11 research outputs found

    Combined Engine for Reusable Launch Vehicle (KLIN Cycle)

    No full text

    Launch Vehicle Concept with Tandem Staging and Air Collection

    No full text

    Air–Hydrogen Heat Exchangers for Advanced Space Launchers

    Full text link
    peer reviewedThis paper deals with air–hydrogen heat exchangers intended to provide in-flight oxygen collection capability to a reusable or semireusable two-stages-to-orbit launcher with an oxygen collection phase in supersonic cruise at Mach 2.5. It aims to present a theoretical but mainly technological and experimental feasibility study of heat exchangers sufficiently efficient and reliable to suit the extreme requirements of this application. Two precoolers of two different types (shell and tubes, and plate and fins) have been selected and designed with the objective of fulfilling all constraints of the concept in terms of performance, leak tightness, reliability, compactness, etc. This design process has been validated with four subscaled breadboards (two of each type) tested on two test benches (for performance and leak tightness), developed by Belgium and Spain, in on-design and off-design conditions. All these results highlight the suitability of the new technologies given the extreme requirements of the concept. An optimum design for each technology is recommended considering its proper advantages and disadvantages. An innovative precooler technology is presented and tested.Critical technologies for Future Air Breathing Propulsion : Advanced Heat Exchangers (AHEX
    corecore