189 research outputs found

    Tolerability of intensified intravenous interferon alfa-2b versus the ECOG 1684 schedule as adjuvant therapy for stage III melanoma: a randomized phase III Italian Melanoma Inter-group trial (IMI – Mel.A.) [ISRCTN75125874]

    Get PDF
    BACKGROUND: High-dose interferon alfa-2b (IFNalfa-2b), according to the ECOG 1684 schedule, is the only approved adjuvant treatment for stage III melanoma patients by the FDA and EMEA. However, the risk/benefit profile has been questioned limiting its world-wide use. In the late nineties, the Italian Melanoma Inter-group started a spontaneous randomized clinical trial (RCT) to verify if a more intense, but shorter than the ECOG 1684 regimen, could improve survival without increasing the toxicity profile. The safety analysis in the first 169 patients who completed the treatment is here described. METHODS: Stage III melanoma patients were randomized to receive IFNalfa-2b 20 MU/m(2)/d intravenously (IV) 5 days/week × 4 weeks, repeated for three times on weeks 9 to 12, 17 to 20, 25 to 28 (Dose-Dense/Dose-Intense, DD/DI, arm), or IFNalfa-2b 20 MU/m(2)/d IV 5 days/week × 4 weeks followed by 10 MU/m(2 )subcutaneously (SC) three times per week × 48 weeks (High Dose Interferon, HDI, arm). Toxicity was recorded and graded, according to the WHO criteria, as the worst grade that occurred during each cycle. RESULTS: The most common toxicities in both arms were flu-like and gastrointestinal symptoms, leukopenia, liver and neuro-psichiatric morbidities; with regard to severe toxicity, only leukopenia was statistically more frequent in DD/DI arm than in HDI arm (24% vs 9%) (p = 0.0074), yet, this did not cause an increase in the infection risk. Discontinuation of treatment, due to toxicity, was observed in 13 and 17% of the patients in the DD/DI and HDI arm, respectively. The median actual dose intensity delivered in the DD/DI arm (36.4 MU/m(2)/week) was statistically higher than that delivered in the HDI arm (30.7 MU/m(2)/week) (p = 0.003). CONCLUSION: Four cycles of intravenous high-dose IFNalfa-2b can be safely delivered with an increase in the median dose intensity. Efficacy results from this trial are eagerly awaited

    Laboratory Studies of Feeding and Oviposition Preference, Developmental Performance, and Survival of the Predatory Beetle, Sasajiscymnus tsugae on Diets of the Woolly Adelgids, Adelges tsugae and Adelges piceae

    Get PDF
    The suitability of the balsam woolly adelgid, Adelges piceae Ratzeburg (Hemiptera: Adelgidae) as an alternate mass rearing host for the adelgid predator, Sasajiscymnus tsugae Sasaji and McClure (Coleoptera: Coccinellidae) was studied in the laboratory. This predator is native to Japan and has been introduced to eastern hemlock, Tsuga canadensis (L.) Carrière (Pinales: Pinaceae), forests throughout the eastern United States for biological control of the hemlock woolly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae), also of Japanese origin. Feeding, oviposition, immature development, and adult long-term survival of S. tsugae were tested in a series of no choice (single-prey) and paired-choice experiments between the primary host prey, A. tsugae, and the alternate host prey, A. piceae. In paired-choice feeding tests, the predator did not discriminate between eggs of the two adelgid species, but in the no choice tests the predator did eat significantly more eggs of A. piceae than those of A. tsugae. S. tsugae accepted both test prey for oviposition and preferred to lay eggs on adelgid infested versus noninfested host plants. Overall oviposition rates were very low (< 1 egg per predator female) in the oviposition preference tests. Predator immature development rates did not differ between the two test prey, but only 60% of S. tsugae survived egg to adult development when fed A. piceae compared to 86% when fed A. tsugae. S. tsugae adult long-term survival was significantly influenced (positively and negatively) by prey type and the availability of a supplemental food source (diluted honey) when offered aestivating A. tsugae sistens nymphs or ovipositing aestivosistens A. piceae adults, but not when offered ovipositing A. tsugae sistens adults. These results suggest that the development of S. tsugae laboratory colonies reared on a diet consisting only of A. piceae may be possible, and that the biological control potential of the predator might be expanded to include management of A. piceae in Christmas tree plantations

    Aggregating sequences that occur in many proteins constitute weak spots of bacterial proteostasis

    Get PDF
    Aggregation is a sequence-specific process, nucleated by short aggregation-prone regions (APRs) that can be exploited to induce aggregation of proteins containing the same APR. Here, we find that most APRs are unique within a proteome, but that a small minority of APRs occur in many proteins. When aggregation is nucleated in bacteria by such frequently occurring APRs, it leads to massive and lethal inclusion body formation containing a large number of proteins. Buildup of bacterial resistance against these peptides is slow. In addition, the approach is effective against drug-resistant clinical isolates of Escherichiacoli and Acinetobacterbaumannii, reducing bacterial load in a murine bladder infection model. Our results indicate that redundant APRs are weak points of bacterial protein homeostasis and that targeting these may be an attractive antibacterial strategy

