145 research outputs found

    Progressive 35S promoter methylation increases rapidly during vegetative development in transgenic Nicotiana attenuata plants

    Get PDF
    BACKGROUND: Genetically modified plants are widely used in agriculture and increasingly in ecological research to enable the selective manipulation of plant traits in the field. Despite their broad usage, many aspects of unwanted transgene silencing throughout plant development are still poorly understood. A transgene can be epigenetically silenced by a process called RNA directed DNA methylation (RdDM), which can be seen as a heritable loss of gene expression. The spontaneous nature of transgene silencing has been widely reported, but patterns of acquirement remain still unclear. RESULTS: Transgenic wild tobacco plants (Nicotiana attenuata) expressing heterologous genes coding for antimicrobial peptides displayed an erratic and variable occurrence of transgene silencing. We focused on three independently transformed lines (PNA 1.2, PNA 10.1 and ICE 4.4) as they rapidly lost the expression of the resistance marker and down-regulated transgene expression by more than 200 fold after only one plant generation. Bisulfite sequencing indicated hypermethylation within the 35S and NOS promoters of these lines. To shed light on the progress of methylation establishment, we successively sampled leaf tissues from different stages during plant development and found a rapid increase in 35S promoter methylation during vegetative growth (up to 77% absolute increase within 45 days of growth). The levels of de novo methylation were inherited by the offspring without any visible discontinuation. A secondary callus regeneration step could interfere with the establishment of gene silencing and we found successfully restored transgene expression in the offspring of several regenerants. CONCLUSIONS: The unpredictability of the gene silencing process requires a thorough selection and early detection of unstable plant lines. De novo methylation of the transgenes was acquired solely during vegetative development and did not require a generational change for its establishment or enhancement. A secondary callus regeneration step provides a convenient way to rescue transgene expression without causing undesirable morphological effects, which is essential for experiments that use transformed plants in the analysis of ecologically important traits

    Unbiased Transcriptional Comparisons of Generalist and Specialist Herbivores Feeding on Progressively Defenseless Nicotiana attenuata Plants

    Get PDF
    Background Herbivore feeding elicits dramatic increases in defenses, most of which require jasmonate (JA) signaling, and against which specialist herbivores are thought to be better adapted than generalist herbivores. Unbiased transcriptional analyses of how neonate larvae cope with these induced plant defenses are lacking. Methodology/Principal Findings We created cDNA microarrays for Manduca sexta and Heliothis virescens separately, by spotting normalized midgut-specific cDNA libraries created from larvae that fed for 24 hours on MeJA-elicited wild-type (WT) Nicotiana attenuata plants. These microarrays were hybridized with labeled probes from neonates that fed for 24 hours on WT and isogenic plants progressively silenced in JA-mediated defenses (N: nicotine; N/PI: N and trypsin protease inhibitors; JA: all JA-mediated defenses). H. virescens neonates regulated 16 times more genes than did M. sexta neonates when they fed on plants silenced in JA-mediated defenses, and for both species, the greater the number of defenses silenced in the host plant (JA > N/PI > N), the greater were the number of transcripts regulated in the larvae. M. sexta larvae tended to down-regulate while H. virescens larvae up- and down-regulated transcripts from the same functional categories of genes. M. sexta larvae regulated transcripts in a diet-specific manner, while H. virescens larvae regulated a similar suite of transcripts across all diet types. Conclusions/Significance The observations are consistent with the expectation that specialists are better adapted than generalist herbivores to the defense responses elicited in their host plants by their feeding. While M. sexta larvae appear to be better adapted to N. attenuata's defenses, some of the elicited responses remain effective defenses against both herbivore species. The regulated genes provide novel insights into larval adaptations to N. attenuata's induced defenses, and represent potential targets for plant-mediated RNAi to falsify hypotheses about the process of adaptation

    Nicotiana attenuata Data Hub (NaDH): an integrative platform for exploring genomic, transcriptomic and metabolomic data in wild tobacco

