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Abstract In a previous paper, a statistical method of constructing quantum mod-
els of classical properties has been described. The present paper concludes the de-
scription by turning to classical mechanics. The quantum states that maximize en-
tropy for given averages and variances of coordinates and momenta are called ME
packets. They generalize the Gaussian wave packets. A non-trivial extension of the
partition-function method of probability calculus to quantum mechanics is given.
Non-commutativity of quantum variables limits its usefulness. Still, the general form
of the state operators of ME packets is obtained with its help. The diagonal represen-
tation of the operators is found. A general way of calculating averages that can replace
the partition function method is described. Classical mechanics is reinterpreted as a
statistical theory. Classical trajectories are replaced by classical ME packets. Quan-
tum states approximate classical ones if the product of the coordinate and momentum
variances is much larger than Planck constant. Thus, ME packets with large variances
follow their classical counterparts better than Gaussian wave packets.

Keywords Classical properties · Measurement problem · Interpretation of quantum
mechanics · Entropy · Partition function

1 Introduction

‘The quantum origin of the classical’ [1] is a non trivial open problem of quantum
theory: ‘how to explain within quantum theory the classical appearance of our macro-
scopic world’ [2]. The purpose of the present paper is to explain the classical proper-
ties as specific properties of quantum systems. The conceptual structure of quantum
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mechanics and with it the foundation of modern physics cannot be completely under-
stood without such explanation.

Every existing attempt in this direction starts with the assumption that the basic
properties of individual quantum systems are single values of observables and that all
other properties can be constructed or derived from these basic ones. Then, quantum
mechanics does not admit any genuine realist interpretation. The definitive account
is given by the Bub–Clifton–Goldstein theorem [3]. Only different kinds of apparent
realism for different restricted sets of properties are possible. It is then difficult to
explain how objective classical properties can emerge within quantum mechanics.

In [4], we have initiated a very different approach. Our two main starting points
are:

1. Value of an observable o of an individual quantum system A is not a property of
A alone, but of a composed system A+M , where M is an apparatus measuring o.
The value of o measured by M is not determined (in general) before its measure-
ment by M . It is created by the measurement process. We call, therefore, single
values of observables measurable on A extrinsic properties of A. The whole exist-
ing quantum mechanics is practically only the theory of the extrinsic properties.

2. As properties of a quantum system A, we allow also quantities that (a) have values
that may be more complex mathematical objects than just real numbers (such
as sets, mappings between sets, etc.) and (b) such a value need not be directly
observable in a single measurement.

Then, there are properties of quantum systems that can be viewed as determinate be-
fore their measurements without any other condition. They have been called intrinsic,
listed and classified into structural and conditional in [4]. Structural are those that
are uniquely determined by the kind of quantum system (systems of the same kind
are indistinguishable in the well-known strong and exclusively quantum-mechanical
sense). Conditional are those that are uniquely determined by preparations. In [4],
a new realist interpretation of quantum mechanics has been described based on the
intrinsic properties.

Some of the intrinsic properties have been proposed as quantum models of clas-
sical properties in [4]. In particular, two kinds of conditional properties have been
important: averages of quantum observables (including their variances) in a prepared
state and the von-Neumann entropy of the state. Some explanatory remarks may be
helpful. First, any preparation is defined by physical (objective) conditions. It need
not be a process carried out by humans. Second, in the approach of [4], an average of
an observable is not constructed or derived from the “more basic” single values of the
observable. Averages are determined uniquely by preparation, single values are not.
Not the single values determine the average but the average restrict possible single
values.

Third, entropy is often considered as a measure of observer ignorance and, there-
fore, as a subjective concept. The “therefore” is fallacious. Entropy can generally be
defined as follows. Let � be a complete set of mutually exclusive properties or states
of a system A that is a measurable set and let the measure be μ(ρ) for ρ ∈ �. Let
physical condition C on A lead to restriction on possible properties or states of A

such that the probability of the state ρ to occur under C is p(ρ). Then the entropy
S(C) = − ∫

�
μ(ρ)p(ρ).
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Such entropy can be a measure of ignorance in the following sense: everything
we may know on A are some physical properties that therefore define some physical
condition C. Then the above value of entropy gives the objective uncertainty on the
properties or states of the system associated with condition C. Thus it is, in this case,
if we know only C, simultaneously a measure of our ignorance on the system.

Let us now briefly review the most popular approaches to the problem of classi-
cality. At the present time, the problem does not seem to be solved in a satisfactory
way, the shortcoming of the approaches being well known [5, 16, 17]. We mention
them only fleetingly. First, the quantum decoherence theory [1, 2] works only if cer-
tain observables concerning both the environment and the quantum system cannot be
measured (see the analysis in [3, 5]). The deep reason is that one works with values of
observables. Second, the theories based on coarse-grained operators [6–8]: the prob-
lem is the same as with the decoherence. For example, the Legget–Garg inequality [8]
is a condition for the validity of the principle of macroscopic realism that works with
values of observables. Third, the Coleman–Hepp theory [9–13] and its modifications
[14, 15]: they are based on some particular theorems that hold for infinite systems but
do not hold even approximately for finite ones (see the analysis in [10]).

The approach of [4] is free of these shortcomings. First, intrinsic properties are
quantum properties of all quantum systems and there is no question about how they
emerge in quantum mechanics. This avoids e.g. the artificial construction of classi-
cal properties in the Coleman–Hepp approach. Second, they are considered as, and
proved to be, objective in [4]. Hence, second, they could in principle serve as classi-
cal properties because they can satisfy the principle of classical realism. This avoids
the problems of both the quantum-decoherence and the coarse-grained theory that
assume values of quantum observables to be basic properties.

More specifically, [4] has conjectured that intrinsic averages and entropy for cer-
tain macroscopic quantum systems can model all their classical properties. Classical
states of a macroscopic quantum system T have been defined as determined by av-
erages O1, . . . ,Ok of quantum operators o1, . . . , ok that form a small subset of the
algebra of observables of T . Finally, our modeling or construction of classical proper-
ties is nothing but statistical physics. The statistical methods that were highlighted in
[4] can only work if the following hypothesis (basic hypothesis of statistical physics)
is correct: The overwhelming part of macroscopic systems occur in quantum states
that maximize entropy under the conditions of given averages O1, . . . ,Ok . This hy-
pothesis is supported by observation and can be derived from quantum mechanics for
a class of simplified models such as [18–20].

