128 research outputs found

    Characterization of SiO2 Nanoparticles by Single Particle - Inductively Coupled Plasma – Tandem Mass Spectroscopy

    Get PDF
    This work uses the tandem ICP-MS (ICPMS/MS) for obtaining interference-freeconditions to characterize SiO2 nanoparticles ranging between 80 and 400nm. These NPs have been detected and accurately characterized. For SiO2 NPs >100 nm, it was possible to provide accurateresults in a straightforward way, as theirsignal distributions are well resolved fromthat of the background

    Characterization of SiO2 nanoparticles by single particle-inductively coupled plasma-tandem mass spectrometry (SP-ICP-MS/MS)

    Get PDF
    The increase in the use of SiO2 nanoparticles (NPs) is raising concern about their environmental and health effects, thus necessitating the development of novel methods for their straightforward detection and characterization. Single particle ICP-mass spectrometry (SP-ICP-MS) is able to provide information on the size of NPs, their particle number density and mass concentration. However, the determination of Si via ICP-MS is strongly hampered by the occurrence of spectral overlap from polyatomic species (e.g., CO+ and N2+). The use of tandem ICP-MS (ICP-MS/MS) enables interference-free conditions to be obtained, even in the most demanding applications. Upon testing several gases, the use of CH3F (monitoring of SiF+, mass-shift approach) and of H2 (monitoring of Si+, on-mass approach) were demonstrated to be the most suitable to overcome the spectral interference affecting ultra-trace Si determination (LoD < 15 ng L-1). By using these approaches, SiO2 NPs (ranging between 80 and 400 nm) can be detected and characterized. For SiO2 NPs > 100 nm, it was possible to provide accurate results in a straightforward way, as the signals they give rise to are well resolved from those of the background. In the case of 80 and 100 nm NPs, the use of a simple deconvolution approach following a Gaussian model was needed to characterize SiO2 NPs apparently showing incomplete distributions as a result of the presence of the background signal. Overall, the methods developed using SP-ICP-MS/MS are sensitive and selective enough for the interference-free determination of Si at ultra-trace levels, also in the form of SiO2 NPs

    Comparison of Physical-chemical and Mechanical Properties of Chlorapatite and Hydroxyapatite Plasma Sprayed Coatings

    Get PDF
    Chlorapatite can be considered a potential biomaterial for orthopaedic applications. Its use as plasma-sprayed coating could be of interest considering its thermal properties and particularly its ability to melt without decomposition unlike hydroxyapatite. Chlorapatite (ClA) was synthesized by a high-temperature ion exchange reaction starting from commercial stoichiometric hydroxyapatites (HA). The ClA powder showed similar characteristics as the original industrial HA powder, and was obtained in the monoclinic form. The HA and ClA powders were plasma-sprayed using a low-energy plasma spraying system with identical processing parameters. The coatings were characterized by physical-chemical methods, i.e. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy, including distribution mapping of the main phases detected such as amorphous calcium phosphate (ACP), oxyapatite (OA), and HA or ClA. The unexpected formation of oxyapatite in ClA coatings was assigned to a side reaction with contaminating oxygenated species (O2, H2O). ClA coatings exhibited characteristics different from HA, showing a lower content of oxyapatite and amorphous phase. Although their adhesion strength was found to be lower than that of HA coatings, their application could be an interesting alternative, offering, in particular, a larger range of spraying conditions without formation of massive impurities.This study was carried out under a MNT ERA-Net Project named NANOMED. The authors gratefully thank the Midi-Pyrénées region (MNT ERA Net Midi-Pyrénées Région, NANOMED2 project) and the Institute National Polytechnique de Toulouse (BQR INPT 2011, BIOREVE project) for supporting this research work, especially the financial support for research carried out in the CIRIMAT and the LGP laboratories (France), and the Basque government and Tratamientos Superficiales Iontech, S.A. for their financial and technical support under the IG-2007/0000381 grant for the development of the LEPS device and deposition of the coatings carried out in Inasmet-Tecnalia. The French industrial collaborators (TEKNIMED SA and 2PS SA) were financed by the OSEO programs

    Closed-Loop Optimization of DIC Speckle Patterns Based on Simulated Experiments

    No full text
    Stereo digital image correlation (DIC) spreads widely in the last years as one of the most flexible and accurate full-field displacement-strain measurement techniques. The development of novel applications based on DIC makes the design of 3-D setups a challenging task, given the complex and nonlinear nature of stereophotogrammetric methods. The present literature allows the design and optimization of DIC experimental setup only with approximated uncertainty models or upon image quality metrics that are linked loosely with the actual value of uncertainty. In this paper, a closed-loop optimization method based on 3-D experiment simulation is presented. The approach may be used to optimize several parameters (from the camera setup to the DIC processing parameters). This paper features a case study on the problem of optimizing a regular speckle pattern for different measurement tasks. The whole approach is validated experimentally in Section V

    An Experimental Investigation on Uncertainty in Measuring Vibration Deflection Shapes with Digital Image Correlation

    No full text
    3-D digital image correlation (DIC) is a widespread full-field displacement measurement technique based on stereo vision. It was formulated to deal with static problems in experimental mechanics in the early seventies, and since then, the applicability of the technique increased due to increasing frame rates and dropping prices of machine vision cameras. As a consequence, DIC became a feasible solution for general-purpose vibration testing. This paper, however, does not offer a comprehensive analysis of DIC accuracy when applied to vibration testing, and therefore, this paper offers a 'Type A' evaluation of uncertainty when measuring vibration deflection shapes with DIC. Uncertainty is evaluated for different experimental conditions on a stepped sine test. Data show that the average value of uncertainty normally lies below 0.02 mm, but in resonant conditions, it can increase up to 0.05 mm (considering a field of view of about half a meter). This demonstrates a strong correlation between the deflection amplitude and the random uncertainty due to motion blur
    corecore