50 research outputs found

    Efficient Recognition of Partially Visible Objects Using a Logarithmic Complexity Matching Technique

    Full text link
    An important task in computer vision is the recognition of partially visible two-dimensional objects in a gray scale image. Recent works addressing this problem have attempted to match spatially local features from the image to features generated by models of the objects. However, many algo rithms are considerably less efficient than they might be, typ ically being O(IN) or worse, where I is the number offeatures in the image and N is the number of features in the model set. This is invariably due to the feature-matching portion of the algorithm. In this paper we discuss an algorithm that significantly improves the efficiency offeature matching. In addition, we show experimentally that our recognition algo rithm is accurate and robust. Our algorithm uses the local shape of contour segments near critical points, represented in slope angle-arclength space (θ-s space), as fundamental fea ture vectors. These feature vectors are further processed by projecting them onto a subspace in θ-s space that is obtained by applying the Karhunen-Loève expansion to all such fea tures in the set of models, yielding the final feature vectors. This allows the data needed to store the features to be re duced, while retaining nearly all information important for recognition. The heart of the algorithm is a technique for performing matching between the observed image features and the precomputed model features, which reduces the runtime complexity from O(IN) to O(I log I + I log N), where I and N are as above. The matching is performed using a tree data structure, called a kD tree, which enables multidi mensional searches to be performed in O(log) time.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66975/2/10.1177_027836498900800608.pd

    Animal welfare considerations for using large carnivores and guardian dogs as vertebrate biocontrol tools against other animals

    Get PDF
    Introducing consumptive and non-consumptive effects into food webs can have profound effects on individuals, populations and communities. This knowledge has led to the deliberate use of predation and/or fear of predation as an emerging technique for controlling wildlife. Many now advocate for the intentional use of large carnivores and livestock guardian dogs as more desirable alternatives to traditional wildlife control approaches like fencing, shooting, trapping, or poisoning. However, there has been very little consideration of the animal welfare implications of deliberately using predation as a wildlife management tool. We assess the animal welfare impacts of using dingoes, leopards and guardian dogs as biocontrol tools against wildlife in Australia and South Africa following the ‘Five Domains’ model commonly used to assess other wildlife management tools. Application of this model indicates that large carnivores and guardian dogs cause considerable lethal and non-lethal animal welfare impacts to the individual animals they are intended to control. These impacts are likely similar across different predator-prey systems, but are dependent on specific predator-prey combinations; combinations that result in short chases and quick kills will be rated as less harmful than those that result in long chases and protracted kills. Moreover, these impacts are typically rated greater than those caused by traditional wildlife control techniques. The intentional lethal and non-lethal harms caused by large carnivores and guardian dogs should not be ignored or dismissively assumed to be negligible. A greater understanding of the impacts they impose would benefit from empirical studies of the animal welfare outcomes arising from their use in different contexts

    HD 183579b: A warm sub-Neptune transiting a solar twin detected by TESS

    Get PDF
    We report the discovery and characterization of a transiting warm sub-Neptune planet around the nearby bright (V = 8.75 mag, K = 7.15 mag) solar twin HD 183579, delivered by the Transiting Exoplanet Survey Satellite (TESS). The host star is located 56.8 ± 0.1 pc away with a radius of R∗ = 0.97 ± 0.02 R and a mass of M∗ = 1.03 ± 0.05 M. We confirm the planetary nature by combining space and ground-based photometry, spectroscopy, and imaging. We find that HD 183579b (TOI-1055b) has a radius of Rp = 3.53 ± 0.13 R on a 17.47 d orbit with a mass of Mp = 11.2 ± 5.4 M (3σ mass upper limit of 27.4 M). HD 183579b is the fifth brightest known sub-Neptune planet system in the sky, making it an excellent target for future studies of the interior structure and atmospheric properties. By performing a line-by-line differential analysis using the high-resolution and signal-to-noise ratio HARPS spectra, we find that HD 183579 joins the typical solar twin sample, without a statistically significant refractory element depletion

    TOI-431/HIP 26013: a super-Earth and a sub-Neptune transiting a bright, early K dwarf, with a third RV planet

    Get PDF
    Stars and planetary system

    TOI-431/HIP 26013: A super-Earth and a sub-Neptune transiting a bright, early K dwarf, with a third RV planet

    Get PDF
    We present the bright (Vmag = 9.12), multiplanet system TOI-431, characterized with photometry and radial velocities (RVs). We estimate the stellar rotation period to be 30.5 ± 0.7 d using archival photometry and RVs. Transiting Exoplanet Survey Satellite (TESS) objects of Interest (TOI)-431 b is a super-Earth with a period of 0.49 d, a radius of 1.28 ± 0.04 R, a mass of 3.07 ± 0.35 M, and a density of 8.0 ± 1.0 g cm-3; TOI-431 d is a sub-Neptune with a period of 12.46 d, a radius of 3.29 ± 0.09 R, a mass of 9.90+1.53-1.49 M, and a density of 1.36 ± 0.25 g cm-3. We find a third planet, TOI-431 c, in the High Accuracy Radial velocity Planet Searcher RV data, but it is not seen to transit in the TESS light curves. It has an Msin i of 2.83+0.41-0.34 M, and a period of 4.85 d. TOI-431 d likely has an extended atmosphere and is one of the most well-suited TESS discoveries for atmospheric characterization, while the super-Earth TOI-431 b may be a stripped core. These planets straddle the radius gap, presenting an interesting case-study for atmospheric evolution, and TOI-431 b is a prime TESS discovery for the study of rocky planet phase curves

    Methods for Quick Consensus Estimation

    No full text
    corecore