The problem of quantum measurement (see, e.g., [5, 6, 17, 21] and references
listed there) can be formulated within our approach as follows. For a measurement
by a quantum apparatus M on a quantum system A, there must be an interaction
between M and A as well as processes in M satisfying the conditions: (a) M changes
its classical state as the result of the interaction, (b) the change depends on the initial
quantum state of A, (c) average values defining different resulting classical states
must differ by much more than the values of their variances, and (d) Born rule is
fulfilled. The knowledge of what properties of M can be considered as classical is
the first step. Still, to construct a model of interaction and processes in M satisfying
conditions (a), (b), (c) and (d) remains a non trivial problem. Ref. [4] and the present
paper do not offer a solution to the problem of measurement.
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A way of model construction for internal (thermodynamic) properties of macro-
scopic quantum systems was described in detail in [4]. This, however, did not work
for external (mechanical) properties of such systems. The aim of the present paper is
to fill in this gap.

The plan of the paper is as follows. In Sect. 2, classical mechanics is interpreted
as a statistical theory. The existence of sharp trajectories is rejected so that all pos-
sible states of systems are described by fuzzy distribution functions. One choice for
such distributions are the so-called maximum-entropy packets (ME-packet). These
are states that maximize entropy for given averages and variances of coordinates and
momenta. The method of partition function is used to calculate the general form of
the distribution function. For a simple solvable example, the dynamical equations
for the averages and variances are obtained. The example shows how the equations
of motion are reinterpreted in our theory. For general potentials, we use an approxi-
mative method: step-by-step calculation of the higher and higher time derivatives of
coordinates and momenta. This will later be compared with quantum ME packets.

Turning to quantum mechanics, we apply the maximum-entropy principle in an
analogous way in Sect. 3. The averages and variances are taken over from the clas-
sical states that are to be modeled. A straightforward generalization of the partition
function method is now complicated by the non-commutativity of the coordinates
and momenta. We can show that only the first derivatives of the logarithm of partition
function have the usual meaning. This is, however, sufficient for calculating the state
operators for all ME packets. We find the diagonal representation of the state opera-
tor in Sect. 3.2 and obtain with its help the general form of the partition function and
the state operator itself. It turns out that Gaussian wave packets are special case of
ME packets, namely those with zero entropy and minimal uncertainty. The diagonal
representation gives us also a powerful method to calculate averages of higher mo-
ments. In fact, what has been done in Sects. 3.1 and 3.2 is a non-trivial extension of
the partition-function method of the probability calculus as described, e.g., in [22] to
quantum mechanics that might also be of some interest for mathematicians.

In Sect. 3.3, the equations of motion are calculated in analogy to the classical
case. We find that the quantum corrections to the classical equations come only from
high powers of q in the expansion of the potential or in high powers of t in the
expansion of the time-dependent averages. Also, these corrections are of the second
order in �. These results show that our quantum models follows classical trajectories
very closely. The nature of classical limit is studied in Sect. 4. The result, which may
seem surprising, is that it is the limit of large variances, not small. Thus, quantum ME
packets with large variances follow their classical counterparts better than Gaussian
wave packets. Of course, the way we measure the size of the variances is important
here. The variances that are large with respect to this measure can still be sufficiently
small to agree with observations. Finally, Sect. 5 concludes the paper by summarizing
the main ideas and the most important results.

2 Statistical form of Classical Mechanics

Let us start with the warning that the topic of this section has nothing to do with what
is usually called ‘statistical mechanics’.
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If one is going to model classical mechanics then what are the properties that
one would like to reproduce? The most conspicuous property from the point of view
of quantum mechanics appears to be the sharpness of mechanical trajectories in the
phase space because quantum mechanics denies the existence of such trajectories.
This leads most researchers to aim at quantum states the phase-space picture of which
is as sharp as possible. That are states with minimum uncertainty allowed by quantum
mechanics. For one degree of freedom, described by coordinate q and momentum p,
the uncertainty is given by the quantity

ν = 2�q�p

�
, (1)

where �a is the variance of quantity a,

�a =
√

〈a2〉 − 〈a〉2. (2)

It is well known that minimum uncertainty allowed by quantum mechanics is ν = 1.
The states with ν = 1 are, however, very special states. First, they must be pure

states such as Gaussian wave packets or coherent states. Such states are very diffi-
cult to prepare unlike the usual states of macroscopic systems described by classical
mechanics. They are also prone to strong distortion by measurements. Moreover, as
pure states, they can be linearly superposed. This is another peculiarity that is never
observed for states of systems of classical mechanics. Hence, trying to get a trajectory
as sharp as possible leads to the loss of other desirable properties.

Moreover, observations within classical mechanics admit the notion that the sharp-
ness of phase-space trajectories is only a mathematical and methodical feature of
classical mechanics. It may be just an idealization, a limit in which things become
mathematically simpler. We can use it in calculations which, however, must also take
into account the necessary non-zero variances of real observations. Indeed, such ob-
servations are generally afflicted with uncertainties ν � 1. Hence, if we want to com-
pare the predictions of our quantum models with observations of classical mechanics,
we are forced to compare states that are fuzzy in both theories.

One idea of the present paper is to consider states with given averages and vari-
ances of the coordinates and momenta and leave everything else as fuzzy as possible.
To calculate the corresponding probability distributions in classical, and the state op-
erators in quantum mechanics, we shall, therefore, apply the maximum entropy prin-
ciple. This is a general principle in mathematical theory of probabilities (see [22])
and it should not be confused with the well-known thermodynamic law. The resulting
states are called maximum-entropy packets, ME-packets. The averages of coordinates
and momenta take over the role of coordinate and momenta in classical mechanics. In
any case the averages represent measurable aspects of these variables. The dynamical
evolution of variances is an important indicator of the applicability of the model one
is working with. It determines the time intervals within which reasonable predictions
are possible.

