23 research outputs found

    Quantum models of classical mechanics: maximum entropy packets

    Get PDF
    In a previous paper, a project of constructing quantum models of classical properties has been started. The present paper concludes the project by turning to classical mechanics. The quantum states that maximize entropy for given averages and variances of coordinates and momenta are called ME packets. They generalize the Gaussian wave packets. A non-trivial extension of the partition-function method of probability calculus to quantum mechanics is given. Non-commutativity of quantum variables limits its usefulness. Still, the general form of the state operators of ME packets is obtained with its help. The diagonal representation of the operators is found. A general way of calculating averages that can replace the partition function method is described. Classical mechanics is reinterpreted as a statistical theory. Classical trajectories are replaced by classical ME packets. Quantum states approximate classical ones if the product of the coordinate and momentum variances is much larger than Planck constant. Thus, ME packets with large variances follow their classical counterparts better than Gaussian wave packets.Comment: 26 pages, no figure. Introduction and the section on classical limit are extended, new references added. Definitive version accepted by Found. Phy

    The delta-function-kicked rotor: Momentum diffusion and the quantum-classical boundary

    Full text link
    We investigate the quantum-classical transition in the delta-kicked rotor and the attainment of the classical limit in terms of measurement-induced state-localization. It is possible to study the transition by fixing the environmentally induced disturbance at a sufficiently small value, and examining the dynamics as the system is made more macroscopic. When the system action is relatively small, the dynamics is quantum mechanical and when the system action is sufficiently large there is a transition to classical behavior. The dynamics of the rotor in the region of transition, characterized by the late-time momentum diffusion coefficient, can be strikingly different from both the purely quantum and classical results. Remarkably, the early time diffusive behavior of the quantum system, even when different from its classical counterpart, is stabilized by the continuous measurement process. This shows that such measurements can succeed in extracting essentially quantum effects. The transition regime studied in this paper is accessible in ongoing experiments.Comment: 8 pages, 4 figures, revtex4 (revised version contains much more introductory material

    Storage and transport of noble gases in the subcontinental lithosphere

    No full text

    Analisis Putusan Mahkamah Agung No. 1112/K/Pdt/1990 Tentang Pembatalan Jual Beli Sebagai Akibat Pembagian Harta Warisan

    Get PDF
    Phosphate stabilization of mine wastes aims to immobilize\ud metals and encapsulate sulfide surfaces with stable,\ud impermeable coatings of solid phosphate phases [e.g. 1, 2, 3,\ud 4]. This study was undertaken to determine whether it is\ud possible to use phosphate amendment (ie. phosphorite,\ud phosphate fertilizer) to induce the formation of stable,\ud impermeable phosphate coatings in polyminerallic sulfidic\ud mine wastes using laboratory experiments and field trials

    What CO2 well gases tell us about the origin of noble gases in the mantle and their relationship to the atmosphere

    No full text
    Study of commercially produced volcanic CO2 gas associated with the Colorado Plateau, USA, has revealed substantial new information about the noble gas isotopic composition and elemental abundance pattern of the mantle. Combined with published data from mid-ocean ridge basalts, it is now clear that the convecting mantle has a maximum 20Ne/22Ne isotopic composition, indistinguishable from that attributed to solar wind-implanted (SWI) neon in meteorites. This is distinct from the higher 20Ne/22Ne isotopic value expected for solar nebula gases. The non-radiogenic xenon isotopic composition of the well gases shows that 20 per cent of the mantle Xe is ‘solar-like’ in origin, but cannot resolve the small isotopic difference between the trapped meteorite ‘Q’-component and solar Xe. The mantle primordial 20Ne/132Xe is approximately 1400 and is comparable with the upper end of that observed in meteorites. Previous work using the terrestrial 129I–129Xe mass balance demands that almost 99 per cent of the Xe (and therefore other noble gases) has been lost from the accreting solids and that Pu–I closure age models have shown this to have occurred in the first ca 100 Ma of the Earth's history. The highest concentrations of Q-Xe and solar wind-implanted (SWI)-Ne measured in meteorites allow for this loss and these high-abundance samples have a Ne/Xe ratio range compatible with the ‘recycled-air-corrected’ terrestrial mantle. These observations do not support models in which the terrestrial mantle acquired its volatiles from the primary capture of solar nebula gases and, in turn, strongly suggest that the primary terrestrial atmosphere, before isotopic fractionation, is most probably derived from degassed trapped volatiles in accreting material. By contrast, the non-radiogenic argon, krypton and 80 per cent of the xenon in the convecting mantle have the same isotopic composition and elemental abundance pattern as that found in seawater with a small sedimentary Kr and Xe admix. These mantle heavy noble gases are dominated by recycling of air dissolved in seawater back into the mantle. Numerical simulations suggest that plumes sampling the core–mantle boundary would be enriched in seawater-derived noble gases compared with the convecting mantle, and therefore have substantially lower 40Ar/36Ar. This is compatible with observation. The subduction process is not a complete barrier to volatile return to the mantle
    corecore