189 research outputs found

    Tools for Quality Testing of Batches of Artifacts: The Cryogenic Thermometers for the LHC

    Get PDF
    In the processing of data series, such as in the case of the resistance R vs. temperature T calibrations of the thermometers (several thousands) necessary for the LHC new accelerator at CERN, it is necessary to use automatic methods for determining the quality of the acquired data and the degree of uniformity of the thermometer characteristics, that are of the semiconducting type. In addition, it must be determined if the calibration uncertainties comply with the specifications in the wide temperature range 1,6 - 300 K. Advantage has been taken of the fact that these thermometers represent a population with limited variability, to apply a Least Squares Method with Fixed Effect. This allows to fit the data of all the thermometers together, by taking into account the individuality of each thermometer in the model as a deviation from one of them taken as reference Ri = f(Ti) + bk0 + bk1 g(Tki) + bk1g(Tki)2 + ... where f(Ti) is the model valid for all i data and all k thermometers, while the subsequent part is the "fixed effect" model for the k-th thermometer, where g(T) is a suitable function of T. This method is shown in the paper applied to different stages of the data processing. First, for efficient compensation for the thermal drift occurring during acquisition, robust against the occurrence of outliers. Second, for detection of clusters of thermometers with inherently different characteristics. Finally, for optimisation of the calibration-point distribution

    Transmission loss patterns from acoustic harassment and deterrent devices do not always follow geometrical spreading predictions

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Marine Mammal Science 25 (2009): 53-67, doi:10.1111/j.1748-7692.2008.00243.x.Acoustic harassment and deterrent devices have become increasingly popular mitigation tools for negotiating the impacts of marine mammals on fisheries. The rationale for their variable effectiveness remains unexplained but high variability in the surrounding acoustic field may be relevant. In the present study, the sound fields of one acoustic harassment device and three acoustic deterrent devices were measured at three study sites along the Scandinavian coast. Superimposed onto an overall trend of decreasing sound exposure levels with increasing range were large local variations in sound level for all sources in each of the environments. This variability was likely caused by source directionality, inter-ping source level variation and multi-path interference. Rapid and unpredictable variations in the sound level as a function of range deviated from expectations derived from spherical and cylindrical spreading models and conflicted with the classic concept of concentric zones of increasing disturbance with decreasing range. Under such conditions, animals may encounter difficulties when trying to determine the direction to and location of a sound source, which may complicate or jeopardize avoidance responses.The project was funded by the Swedish Fishermen Association, the Swedish Board of Fisheries, Aage V. Jensen Foundations, Danish Forest and Nature Agency, The Nordic Research Council and the Carlsberg Foundation. Additional logistical support was furnished by the Oticon Foundation and Reson A/S. A.D. Shapiro received financial support from the National Defense Science and Engineering Graduate Fellowship and the WHOI Academic Programs Office. 35

    Continual Learning in Practice

    Get PDF
    This paper describes a reference architecture for self-maintaining systems that can learn continually, as data arrives. In environments where data evolves, we need architectures that manage Machine Learning (ML) models in production, adapt to shifting data distributions, cope with outliers, retrain when necessary, and adapt to new tasks. This represents continual AutoML or Automatically Adaptive Machine Learning. We describe the challenges and proposes a reference architecture.Comment: Presented at the NeurIPS 2018 workshop on Continual Learning https://sites.google.com/view/continual2018/hom

    Discontinuous Transition from a Real Bound State to Virtual Bound State in a Mixed-Valence State of SmS

    Full text link
    Golden SmS is a paramagnetic, mixed-valence system with a pseudogap. With increasing pressure across a critical pressure Pc, the system undergoes a discontinuous transition into a metallic, anti-ferromagnetically ordered state. By using a combination of thermodynamic, transport, and magnetic measurements, we show that the pseudogap results from the formation of a local bound state with spin singlet. We further argue that the transition Pc is regarded as a transition from an insulating electron-hole gas to a Kondo metal, i.e., from a spatially bound state to a Kondo virtually bound state between 4f and conduction electrons.Comment: 5 pages, 5 figure