Consider a three-body system that is to model the Sun, Earth and Jupiter. It turns
out that generic trajectories starting as near to each other as, say, the dimension of
the irregularities of the Earth surface will diverge from each other by dimensions of
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the Earth-Sun distance after the time of only about ten million years. This seems to
contradict the four billion years of relatively stable Earth motion around the Sun that
is born out by observations. The only way out is the existence of a few special trajec-
tories that are much stabler than the generic ones and the fact that bodies following
an unstable trajectory have long ago fallen into the Sun or have been ejected from the
solar system.

An important question is that on the ontological status of ME-packets and on the
nature of the limit in which trajectories become sharp. The usual standpoint is that
any mechanical system always objectively is in a state of a completely sharp trajec-
tory. Any more fuzzy state is only the result of our incomplete knowledge. Thus, the
fuzzy states are not considered themselves as real. Here, we take the opposite stand-
point. For us, a state to be real, it must be determined by objective initial conditions.
A simple example is a gun in a position that is fixed in a reproducible way and that
shoot bullets using cartridges of a given provenance. The state of each individual
shot is defined by the conditions and is the same for all shots even if observations
may have different results for different shots. A finer analysis is possible only as long
as new initial conditions are specified that determine a subset of individual shots. In
the theoretical description of a state, we can make the limit of �Q → 0,�P → 0.
This is considered as a non-existing, but practically useful idealization.

To limit ourselves just to given averages and variances of coordinates and mo-
menta is a great simplification that enables us to obtain interesting results easily.
Some further discussion on quantum modeling of classical properties is in order. On
the one hand, for internal degrees of freedom, the usual thermodynamic methods give
small relative variances as a consequence of the state coordinates being extensive,
the entropy being maximal and the system being macroscopic. This does not work
for external (mechanical) properties. The difference is due to the simple fact that the
internal degrees of freedom are not accessible to manipulation and have small vari-
ances spontaneously. The external degrees of freedom are accessible to manipulations
and it is easy to prepare states with small as well as large variances. There is no ob-
jective need that the variances are small spontaneously. The idea that really existing
mechanical states must always have only small variances is caused by a purely theo-
retical notion that all real mechanical systems have an absolutely sharp phase space
trajectory and this notion is clearly false. The only problem is that it has become a
part of our subconscious psychology.

On the other hand, if quantum ME packets are to be quantum models of the clas-
sical ME packets with the same averages and variances then this is a more general
situation than that considered in Ref. [4]. Quantum ME packet is a classical state
in the sense of Ref. [4] if it has small variances. Only then, the average values are
directly observable on individual systems.

2.1 Classical ME-Packets

Let us first consider systems with one degree of freedom. The generalization to any
number is easy. Let the coordinate be q and the momentum p. A state is a distribution
function ρ(q,p) on the phase space spanned by q and p. The function ρ(q,p) is
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dimension-free and normalized by

∫
dq dp

v
ρ = 1,

where v is an auxiliary phase-space volume to make the integration dimension-free.
The entropy of ρ(q,p) can be defined by

S := −
∫

dq dp

v
ρ lnρ.

The value of entropy will depend on v but the most of other results will not. Classical
mechanics does not offer any idea of how to fix v. We shall get its value from quantum
mechanics.

Let us define: ME-packet is the distribution function ρ that maximizes the entropy
subjected to the conditions:

〈q〉 = Q, 〈q2〉 = �Q2 + Q2, (3)

and

〈p〉 = P, 〈p2〉 = �P 2 + P 2, (4)

where Q, P , �Q and �P are given values of averages and variances of q and p. We
have used the abbreviation

〈x〉 =
∫

dq dp

v
x.

The explicit form of ρ can be found using the partition-function method as de-
scribed e.g. in [22]. The variational principle yields

ρ = 1

Z(λ1, λ2, λ3, λ4)
exp(−λ1q − λ2p − λ3q

2 − λ4p
2), (5)

where

Z =
∫

dq dp

v
exp(−λ1q − λ2p − λ3q

2 − λ4p
2),

and λ1, λ2, λ3 and λ4 are the Lagrange multipliers. Hence, the partition function for
classical ME-packets is given by

Z = π

v

1√
λ3λ4

exp

(
λ2

1

4λ3
+ λ2

2

4λ4

)

. (6)

The expressions for λ1, λ2, λ3 and λ4 in terms of Q, P , �Q and �P can be obtained
by solving the equations

∂ lnZ

∂λ1
= −Q,

∂ lnZ

∂λ3
= −�Q2 − Q2,
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and

∂ lnZ

∂λ2
= −P,

∂ lnZ

∂λ4
= −�P 2 − P 2.

The result is:

λ1 = − Q

�Q2
, λ3 = 1

2�Q2
, (7)

and

λ2 = − P

�P 2
, λ4 = 1

2�P 2
. (8)

Substituting this into (5), we obtain the distribution function of a one-dimensional
ME packet. The generalization to any number of dimensions is trivial.

Theorem 1 The distribution function of the ME-packet for a system with given av-
erages and variances Q1, . . . ,Qn, �Q1, . . . ,�Qn of coordinates and P1, . . . ,Pn,
�P1, . . . ,�Pn of momenta, is

ρ =
(

v

2π

)n n∏

k=1

(
1

�Qk�Pk

exp

[

− (qk − Qk)
2

2�Q2
k

− (pk − Pk)
2

2�P 2
k

])

. (9)

We observe that all averages obtained from ρ are independent of v and that the
result is a Gaussian distribution in agreement with Jaynes’ conjecture that the maxi-
mum entropy principle gives the Gaussian distribution if the only conditions are fixed
values of the first two moments.

As �Q and �P approach zero, ρ becomes a delta-function and the state becomes
sharp. For some quantities, this limit is sensible for others it is not. In particular, the
entropy, which can easily be calculated,

S = 1 + ln
2π�Q�P

v
,

diverges to −∞. This is due to a general difficulty in giving a definition of entropy
for a continuous system that would be satisfactory in every respect. What one could
do is to divide the phase space into cells of volume v so that �Q�P could not be
chosen smaller than v. Then, the limit �Q�P → v of entropy would make more
sense.

