1,145 research outputs found

    The kinematics and morphology of NGC 520: One, two, or three galaxies

    Get PDF
    The peculiar galaxy NGC 520 (Arp 157) is often interpreted as an interacting pair of galaxies. The identification of the two bulges and overall morphology of the two galaxies has long been a puzzle which the authors attempt to solve here. New longslit optical spectroscopy and near-infrared images of NGC 520 are presented. These data suggest that the northwest peak is the bulge of one of two galaxies in the system. The other larger bulge is clearly evident in the K band image in the middle of the dust lane. The stellar radial velocity profile in the central 10 seconds of the larger bulge is consistent with counterrotation seen in the molecular gas component. This kinematic subsystem could be the remains of a merged gas-rich irregular

    Old stellar counter-rotating components in early-type galaxies from elliptical-spiral mergers

    Full text link
    We investigate, by means of numerical simulations, the possibility of forming counter-rotating old stellar components by major mergers between an elliptical and a spiral galaxy. We show that counter-rotation can appear both in dissipative and dissipationless retrograde mergers, and it is mostly associated to the presence of a disk component, which preserves part of its initial spin. In turn, the external regions of the two interacting galaxies acquire part of the orbital angular momentum, due to the action of tidal forces exerted on each galaxy by the companion.Comment: 6 pages, 15 figures. Accepted on Astronomy & Astrophysic

    Line-of-sight velocity distributions of elliptical galaxies from collisionless mergers

    Get PDF
    We analyse the skewness of the line-of-sight velocity distributions in model elliptical galaxies built through collisionless galaxy mergers. We build the models using large N-body simulations of mergers between either two spiral or two elliptical galaxies. Our aim is to investigate whether the observed ranges of skewness coefficient (h3) and the rotational support (V/sigma), as well as the anticorrelation between h3 and V, may be reproduced through collisionless mergers. Previous attempts using N-body simulations failed to reach V/sigma ~ 1-2 and corresponding high h3 values, which suggested that gas dynamics and ensuing star formation might be needed in order to explain the skewness properties of ellipticals through mergers. Here we show that high V/sigma and high h3 are reproduced in collisionless spiral-spiral mergers whenever a central bulge allows the discs to retain some of their original angular momentum during the merger. We also show that elliptical-elliptical mergers, unless merging from a high-angular momentum orbit, reproduce the strong skewness observed in non-rotating, giant, boxy ellipticals. The behaviour of the h3 coefficient therefore associates rapidly-rotating disky ellipticals to disc-disc mergers, and associates boxy, slowly-rotating giant ellipticals to elliptical-elliptical mergers, a framework generally consistent with the expectations of hierarchical galaxy formation.Comment: 5 pages, 4 figures, MNRAS Letters, in pres

    Cationic ordering control of magnetization in Sr2FeMoO6 double perovskite

    Full text link
    The role of the synthesis conditions on the cationic Fe/Mo ordering in Sr2FeMoO6 double perovskite is addressed. It is shown that this ordering can be controlled and varied systematically. The Fe/Mo ordering has a profound impact on the saturation magnetization of the material. Using the appropriate synthesis protocol a record value of 3.7muB/f.u. has been obtained. Mossbauer analysis reveals the existence of two distinguishable Fe sites in agreement with the P4/mmm symmetry and a charge density at the Fe(m+) ions significantly larger than (+3) suggesting a Fe contribution to the spin-down conduction band. The implications of these findings for the synthesis of Sr2FeMoO6 having optimal magnetoresistance response are discussed.Comment: 9 pages, 4 figure

    Magnetic Domains and Surface Effects in Hollow Maghemite Nanoparticles

    Get PDF
    In the present work, we investigate the magnetic properties of ferrimagnetic and noninteracting maghemite (g-Fe2O3) hollow nanoparticles obtained by the Kirkendall effect. From the experimental characterization of their magnetic behavior, we find that polycrystalline hollow maghemite nanoparticles are characterized by low superparamagnetic-to-ferromagnetic transition temperatures, small magnetic moments, significant coercivities and irreversibility fields, and no magnetic saturation on external magnetic fields up to 5 T. These results are interpreted in terms of the microstructural parameters characterizing the maghemite shells by means of an atomistic Monte Carlo simulation of an individual spherical shell model. The model comprises strongly interacting crystallographic domains arranged in a spherical shell with random orientations and anisotropy axis. The Monte Carlo simulation allows discernment between the influence of the structure polycrystalline and its hollow geometry, while revealing the magnetic domain arrangement in the different temperature regimes.Comment: 26 pages, 8 figures. In press in Phys. Rev.

    Formation of kinematic subsystems in stellar spiral-spiral mergers

    Get PDF
    [EN]We show that kinematically peculiar cores may be generated in stellar spiral-spiral mergers. Kinematic segregation appears as the central bulges transport orbital angular momentum inward to the center of the remnant, while the outer parts keep the spin signature of the precursor disks. The peculiar core is composed mostly of bulge material, and its size best matches that of observed peculiar cores for mergers with unequal galaxy masses (~2:1). Population decoupling is predicted by the rapid radial decrease of the bulge fraction in the remnant. In this scenario, a starburst may pump up the remnant metallicity, but otherwise the high metallicity of the kinematically decoupled core is built on the high metal content of the inner bulges rather than on a high selfenrichment of a population built from scratch out of the precursors’ gas. Mergers with galaxy mass ratios 3:1 and above generate disk galaxies with counterrotating bulges.Peer reviewe

    Harassment Origin for Kinematic Substructures in Dwarf Elliptical Galaxies?

    Get PDF
    We have run high resolution N-body models simulating the encounter of a dwarf galaxy with a bright elliptical galaxy. The dwarf absorbs orbital angular momentum and shows counter-rotating features in the external regions of the galaxy. To explain the core-envelope kinematic decoupling observed in some dwarf galaxies in high-density environments requires nearly head-on collisions and very little dark matter bound to the dwarf. These kinematic structures appear under rather restrictive conditions. As a consequence, in a cluster like Virgo ~1% of dwarf galaxies may present counter-rotation formed by harassment.Comment: 10 pages, 7 figures; Accepted for publication in Astronomy and Astrophysic

    A minor-merger origin for inner disks and rings in early-type galaxies

    Get PDF
    Nuclear disks and rings are frequent galaxy substructures, for a wide range of morphological types (from S0 to Sc). We have investigated the possible minor-merger origin of inner disks and rings in spiral galaxies through collisionless N-body simulations. The models confirm that minor mergers can drive the formation of thin, kinematically-cold structures in the center of galaxies out of satellite material, without requiring the previous formation of a bar. Satellite core particles tend to be deposited in circular orbits in the central potential, due to the strong circularization experienced by the satellite orbit through dynamical friction. The material of the satellite core reaches the remnant center if satellites are dense or massive, building up a thin inner disk; whereas it is fully disrupted before reaching the center in the case of low-mass satellites, creating an inner ring instead.Comment: 2 pages, 2 figures, Proceedings of the conference "Hunting for the Dark: The Hidden Side of Galaxy Formation", held in Malta, 19-23 Oct. 2009, ed. V. Debattista and C. C. Popescu, AIP Conf. Ser., in pres
    corecore