    Get PDF
    Background: Nicotiana attenuata (coyote tobacco) is an ecological model for studying plant-environment interactions and plant gene function under real-world conditions. During the last decade, large amounts of genomic, transcriptomic and metabolomic data have been generated with this plant which has provided new insights into how native plants interact with herbivores, pollinators and microbes. However, an integrative and open access platform that allows for the efficient mining of these -omics data remained unavailable until now. Description: We present the Nicotiana attenuata Data Hub (NaDH) as a centralized platform for integrating and visualizing genomic, phylogenomic, transcriptomic and metabolomic data in N. attenuata. The NaDH currently hosts collections of predicted protein coding sequences of 11 plant species, including two recently sequenced Nicotiana species, and their functional annotations, 222 microarray datasets from 10 different experiments, a transcriptomic atlas based on 20 RNA-seq expression profiles and a metabolomic atlas based on 895 metabolite spectra analyzed by mass spectrometry. We implemented several visualization tools, including a modified version of the Electronic Fluorescent Pictograph (eFP) browser, co-expression networks and the Interactive Tree Of Life (iTOL) for studying gene expression divergence among duplicated homologous. In addition, the NaDH allows researchers to query phylogenetic trees of 16,305 gene families and provides tools for analyzing their evolutionary history. Furthermore, we also implemented tools to identify co-expressed genes and metabolites, which can be used for predicting the functions of genes. Using the transcription factor NaMYB8 as an example, we illustrate that the tools and data in NaDH can facilitate identification of candidate genes involved in the biosynthesis of specialized metabolites. Conclusion: The NaDH provides interactive visualization and data analysis tools that integrate the expression and evolutionary history of genes in Nicotiana, which can facilitate rapid gene discovery and comparative genomic analysis. Because N. attenuata shares many genome-wide features with other Nicotiana species including cultivated tobacco, and hence NaDH can be a resource for exploring the function and evolution of genes in Nicotiana species in general. The NaDH can be accessed at: http://nadh.ice.mpg.de

    Limit of detection in different matrices of 19 commercially available rapid antigen tests for the detection of SARS-CoV-2

    Get PDF
    In the context of the coronavirus disease 2019 (COVID-19) pandemic there has been an increase of the use of antigen-detection rapid diagnostic tests (Ag-RDT). The performance of Ag-RDT vary greatly between manufacturers and evaluating their analytical limit of detection (LOD) has become high priority. Here we describe a manufacturer-independent evaluation of the LOD of 19 marketed Ag-RDT using live SARS-CoV-2 spiked in different matrices: direct culture supernatant, a dry swab, and a swab in Amies. Additionally, the LOD using dry swab was investigated after 7 days’ storage at − 80 °C of the SARS-CoV-2 serial dilutions. An LOD of ≈ 5.0 × 102 pfu/ml (1.0 × 106 genome copies/ml) in culture media is defined as acceptable by the World Health Organization. Fourteen of 19 Ag-RDTs (ActiveXpress, Espline, Excalibur, Innova, Joysbio, Mologic, NowCheck, Orient, PanBio, RespiStrip, Roche, Standard-F, Standard-Q and Sure-Status) exceeded this performance criteria using direct culture supernatant applied to the Ag-RDT. Six Ag-RDT were not compatible with Amies media and a decreased sensitivity of 2 to 20-fold was observed for eleven tests on the stored dilutions at − 80 °C for 7 days. Here, we provide analytical sensitivity data to guide appropriate test and sample type selection for use and for future Ag-RDT evaluations

    Ticagrelor potentiates adenosine-induced stimulation of neutrophil chemotaxis and phagocytosis