The average of any monomial of the form qkplq2mp2n can be calculated with the
help of partition-function method as follows:

〈qkplq2mp2n〉 = (−1)N

Z

∂NZ

∂λk
1∂λl

2∂λm
3 ∂λn

4

, (10)

where N = k + l + 2m + 2n, Z is given by (6) and the values (7) and (8) must be
substituted for the Lagrange multipliers after the derivatives are taken.
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Observe that this enables to calculate the average of a monomial in several differ-
ent ways. Each of these ways, however, leads to the same result due the identities

∂2Z

∂λ2
1

= − ∂Z

∂λ3
,

∂2Z

∂λ2
2

= − ∂Z

∂λ4
,

which are satisfied by the partition function.

2.2 Equations of Motion

Let us assume that the Hamiltonian of our system has the form

H = p2

2m
+ V (q), (11)

where m is the mass and V (q) the potential function. The equations of motion are

q̇ = {q,H }, ṗ = {p,H }.
Inserting (11) for H , we obtain

q̇ = p

m
, ṗ = −dV

dq
. (12)

The general solution to these equations can be written in the form

q(t) = q(t;q,p), p(t) = p(t;q,p), (13)

where

q(0;q,p) = q, p(0;q,p) = p, (14)

q and p being arbitrary initial values. We obtain the equations of motion for the
averages and variances:

Q(t) = 〈q(t;q,p)〉, �Q(t) =
√

〈(q(t;q,p) − Q(t))2〉 (15)

and

P(t) = 〈p(t;q,p)〉, �P (t) =
√

〈(p(t;q,p) − P(t))2〉. (16)

In general, Q(t) and P(t) will depend not only on Q and P , but also on �Q and
�P .

Let us consider the special case of at most quadratic potential:

V (q) = V0 + V1q + 1

2
V2q

2, (17)

where Vk are constants with suitable dimensions. If V1 = V2 = 0, we have a free
particle, if V2 = 0, it is a particle in a homogeneous force field and if V2 	= 0, it is an
harmonic or anti-harmonic oscillator.
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In this case, the general solution has the form

q(t) = f0(t) + qf1(t) + pf2(t), (18)

p(t) = g0(t) + qg1(t) + pg2(t), (19)

where f0(0) = f2(0) = g0(0) = g1(0) = 0 and f1(0) = g2(0) = 1. If V2 	= 0, the
functions are

f0(t) = −V1

V2
(1 − cosωt), f1(t) = cosωt, f2(t) = 1

ξ
sinωt, (20)

g0(t) = −ξ
V1

V2
sinωt, g1(t) = −ξ sinωt, g2(t) = cosωt, (21)

where

ξ = √
mV2, ω =

√
V2

m
.

Only for V2 > 0, the functions remain bounded. If V2 = 0, we obtain

f0(t) = − V1

2m
t2, f1(t) = 1, f2(t) = t

m
, (22)

g0(t) = −V1t, g1(t) = 0, g2(t) = 1. (23)

The equations for averages and variances resulting from (13), (3) and (4) are

Q(t) = f0(t) + Qf1(t) + Pf2(t), (24)

and

�Q2(t) + Q2(t) = f 2
0 (t) + (�Q2 + Q2)f 2

1 (t) + (�P 2 + P 2)f 2
2 (t)

+2Qf0(t)f1(t) + 2Pf0(t)f2(t) + 2〈qp〉f1(t)f2(t). (25)

For the last term, we have from (10)

〈qp〉 = 1

Z

∂2Z

∂λ1∂λ2
.

Using (6), (7) and (8), we obtain from (25)

�Q(t) =
√

f 2
1 (t)�Q2 + f 2

2 (t)�P 2. (26)

Similarly,

P(t) = g0(t) + Qg1(t) + Pg2(t), (27)

�P(t) =
√

f 2
g (t)�Q2 + g2

2(t)�P 2. (28)

We observe: if functions f1(t), f2(t), g1(t) and g2(t) remain bounded, the variances
also remain bounded and the predictions are possible in arbitrary long intervals of
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time. Otherwise, there will always be only limited time intervals in which the theory
can make predictions.

In the case of general potential, the functions (13) can be expanded in products
of powers of q and p, and the averages of these products will contain powers of the
variances. However, as one easily sees form formula (10) and (6),

〈qkpl〉 = QkP l + X�Q + Y�P,

where X and Y are bounded functions. It follows that the dynamical equations for av-
erages coincide, in the limit �Q → 0,�P → 0, with the exact dynamical equations
for q and p. It is an idealization that we consider as not realistic, even in principle,
but that may still be useful for calculations.

Let us expand a general potential function in powers of q ,

V (q) =
∞∑

k=0

1

k!Vkq
k, (29)

where Vk are constants of appropriate dimensions. The Hamilton equations can be
used to calculate all time derivatives at t = 0. First, we have

dq

dt
= {q,H } = p

m
.

This equation can be used to calculate all derivatives of q in terms of those of p:

dnq

dtn
= 1

m

dn−1p

dtn−1
. (30)

A simple iterative procedure gives us further time derivatives of p:

dp

dt
= −V1 − V2q − V3

2
q2 − V4

6
q3 + r5, (31)

d2p

dt2
= −V2

m
p − V3

m
qp − V4

2m
q2p + r5, (32)

d3p

dt3
= − V3

m2
p2 − V4

m2
qp2 + V1V2

m
+ V1V3 + V 2

2

m
q

+ 3V2V3 + V1V4

2m
q2 + 4V2V4 + 3V 2

3

6m
q3 + 5V3V4

12m
q4 + V 2

4

12m
q5 + r5,

(33)

and

d4p

dt4
= − V4

m3
p3 + 3V1V3 + V 2

2

m2
p + 3V1V4 + 5V2V3

m2
qp

+ 5V 2
3 + 8V2V4

2m2
q2p + 3

V3V4

m2
q3p + 3V 2

4

4m2
q4p + r5, (34)
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where rk is the rest term that is due to all powers in (29) that are not smaller than
k (the rests symbolize different expressions in different equations). The purpose of
having all time derivatives up to the fourth order is to show later that it is the highest
order in which no quantum corrections appear in the equations for the averages.