    A role for diatom-like silicon transporters in calcifying coccolithophores

    Get PDF
    Biomineralization by marine phytoplankton, such as the silicifying diatoms and calcifying coccolithophores, plays an important role in carbon and nutrient cycling in the oceans. Silicification and calcification are distinct cellular processes with no known common mechanisms. It is thought that coccolithophores are able to outcompete diatoms in Si-depleted waters, which can contribute to the formation of coccolithophore blooms. Here we show that an expanded family of diatom-like silicon transporters (SITs) are present in both silicifying and calcifying haptophyte phytoplankton, including some globally important coccolithophores. Si is required for calcification in these coccolithophores, indicating that Si uptake contributes to the very different forms of biomineralization in diatoms and coccolithophores. Significantly, SITs and the requirement for Si are absent from highly abundant bloom-forming coccolithophores, such as Emiliania huxleyi. These very different requirements for Si in coccolithophores are likely to have major influence on their competitive interactions with diatoms and other siliceous phytoplankton

    Mechanistic Insights on the Inhibition of C5 DNA Methyltransferases by Zebularine

    Get PDF
    In mammals DNA methylation occurs at position 5 of cytosine in a CpG context and regulates gene expression. It plays an important role in diseases and inhibitors of DNA methyltransferases (DNMTs)—the enzymes responsible for DNA methylation—are used in clinics for cancer therapy. The most potent inhibitors are 5-azacytidine and 5-azadeoxycytidine. Zebularine (1-(β-D-ribofuranosyl)-2(1H)- pyrimidinone) is another cytidine analog described as a potent inhibitor that acts by forming a covalent complex with DNMT when incorporated into DNA. Here we bring additional experiments to explain its mechanism of action. First, we observe an increase in the DNA binding when zebularine is incorporated into the DNA, compared to deoxycytidine and 5-fluorodeoxycytidine, together with a strong decrease in the dissociation rate. Second, we show by denaturing gel analysis that the intermediate covalent complex between the enzyme and the DNA is reversible, differing thus from 5-fluorodeoxycytidine. Third, no methylation reaction occurs when zebularine is present in the DNA. We confirm that zebularine exerts its demethylation activity by stabilizing the binding of DNMTs to DNA, hindering the methylation and decreasing the dissociation, thereby trapping the enzyme and preventing turnover even at other sites

    Increasing Costs Due to Ocean Acidification Drives Phytoplankton to Be More Heavily Calcified: Optimal Growth Strategy of Coccolithophores

    Get PDF
    Ocean acidification is potentially one of the greatest threats to marine ecosystems and global carbon cycling. Amongst calcifying organisms, coccolithophores have received special attention because their calcite precipitation plays a significant role in alkalinity flux to the deep ocean (i.e., inorganic carbon pump). Currently, empirical effort is devoted to evaluating the plastic responses to acidification, but evolutionary considerations are missing from this approach. We thus constructed an optimality model to evaluate the evolutionary response of coccolithophorid life history, assuming that their exoskeleton (coccolith) serves to reduce the instantaneous mortality rates. Our model predicted that natural selection favors constructing more heavily calcified exoskeleton in response to increased acidification-driven costs. This counter-intuitive response occurs because the fitness benefit of choosing a better-defended, slower growth strategy in more acidic conditions, outweighs that of accelerating the cell cycle, as this occurs by producing less calcified exoskeleton. Contrary to the widely held belief, the evolutionarily optimized population can precipitate larger amounts of CaCO3 during the bloom in more acidified seawater, depending on parameter values. These findings suggest that ocean acidification may enhance the calcification rates of marine organisms as an adaptive response, possibly accompanied by higher carbon fixation ability. Our theory also provides a compelling explanation for the multispecific fossil time-series record from ∼200 years ago to present, in which mean coccolith size has increased along with rising atmospheric CO2 concentration

