6 research outputs found

    Testing the universal stellar IMF on the metallicity distribution in the bulges of the Milky Way and M31

    Get PDF
    We test whether the universal initial mass function (UIMF) or the integrated galaxial IMF (IGIMF) can be employed to explain the metallicity distribution (MD) of giants in the Galactic bulge. We make use of a single-zone chemical evolution model developed for the Milky Way bulge in the context of an inside-out model for the formation of the Galaxy. We checked whether it is possible to constrain the yields above 80 M_{\sun} by forcing the UIMF and required that the resulting MD matches the observed ones. We also extended the analysis to the bulge of M31 to investigate a possible variation of the IMF among galactic bulges. Several parameters that have an impact on stellar evolution (star-formation efficiency, gas infall timescale) are varied. We show that it is not possible to satisfactorily reproduce the observed metallicity distribution in the two galactic bulges unless assuming a flatter IMF (x≤1.1x \leq 1.1) than the universal one. We conlude that it is necessary to assume a variation in the IMF among the various environments.Comment: 9 pages, 4 figures, accepted for publication in A&

    Intermediate and extreme mass-ratio inspirals — astrophysics, science applications and detection using LISA

    Get PDF
    Black hole binaries with extreme (gtrsim104:1) or intermediate (~102–104:1) mass ratios are among the most interesting gravitational wave sources that are expected to be detected by the proposed laser interferometer space antenna (LISA). These sources have the potential to tell us much about astrophysics, but are also of unique importance for testing aspects of the general theory of relativity in the strong field regime. Here we discuss these sources from the perspectives of astrophysics, data analysis and applications to testing general relativity, providing both a description of the current state of knowledge and an outline of some of the outstanding questions that still need to be addressed. This review grew out of discussions at a workshop in September 2006 hosted by the Albert Einstein Institute in Golm, Germany

    Production of dust by massive stars at high redshift

    Full text link
    The large amounts of dust detected in sub-millimeter galaxies and quasars at high redshift pose a challenge to galaxy formation models and theories of cosmic dust formation. At z > 6 only stars of relatively high mass (> 3 Msun) are sufficiently short-lived to be potential stellar sources of dust. This review is devoted to identifying and quantifying the most important stellar channels of rapid dust formation. We ascertain the dust production efficiency of stars in the mass range 3-40 Msun using both observed and theoretical dust yields of evolved massive stars and supernovae (SNe) and provide analytical expressions for the dust production efficiencies in various scenarios. We also address the strong sensitivity of the total dust productivity to the initial mass function. From simple considerations, we find that, in the early Universe, high-mass (> 3 Msun) asymptotic giant branch stars can only be dominant dust producers if SNe generate <~ 3 x 10^-3 Msun of dust whereas SNe prevail if they are more efficient. We address the challenges in inferring dust masses and star-formation rates from observations of high-redshift galaxies. We conclude that significant SN dust production at high redshift is likely required to reproduce current dust mass estimates, possibly coupled with rapid dust grain growth in the interstellar medium.Comment: 72 pages, 9 figures, 5 tables; to be published in The Astronomy and Astrophysics Revie

    Intermediate and extreme mass-ratio inspirals—astrophysics, science applications and detection using LISA

    Full text link

    Stellar populations dominated by massive stars in dusty starburst galaxies across time

    Get PDF
    All measurements of cosmic star formation must assume an initial distribution of stellar masses\u2014the stellar initial mass function\u2014in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum1. The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time2. Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies2,3, especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths4,5. The 13C/18O isotope abundance ratio in the cold molecular gas\u2014which can be probed via the rotational transitions of the 13CO and C18O isotopologues\u2014is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13CO and C18O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13CO/C18O ratio for all our targets\u2014alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way6\u2014implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the `main sequence' of star-forming galaxies7, although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities
    corecore