Taking the average of both sides of (31)–(34), and using (10), (6)–(8), we obtain

dP

dt
= −V1 − V2Q − V3

2
Q2 − V4

6
Q3 − V3 + V4Q

2
�Q2 + r5, (35)

d2P

dt2
= −V2

m
P + V3

m
QP + V4

2m
Q2P + V4

2m
P�Q2 + r5, (36)

d3P

dt3
= − V3

m2
P 2 − V4

m2
QP 2 + V1V2

m
+ V1V3 + V 2

2

m
Q + 3V2V3 + V1V4

2m
Q2

+ 4V2V4 + 3V 2
3

6m
Q3 + 5V3V4

12m
Q4 + V 2

4

12m
Q5 −

(
V3

m2
+ V4

m2
Q

)

�P 2

+
(

3V2V3 + V1V4

2m
+ 4V2V4 + 3V 2

3

2m
Q + 5V3V4

2m
Q2 + 5V3V4

4m
�Q2

+ 5V 2
4

6m
Q3 + 5V 2

4

4m
Q�Q2

)

�Q2 + r5, (37)

and

d4P

dt4
= − V4

m3
P 3 + 3V1V3 + V 2

2

m2
P + 3V1V4 + 5V2V3

m2
QP

+ 5V 2
3 + 8V2V4

2m2
Q2P + 3

V3V4

m2
Q3P + 3V 2

4

4m2
Q4P − 3V4

m3
P�P 2

+
(

5V 2
3 + 8V2V4

2m2
P + 9V3V4

m2
QP + 9V 2

4

2m2
Q2P + 9V 2

4

4m2
P�Q2

)

�Q2 + r5.

(38)

We can see, that the limit �Q → 0,�P → 0 in (35)–(38) lead to equations that
coincide with (31)–(34) if Q → q,P → p as promised.

3 Quantum ME-Packets

Let us now turn to quantum mechanics and try to solve an analogous problem. Let a
system with one degree of freedom be described by the operators q and p and let us
look for a state ρ, a normalized,

Trρ = 1,

self-adjoint positive operator, that maximizes von Neumann entropy

S = Tr(ρ lnρ) (39)
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under the conditions

Tr(ρq) = Q, Tr(ρq2) = Q2 + �Q2, (40)

Tr(ρp) = P, Tr(ρp2) = P 2 + �P 2, (41)

where Q, P , �Q and �P are given numbers. The states that satisfy these conditions
are called quantum ME-packets.

3.1 Calculation of the State Operator

To solve the mathematical problem, we use the method of Lagrange multipliers as in
the classical case. Thus, the following equation results:

dS − λ0dTrρ − λ1dTr(ρq) − λ2dTr(ρp)

−λ3dTr(ρq2) − λ4dTr(ρp2) = 0. (42)

The differentials of the terms that are linear in ρ are simple to calculate:

dTr(ρx) =
∑

mn

xnmdρmn.

Although not all elements of the matrix dρmn are independent (it is a hermitian ma-
trix), we can proceed as if they were because the matrix xnm is to be also hermitian.
The only problem is to calculate dS. We have the following

Lemma 1

dS = −
∑

mn

[δmn + (lnρ)mn]dρmn. (43)

Proof Let M be a unitary matrix that diagonalizes ρ,

M†ρM = R,

where R is a diagonal matrix with elements Rn. Then S = −∑
n Rn lnRn. Correction

to Rn if ρ 
→ ρ + dρ can be calculated by the first-order formula of the stationary
perturbation theory. This theory is usually applied to Hamiltonians but it holds for
any perturbed hermitian operator. Moreover, the formula is exact for infinitesimal
perturbations. Thus,

Rn 
→ Rn +
∑

kl

M
†
knMlndρkl.

In this way, we obtain

dS = −
∑

n

(

Rn +
∑

kl

M
†
knMlndρkl

)

× ln

[

Rn

(

1 + 1

Rn

∑

rs

M†
rnMsndρrs

)]

−
∑

n

Rn lnRn
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= −
∑

n

[

lnRn

∑

kl

M
†
knMlndρkl +

∑

kl

M
†
knMlndρkl

]

= −
∑

kl

[δkl + (lnρ)kl]]dρkl.
�

With the help of Lemma 1, (42) becomes

Tr[(1 + lnρ − λ0 − λ1q − λ2p − λ3q
2 − λ4p

2)dρ] = 0

so that we have

ρ = exp(−λ0 − 1 − λ1q − λ2p − λ3q
2 − λ4p

2). (44)

The first two terms in the exponent determine the normalization constant

e−λ0−1

because they commute with the rest of the exponent and are independent of the dy-
namical variables. Taking the trace of (44), we obtain

e−λ0−1 = 1

Z(λ1, λ2, λ3, λ4)
,

where Z is the partition function,

Z(λ1, λ2, λ3, λ4) = Tr[exp(−λ1q − λ2p − λ3q
2 − λ4p

2)]. (45)

Thus, the state operator has the form

ρ = 1

Z(λ1, λ2, λ3, λ4)
exp(−λ1q − λ2p − λ3q

2 − λ4p
2). (46)

At this stage, the quantum theory begins to differ from the classical one. It turns
out that, for the case of non-commuting operators in the exponent of the partition
function, formula (10) is not valid in general. We can only show that it holds for the
first derivatives. To this aim, we prove the following

Lemma 2 Let A and B be Hermitian matrices. Then

d

dλ
Tr[exp(A + Bλ)] = Tr[B exp(A + Bλ)]. (47)

Proof We express the exponential function as a series and then use the invariance of
trace with respect to any cyclic permutation of its argument.

dTr[exp(A + Bλ)] =
∞∑

n=0

1

n!Tr[d(A + Bλ)n]
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=
∞∑

n=0

1

n!Tr

[
n∑

k=1

(A + Bλ)k−1B(A + Bλ)n−k

]

dλ

=
∞∑

n=0

1

n!
n∑

k=1

Tr
[
B(A + Bλ)n−1]dλ

= Tr[B exp(A + Bλ)]dλ. �

The proof of Lemma 2 shows why formula (10) is not valid for higher derivatives
than the first in the quantum case: the operator B does not commute with A+Bλ and
cannot be shifted from its position to the first position in product

(A + Bλ)kB(A + Bλ)l.

For the first derivative, it can be brought there by a suitable cyclic permutation. How-
ever, each commutator [B, (A + Bλ)] is proportional to �. Hence, formula (10) with
higher derivatives is the leading term in the expansion of averages in powers of �.