    Get PDF
    In the PLATO study, ticagrelor was associated with fewer pulmonary infections and subsequent deaths than clopidogrel. Neutrophils are a first-line defence against bacterial lung infection; ticagrelor inhibits cellular uptake of adenosine, a known regulator of neutrophil chemotaxis and phagocytosis. We assessed whether the inhibition of adenosine uptake by ticagrelor influences neutrophil chemotaxis and phagocytosis. Neutrophils and erythrocytes were isolated from healthy volunteers. Concentration-dependent effects of adenosine on IL-8-induced neutrophil chemotaxis were investigated and the involved receptors identified using adenosine receptor antagonists. The modulatory effects of ticagrelor on adenosine-mediated changes in neutrophil chemotaxis and phagocytosis of Streptococcus pneumoniae were determined in the presence of erythrocytes to replicate physiological conditions of cellular adenosine uptake. Low-concentration adenosine (10-8 M) significantly increased IL-8-induced neutrophil chemotaxis (% neutrophil chemotaxis: adenosine 28.7%±4.4 vs. control 22.6%±2.4; p1 receptor. Erythrocytes attenuated the effect of adenosine, although this was preserved by ticagrelor and dipyridamole (another inhibitor of adenosine uptake) but not by control or by cangrelor. Similarly, in the presence of erythrocytes, a low concentration of adenosine (10-8 M) significantly increased neutrophil phagocytic index compared to control when ticagrelor was present (37.6±6.6 vs. 28.0±6.6; p=0.028) but had no effect in the absence of ticagrelor. We therefore conclude that the inhibition of cellular adenosine reuptake by ticagrelor potentiates the effects of a nanomolar concentration of adenosine on neutrophil chemotaxis and phagocytosis. This represents a potential mechanism by which ticagrelor could influence host defence against bacterial lung infection

    Design and development of a macrocyclic series targeting phosphoinositide 3-kinase δ

    Get PDF
    A macrocyclization approach has been explored on a series of benzoxazine phosphoinositide 3-kinase δ inhibitors, resulting in compounds with improved potency, permeability, and in vivo clearance while maintaining good solubility. The thermodynamics of binding was explored via surface plasmon resonance, and the binding of lead macrocycle 19 was found to be almost exclusively entropically driven compared with progenitor 18, which demonstrated both enthalpic and entropic contributions. The pharmacokinetics of macrocycle 19 was also explored in vivo, where it showed reduced clearance when compared with the progenitor 18. This work adds to the growing body of evidence that macrocyclization could provide an alternative and complementary approach to the design of small-molecule inhibitors, with the potential to deliver differentiated properties

    Introduction: Toward an Engaged Feminist Heritage Praxis

    Get PDF
    We advocate a feminist approach to archaeological heritage work in order to transform heritage practice and the production of archaeological knowledge. We use an engaged feminist standpoint and situate intersubjectivity and intersectionality as critical components of this practice. An engaged feminist approach to heritage work allows the discipline to consider women’s, men’s, and gender non-conforming persons’ positions in the field, to reveal their contributions, to develop critical pedagogical approaches, and to rethink forms of representation. Throughout, we emphasize the intellectual labor of women of color, queer and gender non-conforming persons, and early white feminists in archaeology

    Divergent Genomic and Epigenomic Landscapes of Lung Cancer Subtypes Underscore the Selection of Different Oncogenic Pathways during Tumor Development

    Get PDF
    For therapeutic purposes, non-small cell lung cancer (NSCLC) has traditionally been regarded as a single disease. However, recent evidence suggest that the two major subtypes of NSCLC, adenocarcinoma (AC) and squamous cell carcinoma (SqCC) respond differently to both molecular targeted and new generation chemotherapies. Therefore, identifying the molecular differences between these tumor types may impact novel treatment strategy. We performed the first large-scale analysis of 261 primary NSCLC tumors (169 AC and 92 SqCC), integrating genome-wide DNA copy number, methylation and gene expression profiles to identify subtype-specific molecular alterations relevant to new agent design and choice of therapy. Comparison of AC and SqCC genomic and epigenomic landscapes revealed 778 altered genes with corresponding expression changes that are selected during tumor development in a subtype-specific manner. Analysis of >200 additional NSCLCs confirmed that these genes are responsible for driving the differential development and resulting phenotypes of AC and SqCC. Importantly, we identified key oncogenic pathways disrupted in each subtype that likely serve as the basis for their differential tumor biology and clinical outcomes. Downregulation of HNF4α target genes was the most common pathway specific to AC, while SqCC demonstrated disruption of numerous histone modifying enzymes as well as the transcription factor E2F1. In silico screening of candidate therapeutic compounds using subtype-specific pathway components identified HDAC and PI3K inhibitors as potential treatments tailored to lung SqCC. Together, our findings suggest that AC and SqCC develop through distinct pathogenetic pathways that have significant implication in our approach to the clinical management of NSCLC
    corecore