    Frozen spatial chaos induced by boundaries

    Get PDF
    We show that rather simple but non-trivial boundary conditions could induce the appearance of spatial chaos (that is stationary, stable, but spatially disordered configurations) in extended dynamical systems with very simple dynamics. We exemplify the phenomenon with a nonlinear reaction-diffusion equation in a two-dimensional undulated domain. Concepts from the theory of dynamical systems, and a transverse-single-mode approximation are used to describe the spatially chaotic structures.Comment: 9 pages, 6 figures, submitted for publication; for related work visit http://www.imedea.uib.es/~victo

    Dependence of transient dynamics in a class-C laser upon variation of inversion with time

    Get PDF
    The transient statistics of a gain-switched coherently pumped class-C laser displays a linear correlation between the first passage time and subsequent peak intensity. Measurements are reported showing a positive or negative sign of this linear correlation, controlled through the switching time and the laser detuning. Further measurements of the small-signal laser gain combined with calculations involving a three-level laser model indicate that this sign fundamentally depends upon the way the laser inversion varies during the gain switching, despite the added dynamics of the laser polarization in the class-C laser. [S1050-2947(97)07112-6]

    Visiting the iron cage: Bureaucracy and the contemporary workplace

    Get PDF
    Bureaucracy as an organizational form has always been a controversial issue and placed at the very heart of most discussions within organizational theory. One side of this prolonged discussion praises this administrative form as the ‘rational’ way to run an organization. It provides needed guidance and clarifies responsibilities, which enables employees to become more efficient. However, the opposition claims that in a non-linear world, where industrial organizations are forced to confront the challenging task of sensing and responding to unpredictable, novel situations of highly competitive markets, such an organizational form stifles creativity, fosters de-motivation and causes pressure on employees. Dealing with a bureaucratic form of organization and its consequences begs for a context. It would be appropriate to quit ‘taking sides’ and develop a sound analysis of this phenomenon under the conditions of today’s global workplace environment. This chapter intends to delineate the conditions under which bureaucracy has emerged and the way it has been interpreted since its inception and develop a sound and appropriate analytical approach to its functioning given the prevailing conditions of the contemporary workplace.Publisher's VersionAuthor Post Prin

    A Unified Model of the GABA(A) Receptor Comprising Agonist and Benzodiazepine Binding Sites

    Get PDF
    We present a full-length α(1)β(2)γ(2) GABA receptor model optimized for agonists and benzodiazepine (BZD) allosteric modulators. We propose binding hypotheses for the agonists GABA, muscimol and THIP and for the allosteric modulator diazepam (DZP). The receptor model is primarily based on the glutamate-gated chloride channel (GluCl) from C. elegans and includes additional structural information from the prokaryotic ligand-gated ion channel ELIC in a few regions. Available mutational data of the binding sites are well explained by the model and the proposed ligand binding poses. We suggest a GABA binding mode similar to the binding mode of glutamate in the GluCl X-ray structure. Key interactions are predicted with residues α(1)R66, β(2)T202, α(1)T129, β(2)E155, β(2)Y205 and the backbone of β(2)S156. Muscimol is predicted to bind similarly, however, with minor differences rationalized with quantum mechanical energy calculations. Muscimol key interactions are predicted to be α(1)R66, β(2)T202, α(1)T129, β(2)E155, β(2)Y205 and β(2)F200. Furthermore, we argue that a water molecule could mediate further interactions between muscimol and the backbone of β(2)S156 and β(2)Y157. DZP is predicted to bind with interactions comparable to those of the agonists in the orthosteric site. The carbonyl group of DZP is predicted to interact with two threonines α(1)T206 and γ(2)T142, similar to the acidic moiety of GABA. The chlorine atom of DZP is placed near the important α(1)H101 and the N-methyl group near α(1)Y159, α(1)T206, and α(1)Y209. We present a binding mode of DZP in which the pending phenyl moiety of DZP is buried in the binding pocket and thus shielded from solvent exposure. Our full length GABA(A) receptor is made available as Model S1
    • …
    corecore