Together with (45), Lemma 2 implies the formulae:

∂ lnZ

∂λ1
= −Q,

∂ lnZ

∂λ3
= −Q2 − �Q2 (48)

and
∂ lnZ

∂λ2
= −P,

∂ lnZ

∂λ4
= −P 2 − �P 2. (49)

The values of the multipliers can be calculated from (48) and (49), if the form of the
partition function is known.

Variational methods can find locally extremal values that are not necessarily max-
ima. We can however prove that our state operator maximizes entropy. The proof is
based on the generalized Gibbs’ inequality,

Tr(ρ lnρ − ρ lnσ) ≥ 0

for all pairs {ρ,σ } of state operators (for proof of the inequality, see [6], p. 264). The
proof of maximality is then analogous to the ‘classical’ proof (see, e.g., [22], p. 357).
The first proof of maximality in the quantum case was given by von Neumann [23].

The state operator (46) can be inserted in the formula (39) to give the value of the
maximal entropy,

S = lnZ + λ1〈q〉 + λ2〈p〉 + λ3〈q2〉 + λ4〈p2〉. (50)

This, together with (48) and (49) can be considered as the Legendre transformation
from the function lnZ(λ1, λ2, λ3, λ4) to the function S(〈q〉, 〈p〉, 〈q2〉, 〈p2〉).
3.2 Diagonal Representation

The exponent in (46) can be written in the form

λ2
1

4λ3
+ λ2

2

4λ4
− 2

√
λ3λ4K, (51)
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where

K = 1

2

√
λ3

λ4

(

q + λ1

2λ3

)2

+ 1

2

√
λ4

λ3

(

p + λ2

2λ4

)2

. (52)

This is an operator acting on the Hilbert space of our system. K has the form of the
Hamiltonian1 of a harmonic oscillator with the coordinate U and momentum W

U = q + λ1

2λ3
, W = p + λ2

2λ4
, (53)

that satisfy the commutation relation [U,W ] = i�. The oscillator has mass M and
frequency ,

M =
√

λ3

λ4
,  = 1. (54)

The normalized eigenstates |k〉 of the operator form a basis in the Hilbert space of our
system defining the so-called diagonal representation and its eigenvalues are �/2 +
�k. As usual, we introduce operator A such that

U =
√

�

2M
(A + A†), (55)

W = −i

√
�M

2
(A − A†), (56)

K = �

2
(A†A + AA†), (57)

A|k〉 = √
k|k − 1〉, (58)

A†|k〉 = √
k + 1|k + 1〉. (59)

To calculate Z in the diagonal representation is easy:

Z = Tr

[

exp

(
λ2

1

4λ3
+ λ2

2

4λ4
− 2

√
λ3λ4K

)]

=
∞∑

k=0

〈k| exp

(
λ2

1

4λ3
+ λ2

2

4λ4
− 2

√
λ3λ4K

)

|k〉

= exp

(
λ2

1

4λ3
+ λ2

2

4λ4
− �

√
λ3λ4

) ∞∑

k=0

exp(−2�

√
λ3λ4k).

Hence, the partition function for the quantum ME-packets is

Z = exp(
λ2

1
4λ3

+ λ2
2

4λ4
)

2 sinh(�
√

λ3λ4)
. (60)

1The operator K must not be confused with the Hamiltonian H of our system, which can be arbitrary.
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Now, we can express the Lagrange multipliers in terms of the averages and vari-
ances. Equations (48) and (49) yield

λ1 = − Q

�Q2

ν

2
ln

ν + 1

ν − 1
, λ2 = − P

�P 2

ν

2
ln

ν + 1

ν − 1
, (61)

and

λ3 = 1

2�Q2

ν

2
ln

ν + 1

ν − 1
, λ4 = 1

2�P 2

ν

2
ln

ν + 1

ν − 1
, (62)

where ν is defined by (1).
From (50), (61) and (62), we obtain the entropy:

S = − ln 2 + ν + 1

2
ln(ν + 1) − ν − 1

2
ln(ν − 1). (63)

Thus, S depends on Q, P , �Q, �P only via ν. We have

dS

dν
= 1

2
ln

ν + 1

ν − 1
> 0,

so that S is an increasing function of ν. Near ν = 1,

S ≈ −ν − 1

2
ln(ν − 1).

Asymptotically (ν → ∞),

S ≈ lnν + 1 − ln 2.

In the classical region, ν � 1, S ≈ lnν.
It is clear that the choice of Q and P cannot influence the entropy. The indepen-

dence of S from Q and P does not contradict the Legendre transformation properties.
Indeed, usually, one would have

∂S

∂Q
= λ1,

but here
∂S

∂Q
= λ1 + 2λ3Q,

which is zero.
The state operator can also be expressed in terms of the averages and variances.

The trivial generalization to n degrees of freedom is

Theorem 2 The state operator of the ME-packet of a system with given aver-
ages and variances Q1, . . . ,Qn, �Q1, . . . ,�Qn of coordinates and P1, . . . ,Pn,
�P1, . . . ,�Pn of momenta, is

ρ =
n∏

k=1

[
2

ν2
k − 1

exp

(

−1

�
ln

νk + 1

νk − 1
Kk

)]

, (64)
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where

Kk = 1

2

�Pk

�Qk

(qk − Qk)
2 + 1

2

�Qk

�Pk

(pk − Pk)
2 (65)

and

νk = 2�Pk�Qk

�
. (66)

Strictly speaking, the state operator (64) is not a Gaussian distribution. Thus, it
seems to be either a counterexample to, or a generalization of, Jaynes statement that
the Gaussian distribution is the only distribution that maximizes entropy for given
values of the first two moments [22].

In the diagonal representation, we have

ρ =
∞∑

k=0

Rk|k〉〈k|. (67)

We easily obtain for Rk that

Rk = 2
(ν − 1)k

(ν + 1)k+1
. (68)

Hence,

lim
ν=1

Rk = δk0,

and the state ρ becomes |0〉〈0|. In general, states |k〉 depend on ν. The state vector
|0〉 in the q-representation expressed as a function of Q, P , �Q and ν is given by

ψ(q) =
(

1

π

ν

2�Q2

)1/4

exp

[

− ν

4�Q2
(q − Q)2 + iP q

�

]

. (69)

This is a Gaussian wave packet that corresponds to different values of variances than
the original ME packet but has the minimal uncertainty. For ν → 1, it remains regular
and the projector |0〉〈0| becomes the state operator of the original ME packet. Hence,
Gaussian wave packets are special cases of ME-packets.