    Standardized and reproducible methodology for the comprehensive and systematic assessment of surgical resection margins during breast-conserving surgery for invasive breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The primary goal of breast-conserving surgery (BCS) is to completely excise the tumor and achieve "adequate" or "negative" surgical resection margins while maintaining an acceptable level of postoperative cosmetic outcome. Nevertheless, precise determination of the adequacy of BCS has long been debated. In this regard, the aim of the current paper was to describe a standardized and reproducible methodology for comprehensive and systematic assessment of surgical resection margins during BCS.</p> <p>Methods</p> <p>Retrospective analysis of 204 BCS procedures performed for invasive breast cancer from August 2003 to June 2007, in which patients underwent a standard BCS resection and systematic sampling of nine standardized re-resection margins (superior, superior-medial, superior-lateral, medial, lateral, inferior, inferior-medial, inferior-lateral, and deep-posterior). Multiple variables (including patient, tumor, specimen, and follow-up variables) were evaluated.</p> <p>Results</p> <p>6.4% (13/204) of patients had positive BCS specimen margins (defined as tumor at inked edge of BCS specimen) and 4.4% (9/204) of patients had close margins (defined as tumor within 1 mm or less of inked edge but not at inked edge of BCS specimen). 11.8% (24/204) of patients had at least one re-resection margin containing additional disease, independent of the status of the BCS specimen margins. 7.1% (13/182) of patients with negative BCS specimen margins (defined as no tumor cells seen within 1 mm or less of inked edge of BCS specimen) had at least one re-resection margin containing additional disease. Thus, 54.2% (13/24) of patients with additional disease in a re-resection margin would not have been recognized by a standard BCS procedure alone (P < 0.001). The nine standardized resection margins represented only 26.8% of the volume of the BCS specimen and 32.6% of the surface area of the BCS specimen.</p> <p>Conclusion</p> <p>Our methodology accurately assesses the adequacy of surgical resection margins for determination of which individuals may need further resection to the affected breast in order to minimize the potential risk of local recurrence while attempting to limit the volume of additional breast tissue excised, as well as to determine which individuals are not realistically amendable to BCS and instead need a completion mastectomy to successfully remove multifocal disease.</p

    Effects of N-Glycosylation Site Removal in Archaellins on the Assembly and Function of Archaella in Methanococcus maripaludis

    Get PDF
    In Methanococcus maripaludis S2, the swimming organelle, the archaellum, is composed of three archaellins, FlaB1S2, FlaB2S2 and FlaB3S2. All three are modified with an N-linked tetrasaccharide at multiple sites. Disruption of the N-linked glycosylation pathway is known to cause defects in archaella assembly or function. Here, we explored the potential requirement of N-glycosylation of archaellins on archaellation by investigating the effects of eliminating the 4 N-glycosylation sites in the wildtype FlaB2S2 protein in all possible combinations either by Asn to Glu (N to Q) substitution or Asn to Asp (N to D) substitutions of the N-glycosylation sequon asparagine. The ability of these mutant derivatives to complement a non-archaellated ΔflaB2S2 strain was examined by electron microscopy (for archaella assembly) and swarm plates (for analysis of swimming). Western blot results showed that all mutated FlaB2S2 proteins were expressed and of smaller apparent molecular mass compared to wildtype FlaB2S2, consistent with the loss of glycosylation sites. In the 8 single-site mutant complements, archaella were observed on the surface of Q2, D2 and D4 (numbers after N or Q refer to the 1st to 4th glycosylation site). Of the 6 double-site mutation complementations all were archaellated except D1,3. Of the 4 triple-site mutation complements, only D2,3,4 was archaellated. Elimination of all 4 N-glycosylation sites resulted in non-archaellated cells, indicating some minimum amount of archaellin glycosylation was necessary for their incorporation into stable archaella. All complementations that led to a return of archaella also resulted in motile cells with the exception of the D4 version. In addition, a series of FlaB2S2 scanning deletions each missing 10 amino acids was also generated and tested for their ability to complement the ΔflaB2S2 strain. While most variants were expressed, none of them restored archaellation, although FlaB2S2 harbouring a smaller 3-amino acid deletion was able to partially restore archaellation

    Role of Interaction and Nucleoside Diphosphate Kinase B in Regulation of the Cystic Fibrosis Transmembrane Conductance Regulator Function by cAMP-Dependent Protein Kinase A

    Get PDF
    Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent protein kinase A (PKA) and ATP-regulated chloride channel. Here, we demonstrate that nucleoside diphosphate kinase B (NDPK-B, NM23-H2) forms a functional complex with CFTR. In airway epithelia forskolin/IBMX significantly increases NDPK-B co-localisation with CFTR whereas PKA inhibitors attenuate complex formation. Furthermore, an NDPK-B derived peptide (but not its NDPK-A equivalent) disrupts the NDPK-B/CFTR complex in vitro (19-mers comprising amino acids 36-54 from NDPK-B or NDPK-A). Overlay (Far-Western) and Surface Plasmon Resonance (SPR) analysis both demonstrate that NDPK-B binds CFTR within its first nucleotide binding domain (NBD1, CFTR amino acids 351-727). Analysis of chloride currents reflective of CFTR or outwardly rectifying chloride channels (ORCC, DIDS-sensitive) showed that the 19-mer NDPK-B peptide (but not its NDPK-A equivalent) reduced both chloride conductances. Additionally, the NDPK-B (but not NDPK-A) peptide also attenuated acetylcholine-induced intestinal short circuit currents. In silico analysis of the NBD1/NDPK-B complex reveals an extended interaction surface between the two proteins. This binding zone is also target of the 19-mer NDPK-B peptide, thus confirming its capability to disrupt NDPK-B/CFTR complex. We propose that NDPK-B forms part of the complex that controls chloride currents in epithelia
    corecore