9,831 research outputs found

    Associated strangeness production in the pp to pK^+K^-p and pp to pK^+ pi^0 Sigma^0 reactions

    Full text link
    The total and differential cross sections for associated strangeness production in the pp→pK+K−ppp \to pK^+K^-p and pp→pK+π0Σ0pp \to pK^+\pi^0\Sigma^0 reactions have been studied in a unified approach using an effective Lagrangian model. It is assumed that both the K−pK^-p and π0Σ0\pi^0\Sigma^0 final states originate from the decay of the Λ(1405)\Lambda(1405) resonance which was formed in the production chain pp→p(N∗(1535)→K+Λ(1405))pp\to p(N^*(1535)\to K^+\Lambda(1405)). The available experimental data are well reproduced, especially the ratio of the two total cross sections, which is much less sensitive to the particular model of the entrance channel. The significant coupling of the N∗(1535)N^*(1535) resonance to Λ(1405)K\Lambda(1405) K is further evidence for large ssˉs \bar{s} components in the quark wave function of the N∗(1535)N^*(1535) resonance.Comment: Published in Phys. Rev.

    Odd Parity Light Baryon Resonances

    Get PDF
    We use a consistent SU(6) extension of the meson-baryon chiral Lagrangian within a coupled channel unitary approach in order to calculate the T-matrix for meson-baryon scattering in s-wave. The building blocks of the scheme are the pion and nucleon octets, the rho nonet and the Delta decuplet. We identify poles in this unitary T-matrix and interpret them as resonances. We study here the non exotic sectors with strangeness S=0,-1,-2,-3 and spin J=1/2, 3/2 and 5/2. Many of the poles generated can be associated with known N, Delta, Sigma, Lambda and Xi resonances with negative parity. We show that most of the low-lying three and four star odd parity baryon resonances with spin 1/2 and 3/2 can be related to multiplets of the spin-flavor symmetry group SU(6). This study allows us to predict the spin-parity of the Xi(1620), Xi(1690), Xi(1950), Xi(2250), Omega(2250) and Omega(2380) resonances, which have not been determined experimentally yet.Comment: New appendix and references adde

    On photohadronic processes in astrophysical environments

    Full text link
    We discuss the first applications of our newly developed Monte Carlo event generator SOPHIA to multiparticle photoproduction of relativistic protons with thermal and power law radiation fields. The measured total cross section is reproduced in terms of excitation and decay of baryon resonances, direct pion production, diffractive scattering, and non-diffractive multiparticle production. Non--diffractive multiparticle production is described using a string fragmentation model. We demonstrate that the widely used `Δ\Delta--approximation' for the photoproduction cross section is reasonable only for a restricted set of astrophysical applications. The relevance of this result for cosmic ray propagation through the microwave background and hadronic models of active galactic nuclei and gamma-ray bursts is briefly discussed.Comment: 9 pages including 4 embedded figures, submitted to PAS

    Mixing of pseudoscalar-baryon and vector-baryon in the J(P)=1/2(-) sector and the N* (1535) and N* (1650) resonances

    Get PDF
    We study the meson-baryon interaction with J(P) = 1/2 using the hidden-gauge Lagrangians and mixing pseudoscalar meson-baryon with the vector meson-baryon states in a coupled channels scheme with pi N, eta N, K Lambda, K Sigma, rho N, and pi Delta (d wave). We fit the subtraction constants of each channel to the S-11 partial wave amplitude of the pi N scattering data extracted from the partial wave analysis of the George Washington group. We find two poles that we associate to the N*(1535) and the N*(1650) resonances, with negative subtraction constants of natural size, and compare the results with empirical determinations of these pole positions. We calculate the branching ratios for the different channels of each resonance and we find a good agreement with the experimental data. The cross section for the pi(-)p -> eta n scattering is also evaluated and compared with experiment

    Antiproton-nucleus electromagnetic annihilation as a way to access the proton timelike form factors

    Full text link
    Contrary to the reaction pbar + p --> e+ e- with a high momentum incident antiproton on a free target proton at rest, in which the invariant mass M of the (e+ e-) pair is necessarily much larger than the (pbar p) mass, in the reaction pbar + d --> n e+ e- the value of M can take values near or below the (pbar p) mass. In the antiproton-deuteron electromagnetic annihilation, this allows to access the proton electromagnetic form factors in the time-like region of q^2 near the (pbar p) threshold. We estimate the cross section dsigma(pbar +d --> e+ e- n)/dM for an antiproton beam momentum of 1.5 GeV/c. We find that near the (pbar p) threshold this cross section is about 1 pb/MeV. The case of heavy nuclei target is also discussed. Elements of experimental feasibility are presented for the process pbar + d --> n e+ e- in the context of the Panda project.Comment: 14 pages, 11 figures. submitted to EPJ

    Plasduino: an inexpensive, general purpose data acquisition framework for educational experiments

    Full text link
    Based on the Arduino development platform, Plasduino is an open-source data acquisition framework specifically designed for educational physics experiments. The source code, schematics and documentation are in the public domain under a GPL license and the system, streamlined for low cost and ease of use, can be replicated on the scale of a typical didactic lab with minimal effort. We describe the basic architecture of the system and illustrate its potential with some real-life examples.Comment: 11 pages, 10 figures, presented at the XCIX conference of the Societ\`a Italiana di Fisic

    Light-Front Quantization and AdS/QCD: An Overview

    Full text link
    We give an overview of the light-front holographic approach to strongly coupled QCD, whereby a confining gauge theory, quantized on the light front, is mapped to a higher-dimensional anti de Sitter (AdS) space. The framework is guided by the AdS/CFT correspondence incorporating a gravitational background asymptotic to AdS space which encodes the salient properties of QCD, such as the ultraviolet conformal limit at the AdS boundary at z→0z \to 0, as well as modifications of the geometry in the large zz infrared region to describe confinement and linear Regge behavior. There are two equivalent procedures for deriving the AdS/QCD equations of motion: one can start from the Hamiltonian equation of motion in physical space time by studying the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. To a first semiclassical approximation, where quantum loops and quark masses are not included, this leads to a light-front Hamiltonian equation which describes the bound state dynamics of light hadrons in terms of an invariant impact variable ζ\zeta which measures the separation of the partons within the hadron at equal light-front time. Alternatively, one can start from the gravity side by studying the propagation of hadronic modes in a fixed effective gravitational background. Both approaches are equivalent in the semiclassical approximation. This allows us to identify the holographic variable zz in AdS space with the impact variable ζ\zeta. Light-front holography thus allows a precise mapping of transition amplitudes from AdS to physical space-time. The internal structure of hadrons is explicitly introduced and the angular momentum of the constituents plays a key role.Comment: Invited talk presented by GdT at the XIV School of Particles and Fields, Morelia, Mexico, November 8-12, 201
    • …
    corecore