1,183 research outputs found
Nested shells reveal the rejuvenation of the Orion-Eridanus superbubble
The Orion-Eridanus superbubble is the prototypical superbubble due to its
proximity and evolutionary state. Here, we provide a synthesis of recent
observational data from WISE and Planck with archival data, allowing to draw a
new and more complete picture on the history and evolution of the
Orion-Eridanus region. We discuss the general morphological structures and
observational characteristics of the superbubble, and derive quantitative
properties of the gas- and dust inside Barnard's Loop. We reveal that Barnard's
Loop is a complete bubble structure which, together with the lambda Ori region
and other smaller-scale bubbles, expands within the Orion-Eridanus superbubble.
We argue that the Orion-Eridanus superbubble is larger and more complex than
previously thought, and that it can be viewed as a series of nested shells,
superimposed along the line of sight. During the lifetime of the superbubble,
HII region champagne flows and thermal evaporation of embedded clouds
continuously mass-load the superbubble interior, while winds or supernovae from
the Orion OB association rejuvenate the superbubble by sweeping up the material
from the interior cavities in an episodic fashion, possibly triggering the
formation of new stars that form shells of their own. The steady supply of
material into the superbubble cavity implies that dust processing from interior
supernova remnants is more efficient than previously thought. The cycle of
mass-loading, interior cleansing, and star formation repeats until the
molecular reservoir is depleted or the clouds have been disrupted. While the
nested shells come and go, the superbubble remains for tens of millions of
years.Comment: 20 pages, 6 figures, accepted for publication in Ap
Jets and Outflows From Star to Cloud: Observations Confront Theory
In this review we focus on the role jets and outflows play in the star and
planet formation process. Our essential question can be posed as follows: are
jets/outflows merely an epiphenomenon associated with star formation or do they
play an important role in mediating the physics of assembling stars both
individually and globally? We address this question by reviewing the current
state of observations and their key points of contact with theory. Our review
of jet/outflow phenomena is organized into three length-scale domains: Source
and Disk Scales ( au) where the connection with protostellar and disk
evolution theories is paramount; Envelope Scales ( au) where the
chemistry and propagation shed further light on the jet launching process, its
variability and its impact on the infalling envelope; Parent Cloud Scales
( au) where global momentum injection into cluster/cloud
environments become relevant. Issues of feedback are of particular importance
on the smallest scales where planet formation regions in a disk may be impacted
by the presence of disk winds, irradiation by jet shocks or shielding by the
winds. Feedback on envelope scales may determine the final stellar mass
(core-to-star efficiency) and envelope dissipation. Feedback also plays an
important role on the larger scales with outflows contributing to turbulent
support within clusters including alteration of cluster star formation
efficiencies (feedback on larger scales currently appears unlikely). A
particularly novel dimension of our review is that we consider results on jet
dynamics from the emerging field of High Energy Density Laboratory Astrophysics
(HEDLA). HEDLA is now providing direct insights into the 3-D dynamics of fully
magnetized, hypersonic, radiative outflows.Comment: Accepted for publication as a chapter in Protostars and Planets VI,
University of Arizona Press (2014), eds. H. Beuther, R. Klessen, C.
Dullemond, Th. Hennin
Protostellar Feedback in Massive Star Forming Regions
We examine mechanical feedback mechanisms during the protostellar phase through jets and outflows. To do so, we make use of velocity-resolved CII observations at 158 m taken with the SOFIA observatory. We identify CII emitting cavities at velocities ranging from 1-2 km s to 15 km s relative to the Veil shell ( = 13 km s). The momentum and dynamical timescales of these cavities imply that the cavities in Orion were formed by fossil and active outflows from stars with luminosities ranging from 10 to 10 L. The momentum deposited during protostellar feedback is 1/6 of the momentum of the Veil shell deposited through winds from Ori C. By creating cavities, the fossil outflows may already have broken the Veil shell, and outflows from less massive stars may have made the Veil shell porous
Kinematics of elliptical galaxies with a diffuse dust component
Observations show that early-type galaxies contain a considerable amount of
interstellar dust, most of which is believed to exist as a diffusely
distributed component. We construct a four-parameter elliptical galaxy model in
order to investigate the effects of such a smooth absorbing component on the
projection of kinematic quantities, such as the line profiles and their
moments. We investigate the dependence on the optical depth and on the dust
geometry. Our calculations show that both the amplitude and the morphology of
these quantities can be significantly affected. Dust effects should therefore
be taken in consideration when interpreting photometric and kinematic
properties, and correlations that utilize these quantities.Comment: 12 pages, 9 figures, accepted for publication in MNRA
Mapping the column density and dust temperature structure of IRDCs with Herschel
Infrared dark clouds (IRDCs) are cold and dense reservoirs of gas potentially
available to form stars. Many of these clouds are likely to be pristine
structures representing the initial conditions for star formation. The study
presented here aims to construct and analyze accurate column density and dust
temperature maps of IRDCs by using the first Herschel data from the Hi-GAL
galactic plane survey. These fundamental quantities, are essential for
understanding processes such as fragmentation in the early stages of the
formation of stars in molecular clouds. We have developed a simple
pixel-by-pixel SED fitting method, which accounts for the background emission.