The diagonal representation offers a method for calculating averages of coordi-
nates and momenta products that replaces the partition function way. Let us denote
such a product X. We have

〈X〉 =
∞∑

k=0

Rk〈k|X|k〉. (70)

To calculate 〈k|X|k〉, we use (55), (56), (53), (54), (61) and (62) to obtain

q = Q + �Q√
ν

(A + A†), p = P − i
�P√

ν
(A − A†).
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By substituting these relations to X and using the commutation relations [A,A†] = 1,
we obtain

X = P (N) + Q(A,A†),

where N = A†A and where, in each monomial of the polynomial Q, the number of
A-factors is different from the number of A†-factors. Thus,

〈k|X|k〉 = P (k).

In (70), there are, therefore, sums

∞∑

k=0

knRk.

With (68), this becomes

∞∑

k=0

knRk = 2

ν + 1
In,

where

In(ν) =
∞∑

k=0

kn

(
ν − 1

ν + 1

)k

.

We easily obtain

In =
(

ν2 − 1

2

d

dν

)n
ν + 1

2
.

The desired average value is then given by

〈X〉 = 2

ν + 1
P

(
ν2 − 1

2

d

dν

)
ν + 1

2
. (71)

The calculation of the polynomial P for a given X and the evaluation of the right-
hand side of (71) are the two steps of the promised method.

3.3 Equations of Motion

Let the Hamiltonian of our system be H and the unitary evolution group U(t). The
dynamics in the Schrödinger picture leads to the time dependence of ρ:

ρ(t) = U(t)ρU†(t).

Substituting for ρ from (64) and using a well-known property of exponential function,
we obtain

ρ(t) = 2

ν2 − 1
exp

(

−1

�
ln

ν + 1

ν − 1
U(t)KU†(t)

)

. (72)
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In the Heisenberg picture, ρ remains constant, while q and p are time dependent
and satisfy the equations

i�
dq

dt
= [q,H ], i�

dp

dt
= [p,H ]. (73)

They are solved by

q(t) = U†(t)qU(t), p(t) = U†(t)pU(t),

where q and p are the initial operators, q = q(0) and p = p(0). The resulting oper-
ators can be written in the form of operator functions analogous to classical expres-
sions (13) so that (15) and (16) can again be used.

The example with potential function (17) is solvable in quantum theory, too, and
we can use it for comparison with the classical dynamics as well as for a better un-
derstanding of the ME-packet dynamics. Equation (73) have then the solutions given
by (18) and (19) with functions fn(t) and gn(t) given by (20) and (21) or (22) and
(23). The calculation of the averages and variances is analogous to the classical one
and we obtain (24) and (25) again with the difference that the term 2〈qp〉 on the right
hand side of (25) is now replaced by 〈qp + pq〉.

To calculate 〈qp +pq〉, we use the method introduced in the previous section. We
have

qp + pq = 2QP + 2
P�Q√

ν
(A + A†)

−2i
Q�P√

ν
(A − A†) − 2i

�Q�P

ν
(A2 − A†2),

hence, P = 2QP , and

〈qp + pq〉 = 2QP.

The result is again (26). Similarly for p, the results are given by (27) and (28).
We have shown that the averages and variances of quantum ME-packets have ex-

actly the same time evolution as those of classical ME-packets in the special case of
at-most-quadratic potentials. From formulae (26) and (28) we can also see an inter-
esting fact. On the one hand, both variances must increase near t = 0. On the other,
the entropy must stay constant because the evolution of the quantum state is unitary.
As the relation between entropy and ν is fixed for ME-packets, the ME-packet form
is not preserved by the evolution (the entropy ceases to be maximal). This is similar
for Gaussian-packet form or for coherent-state form.

For general potentials, there will be two types of corrections to the dynamics of
the averages: terms containing the variances and terms containing �. To see these cor-
rections, let us calculate time derivatives for the Hamiltonian (11) with potential (29).
The Heisenberg-picture equations of motion give again

dq

dt
= 1

m
p,
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so that (30) is valid. The other equation,

i�
dp

dt
= [p,H ],

can be applied iteratively as in the classical case so that all time derivatives of p can
be obtained. Thus,

dp

dt
= −V1 − V2q − V3

2
q2 − V4

6
q3 + r5, (74)

and

d2p

dt2
= −V2

m
p − V3

2m
(qp + pq) − V4

6m
(q2p + qpq + pq2) + r5.

This differs from the classical equation only by factor ordering. We can use the com-
mutator [q,p] = i� to simplify the last term,

d2p

dt2
= −V2

m
p − V3

2m
(qp + pq) − V4

2m
qpq + r5. (75)

Similarly,

d3p

dt3
= − V3

m2
p2 − V4

m2
pqp + V1V2

m

+ V1V3 + V 2
2

m
q + 3V2V3 + V1V4

2m
q2

+ 4V2V4 + 3V 2
3

6m
q3 + 5V3V4

12m
q4 + V 2

4

12m
q5 + r5, (76)

and

d4p

dt4
= − V4

m3
p3 + 3V1V3 + V 2

2

m2
p

+ 3V1V4 + 5V2V3

2m2
(qp + pq) + 5V 2

3 + 8V2V4

2m2
qpq

+ 3V3V4

2m2
(q3p + pq3) + 3V 2

4

4m2
q2pq2 + r5. (77)

Next, we calculate quantum averages with the help of formula (71). The quantum
averages of the monomials that are linear in one of variables q or p can differ from
their classical counterparts only by terms that are of the first order in 1/ν and purely
imaginary. For example,

〈qp〉 = QP + i�

2
,

or

〈q3p〉 = Q3P + 3QP�Q2 + 3i
Q2�Q�P

ν
+ 3i

�Q3�P

ν
.
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These corrections clearly cancel for all symmetric factor orderings. The first term in
which a second-order correction occurs is q2p2 and we obtain for it:

〈pq2p〉 = 〈q2p2〉class + 2
�Q2�P 2

ν2
.

