297 research outputs found
Product Differentiation Costs and Global Competition
The growing competitive intensity on the markets determines the emergence of
competition costs that are expressed at a corporate level and have implicit
repercussions for the supply system. This type of costs makes it possible to identify
a close link between competition costs and supply differentiation costs.
Classification by competitive intensity presupposes that the analysis performed
identifies the classification of company costs as the discriminating element, in
terms of the competitive pressure of the context in which the firm operates.
The emergence of competition costs is linked to an attempt to squeeze them as an
aspect of vertical, or more specifically, horizontal cooperation strategies.Product Differentiation; Differentiation Costs; Over-Supply; Global Competition; Marketing; Market-Driven Management; Global Corporations; Global Markets DOI:http://dx.doi.org/10.4468/2005.1.06garbelli
Performance of a Neutron Polarimeter to Measure the Electric Form Factor of the Neutron
This research was sponsored by the National Science Foundation Grant NSF PHY-931478
Calibration of a Neutron Polarimeter
This research was sponsored by the National Science Foundation Grant NSF PHY-931478
Supermassive Binaries and Extragalactic Jets
Some quasars show Doppler shifted broad emission line peaks. I give new
statistics of the occurrence of these peaks and show that, while the most
spectacular cases are in quasars with strong radio jets inclined to the line of
sight, they are also almost as common in radio-quiet quasars. Theories of the
origin of the peaks are reviewed and it is argued that the displaced peaks are
most likely produced by the supermassive binary model. The separations of the
peaks in the 3C 390.3-type objects are consistent with orientation-dependent
"unified models" of quasar activity. If the supermassive binary model is
correct, all members of "the jet set" (astrophysical objects showing jets)
could be binaries.Comment: 31 pages, PostScript, missing figure is in ApJ 464, L105 (see
http://www.aas.org/ApJ/v464n2/5736/5736.html
Fitting the integrated Spectral Energy Distributions of Galaxies
Fitting the spectral energy distributions (SEDs) of galaxies is an almost
universally used technique that has matured significantly in the last decade.
Model predictions and fitting procedures have improved significantly over this
time, attempting to keep up with the vastly increased volume and quality of
available data. We review here the field of SED fitting, describing the
modelling of ultraviolet to infrared galaxy SEDs, the creation of
multiwavelength data sets, and the methods used to fit model SEDs to observed
galaxy data sets. We touch upon the achievements and challenges in the major
ingredients of SED fitting, with a special emphasis on describing the interplay
between the quality of the available data, the quality of the available models,
and the best fitting technique to use in order to obtain a realistic
measurement as well as realistic uncertainties. We conclude that SED fitting
can be used effectively to derive a range of physical properties of galaxies,
such as redshift, stellar masses, star formation rates, dust masses, and
metallicities, with care taken not to over-interpret the available data. Yet
there still exist many issues such as estimating the age of the oldest stars in
a galaxy, finer details ofdust properties and dust-star geometry, and the
influences of poorly understood, luminous stellar types and phases. The
challenge for the coming years will be to improve both the models and the
observational data sets to resolve these uncertainties. The present review will
be made available on an interactive, moderated web page (sedfitting.org), where
the community can access and change the text. The intention is to expand the
text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics &
Space Scienc
Allan Sandage and the Cosmic Expansion
This is an account of Allan Sandage's work on (1) The character of the
expansion field. For many years he has been the strongest defender of an
expanding Universe. He later explained the CMB dipole by a local velocity of
220 +/- 50 km/s toward the Virgo cluster and by a bulk motion of the Local
supercluster (extending out to ~3500 km/s) of 450-500 km/s toward an apex at
l=275, b=12. Allowing for these streaming velocities he found linear expansion
to hold down to local scales (~300 km/s). (2) The calibration of the Hubble
constant. Probing different methods he finally adopted - from
Cepheid-calibrated SNe Ia and from independent RR Lyr-calibrated TRGBs - H_0 =
62.3 +/- 1.3 +/- 5.0 km/s/Mpc.Comment: 12 pages, 11 figures, 1 table, Submitted to Astrophysics and Space
Science, Special Issue on the Fundamental Cosmic Distance Scale in the Gaia
Er
- …