By fitting a grey-body function at each position, we recover the spatial
variations in both the dust column density and temperature within the IRDCs.
This method is applied to a sample of 22 IRDCs exhibiting a range of angular
sizes and peak column densities. Our analysis shows that the dust temperature
decreases significantly within IRDCs, from background temperatures of 20-30 K
to minimum temperatures of 8-15 K within the clouds, showing that dense
molecular clouds are not isothermal. Temperature gradients have most likely an
important impact on the fragmentation of IRDCs. Local temperature minima are
strongly correlated with column density peaks, which in a few cases reach NH2 =
1 x 10^{23} cm^{-2}, identifying these clouds as candidate massive prestellar
cores. Applying this technique to the full Hi-GAL data set will provide
important constraints on the fragmentation and thermal properties of IRDCs, and
help identify hundreds of massive prestellar core candidates.Comment: Accepted for publication in A&A Herschel special issu
The hot and cold interstellar matter of early type galaxies and their radio emission
Over the last few years, the knowledge of the interstellar matter (ISM) of early type galaxies has increased dramatically. Many early type galaxies are now known to have ISM in three different phases: cold (neutral hydrogen (HI), dust and molecular material), warm (ionized) and hot (S-ray emitting) gas. Early type galaxies have smaller masses of cold ISM (10 to the 7th power - 10 to the 8th power solar mass; Jura et al. 1987) than later type spiral galaxies, while they have far more hot gas (10 to the 9th power - 10 to the tenth power solar mass; Forman et al. 1985, Canizares et al. 1987). In order to understand the relationship between the different phases of the ISM and the role of the ISM in fueling radio continuum sources and star formation, researchers compared observational data from a wide range of wavelengths
New Herbig-Haro Objects and Giant Outflows in Orion
We present the results of a photographic and CCD imaging survey for
Herbig-Haro (HH) objects in the L1630 and L1641 giant molecular clouds in
Orion. The new HH flows were initially identified from a deep H-alpha film from
the recently commissioned AAO/UKST H-alpha Survey of the southern sky. Our
scanned H-alpha and broad band R images highlight both the improved resolution
of the H-alpha survey and the excellent contrast of the H-alpha flux with
respect to the broad band R. Comparative IVN survey images allow us to
distinguish between emission and reflection nebulosity. Our CCD H-alpha, [SII],
continuum and I band images confirm the presence of a parsec-scale HH flow
associated with the Ori I-2 cometary globule and several parsec-scale strings
of HH emission centred on the L1641-N infrared cluster. Several smaller
outflows display one-sided jets. Our results indicate that for declinations
south of -6 degrees in L1641, parsec-scale flows appear to be the major force
in the large-scale movement of optical dust and molecular gas.Comment: 14 pages, Latex using MN style, 21 figures in JPEG format. Higher
resolution figures available from S.L. Mader. Accepted by MNRAS. Email
contact for higher resolution images: [email protected]
Synthetic Molecular Clouds from Supersonic MHD and Non-LTE Radiative Transfer Calculations
The dynamics of molecular clouds is characterized by supersonic random
motions in the presence of a magnetic field. We study this situation using
numerical solutions of the three-dimensional compressible magneto-hydrodynamic
(MHD) equations in a regime of highly supersonic random motions. The non-LTE
radiative transfer calculations are performed through the complex density and
velocity fields obtained as solutions of the MHD equations, and more than
5x10^5 synthetic molecular spectra are obtained. We use a numerical flow
without gravity or external forcing. The flow is super-Alfvenic and corresponds
to model A of Padoan and Nordlund (1997). Synthetic data consist of sets of
90x90 synthetic spectra with 60 velocity channels, in five molecular
transitions: J=1-0 and J=2-1 for 12CO and 13CO, and J=1-0 for CS. Though we do
not consider the effects of stellar radiation, gravity, or mechanical energy
input from discrete sources, our models do contain the basic physics of
magneto-fluid dynamics and non-LTE radiation transfer and are therefore more
realistic than previous calculations. As a result, these synthetic maps and
spectra bear a remarkable resemblance to the corresponding observations of real
clouds.Comment: 33 pages, 12 figures included, 5 jpeg figures not included (fig1a,
fig1b, fig3, fig4 fig5), submitted to Ap
Waves on the surface of the Orion molecular cloud
Massive stars influence their parental molecular cloud, and it has long been
suspected that the development of hydrodynamical instabilities can compress or
fragment the cloud. Identifying such instabilities has proved difficult. It has
been suggested that elongated structures (such as the `pillars of creation')
and other shapes arise because of instabilities, but alternative explanations
are available. One key signature of an instability is a wave-like structure in
the gas, which has hitherto not been seen. Here we report the presence of
`waves' at the surface of the Orion molecular cloud near where massive stars
are forming. The waves seem to be a Kelvin-Helmholtz instability that arises
during the expansion of the nebula as gas heated and ionized by massive stars
is blown over pre-existing molecular gas.Comment: Preprint of publication in Natur
- âŠ