their preferential interactions with the PS chains of the CNT-PS. Moreover, transient viscoelastic analysis reveals that modified CNT-PS have a more pronounced effect on flow-induced BCP structural orientation with much lower structural recovery rate. It is demonstrated that dynamic-mechanical thermal analysis can provide valuable insights in understanding the role of CNT incorporation on the microstructure of BCP nanocomposite samples. Accordingly, the presence of CNT has a significant promoting effect on microstructural development, comparable to that of annealing

    A new angle on dynamic depolarized light scattering: number-averaged size distribution of nanoparticles in focus

    Get PDF
    Size polydispersity is a common phenomenon that strongly influences the physicochemical properties of nanoparticles (NPs). We present an analytical approach that is universally applicable to characterizing optically anisotropic round NPs and determines directly the number-averaged size distribution and polydispersity via depolarized dynamic light scattering (DDLS). To demonstrate, we use aqueous suspensions of Au NPs of different sizes and surface functionalization

    Avoiding drying-artifacts in transmission electron microscopy: Characterizing the size and colloidal state of nanoparticles

    Get PDF
    Standard transmission electron microscopy nanoparticle sample preparation generally requires the complete removal of the suspending liquid. Drying often introduces artifacts, which can obscure the state of the dispersion prior to drying and preclude automated image analysis typically used to obtain number-weighted particle size distribution. Here we present a straightforward protocol for prevention of the onset of drying artifacts, thereby allowing the preservation of in-situ colloidal features of nanoparticles during TEM sample preparation. This is achieved by adding a suitable macromolecular agent to the suspension. Both research- and economically-relevant particles with high polydispersity and/or shape anisotropy are easily characterized following our approach (http://bsa.bionanomaterials.ch), which allows for rapid and quantitative classification in terms of dimensionality and size: features that are major targets of European Union recommendations and legislation

    Plasmonic nanoparticles and their characterization in physiological fluids

    Get PDF
    Nanoparticles possess unique properties beyond that of classical materials, and while these properties can be used for designing a dedicated functionality, they may also pose a problem to living organisms, to human health and the environment. The specific primary routes by which nanoparticles may interact with the human body include inhalation, injection, ingestion and application to the skin. Independent of the entry route, the particles inevitably encounter a complex physiological fluid populated with e.g. proteins, vitamins, lipids and salts/ions. Different consequences of such an encounter may include formation of a surface-bound protein layer, particle dissolution or aggregation, which are expected to have a crucial impact on cellular interaction. Understanding cellular responses to nanoparticle interactions starts with understanding particle behavior in physiological fluids. Nanoparticles are now available in practically any size, shape and functionalization, to promote distinct optical, magnetic, and physico-chemical properties, making the prediction of their behavior, in physiological fluids, not a trivial task. Characterization has therefore become of paramount importance. In this review, we give an overview about the diversity of physiological fluids as well as present an inventory of the most relevant experimental techniques used to study plasmonic nanoparticles
    corecore