Equations (74)–(77) do not contain any such terms and so their averages coincide
exactly with the classical equations (35)–(38). The terms q2p2 with different factor
orderings occur in the fifth time derivative of p and have the form

3V3V4

2m2

[

q3p + pq3,
p2

2m

]

+ V3V4

2m3

[
1

3
q3,p3

]

= i�
V3V4

2m3
(21pq2p − 11�

2).

The average of the resulting term in the fifth time derivative of p is

V3V4

2m3

(

21Q2P 2 + 21P 2�Q2 + 21Q2�P 2 + 21�Q2�P 2 − �
2

2

)

.

If we express � as 2�Q�P/ν, we can write the last two terms in the parentheses as

�Q2�P 2
(

21 − 2

ν2

)

.

A similar term appears in the third time derivative of p, if we allow V5 	= 0 in the
expansion (29):

[

− V5

12m
(q3p + pq3),

p2

2m

]

= i�

[

− V5

4m2
(2pq2p + �

2)

]

,

which contributes to d3P/dt3 by

− V5

2m2

(

〈q2p2〉class + 4�Q2�P 2

ν2

)

.

Again, the correction is of the second order in ν−1.
We can conclude. The quantum equations begin to differ from the classical one’s

only in the higher order terms in V or in the higher time derivatives and the correction
is of the second order in 1/ν. This seems to be very satisfactory: our quantum model
reproduces the classical dynamic very well. Moreover, (69) shows that Gaussian wave
packets are special cases of ME packets with ν = 1. Thus, they approximate classical
trajectories less accurately than ME packets with large ν.

4 Classical Limit

At some places of the paper, it is written that ν � 1 is the classical regime. Let us
now look to see if our equations give some support to this statement.

Let us consider averages of powers of q and p. If we expand such an average in
powers of Planck constant then the leading term can be calculated with help of the
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formula (10) from quantum partition function (60) and from relations (61) and (62)
between the Lagrange multipliers and the averages and variances of q and p. This
has been explained after the proof of Lemma 2.

The quantum partition function (60) differs from its classical counterpart (6) by
the denominator sinh(�

√
λ3λ4). If

�

√
λ3λ4  1, (78)

we can write

sinh(�
√

λ3λ4) = �

√
λ3λ4[1 + O((�

√
λ3λ4)

2)].
The leading term in the partition function then is

Z = π

h

1√
λ3λ4

exp

(
λ2

1

4λ3
+ λ2

2

4λ4

)

,

where h = 2π�. Comparing this with formula (6) shows that the two expressions are
identical, if we set

v = h.

We can say that quantum mechanics gives us the value of v. Next, we have to express
condition (78) in terms of the averages and variances. Equations (62) imply

�

√
λ3λ4 = 1

2
ln

ν + 1

ν − 1
.

Hence, condition (78) is equivalent to

ν � 1. (79)

The expression

ν

2
ln

ν + 1

ν − 1

that appears on the right-hand sides of (61) and (62) satisfies

lim
ν=∞

ν

2
ln

ν + 1

ν − 1
= 1.

Hence, the leading terms in these equations coincide with (7) and (8).
Our result can be formulated as follows. The time evolution of classical and quan-

tum ME packets with the same initial values of averages and variances defines the
averages as time functions. These time functions coincide for the two theories in the
limit ν = ∞. Hence, in our approach, this is the classical limit. It is very different
from the usual assumption that the classical limit must yield the variances as small
as possible. One also often requires that commutators of observables vanish in clas-
sical limit. This is however only motivated by the assumption that all basic quantum
properties are single values of observables. Within our interpretation, this assumption
is rejected and if classical observables are related to quantum operators then only by
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being average values of the operators in prepared states. All such averages are de-
fined by the preparation and do exist simultaneously, independently of whether the
operators commute or not. For example, Q and P are such simultaneously existing
variables for ME packets.

Let us compare the present paper notion of classical limit with a modern text-
book version such as Chap. 14 of [24]. Both approaches define the classical limit
of a quantum state as a classical ensemble described by a fuzzy distribution func-
tion and calculate time evolutions of averages in the states. However, in the textbook,
any quantum system, even not macroscopic, and any state, even pure, are allowed
(pure states preferred as they have smaller uncertainties). Hence, our notion is much
narrower: we consider only macroscopic quantum systems and only some of their
maximum entropy states. This has obvious physical reasons explained in the first two
sections.

5 Conclusion

The paper describes a quite general construction of quantum states that model im-
portant properties of classical-mechanical states. To achieve that, one often-assumed
classical property has to be abandoned: the completely sharp trajectory of all mechan-
ical systems. The sharp trajectory is considered here only as an ideal limit allowed by
classical mechanics. There is however nothing in nature that corresponds to it. This is
in agreement both with practical observations and with theoretical idea that the cor-
rect underlying theory is quantum mechanics. Hence, the way for statistical methods
highlighted in Ref. [4] is free. The key concept turned out to be physical conditions
equivalent to preparation process in quantum mechanics. The paper transfers it into
classical mechanics, where it generalizes the old notion of initial data. Entropy is
defined by the physical conditions independently of the state of any observer’s mind.

Classical mechanics allows not only sharp, but also fuzzy trajectories and the com-
parison of some classical and quantum fuzzy trajectories shows a very good match.
The fuzzy states chosen here are the so-called ME packets. Their fuzziness is de-
scribed by the quantity ν = 2�Q�P/�. The entropy of an ME packet depends only
on ν and is an increasing function of it. The larger ν is, the better the quantum and the
classical evolutions of average values have been shown to agree. Thus, the classical
regime is neither �Q = �P = 0 (absolutely sharp trajectory) nor ν = 1 (minimum
quantum uncertainty). This is the most important result of the paper.

Unlike internal classical properties the external ones such as coordinates and mo-
menta are well manipulable so that conditions exist allowing ME packets to have all
variances �Q and �P from a broad range. There is no reason why the variances had
always to be small other than the incorrect assumption that all real mechanical tra-
jectories are absolutely sharp. Hence, our account of classical properties as statistical
properties of macroscopic quantum systems that started in [4] can be considered as
concluded.
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