100 research outputs found

    Pharmacokinetic analysis of two different docetaxel dose levels in patients with non-small cell lung cancer treated with docetaxel as monotherapy or with concurrent radiotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous pharmacokinetic studies with docetaxel have mostly used 3-weekly (75 mg/m<sup>2 </sup>and 100 mg/m<sup>2</sup>) or weekly regimens (35–40 mg/m<sup>2</sup>). The pharmacokinetics and radiosensitizing efficacy of weekly 20 mg/m<sup>2 </sup>docetaxel, has however not been well characterized. We examined the pharmacokinetics of weekly docetaxel when administered with concurrent radiotherapy and compared the results with a 3-weekly 100 mg/m<sup>2 </sup>regimen.</p> <p>Methods</p> <p>Thirty-four patients with non small cell lung cancer (NSCLC) were included in this study, 19 receiving 100 mg/m<sup>2 </sup>docetaxel 3-weekly as single therapy, and 15 receiving 20 mg/m<sup>2 </sup>docetaxel weekly with concurrent radiotherapy. A newly developed HPLC method was used for measuring docetaxel levels, capable of quantifying docetaxel in plasma down to the nanomolar level.</p> <p>Results</p> <p>The HPLC method showed detectable concentrations of docetaxel in plasma even after 72 hours. In the present study we have demonstrated that median docetaxel plasma levels of 3 nM can be obtained 72 hours after a dose of 20 mg/m<sup>2</sup>.</p> <p>Conclusion</p> <p>The pharmacokinetics of docetaxel is characterized by great inter-individual variability and at some time points plasma concentrations for 20 mg/m<sup>2 </sup>and 100 mg/m<sup>2 </sup>docetaxel were overlapping. Extrapolation of these results indicates that radio sensitizing docetaxel concentrations may be present for as long as 1 week, thus supporting the use of 20 mg/m<sup>2 </sup>weekly docetaxel.</p

    The Actin-Binding Protein Capulet Genetically Interacts with the Microtubule Motor Kinesin to Maintain Neuronal Dendrite Homeostasis

    Get PDF
    BACKGROUND: Neurons require precise cytoskeletal regulation within neurites, containing microtubule tracks for cargo transport in axons and dendrites or within synapses containing organized actin. Due to the unique architecture and specialized function of neurons, neurons are particularly susceptible to perturbation of the cytoskeleton. Numerous actin-binding proteins help maintain proper cytoskeletal regulation. METHODOLOGY/PRINCIPAL FINDINGS: From a Drosophila forward genetic screen, we identified a mutation in capulet--encoding a conserved actin-binding protein--that causes abnormal aggregates of actin within dendrites. Through interaction studies, we demonstrate that simultaneous genetic inactivation of capulet and kinesin heavy chain, a microtubule motor protein, produces elongate cofilin-actin rods within dendrites but not axons. These rods resemble actin-rich structures induced in both mammalian neurodegenerative and Drosophila Alzheimer's models, but have not previously been identified by loss of function mutations in vivo. We further demonstrate that mitochondria, which are transported by Kinesin, have impaired distribution along dendrites in a capulet mutant. While Capulet and Cofilin may biochemically cooperate in certain circumstances, in neuronal dendrites they genetically antagonize each other. CONCLUSIONS/SIGNIFICANCE: The present study is the first molecularly defined loss of function demonstration of actin-cofilin rods in vivo. This study suggests that simultaneous, seemingly minor perturbations in neuronal dendrites can synergize producing severe abnormalities affecting actin, microtubules and mitochondria/energy availability in dendrites. Additionally, as >90% of Alzheimer's and Parkinson's cases are sporadic this study suggests mechanisms by which multiple mutations together may contribute to neurodegeneration instead of reliance on single mutations to produce disease

    The investigation of acute optic neuritis: a review and proposed protocol

    Full text link

    Outcome Measures in Clinical Trials for Multiple Sclerosis

    Get PDF
    corecore