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Abstract. Most of existing event prediction approaches consider event
prediction problems within a specific application domain while event
prediction is naturally a cross-disciplinary problem. This paper intro-
duces a generic taxonomy of event prediction approaches. The proposed
taxonomy, which oversteps the application domain, enables a better un-
derstanding of event prediction problems and allows conceiving and de-
veloping advanced and context-independent event prediction techniques.
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1 Introduction

An event is defined as a timestamped element in a temporal sequence [39]. Ex-
amples of events include earthquakes, flooding, and business failure. Event pre-
diction aims to assess the future aspects of event features, e.g. occurrence time
and probability, frequency, intensity, duration and spatial occurrence. Event pre-
diction problem is encountered in different research and practical domains, and
a large number of event prediction approaches have been proposed in the liter-
ature [46][51][60]. However, most of existing event prediction approaches have
been initially designed and used within a specific application domain [16][17][59]
while event prediction is naturally a cross-disciplinary problem.

Events can be categorized into either simple or complex [24]. A complex event
is a collection of simple or complex events that can be linearly ordered in event
streams or partially ordered in event clouds [24]. In this paper, we distinguish
between two types of complex events. Type 1 of complex events represents a
collection of events where only the collection characteristics are accessible and
measurable. This is due to the fact that the access to the characteristics of
simple events is costly, difficult or non-relevant. Earthquakes are good examples
of this type of complex events. The predicative analysis of Type 1 complex events
can be handled using the classical event prediction approaches. Type 2 complex
events represents a collection of events where the characteristics of simple events
as well as events collection are accessible and measurable. Examples of Type 2
complex events include computer system and Internet of Things failures. The
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predicative analysis of Type 2 complex events is essentially based on Complex
Event Processing (CEP) techniques [24][58].

The objective of this paper is hence to identify and classify the main mature
and classical approaches of event prediction. It introduces a generic taxonomy
of event prediction approaches that oversteps application domain. This generic
cross-disciplinary view enables a better understanding of event prediction prob-
lems and opens road for the design and development of advanced and context-
independent techniques. The proposed taxonomy distinguishes first three main
categories of event prediction approaches, namely generative, inferential and hy-
brid. Each of these categories contains several event prediction methods, whose
characteristics are presented in this paper.

The paper is organized as follows. Section 2 introduces the taxonomy. Sec-
tions 3-5 detail the main categories of event prediction approaches. Section 6
discusses some existing approaches. Section 7 concludes the paper.

2 General view of the taxonomy

The taxonomy in Figure 1 presents a generic classification of event prediction
approaches in time series. This taxonomy includes only classical and mature ap-
proaches that are well established in the literature. Furthermore, this taxonomy
has been constructed based on some commonly studied event types from several
fields, namely finance, geology, hydrology, medicine and computer science. Three
main categories of event prediction approaches can be distinguished in Figure 1:

– Generative approaches. These approaches build theoretical models of the
system generating the target event and predict future events through sim-
ulation. The term generative refers to the strategy adopted by generative
science [18] consisting in the modelling of natural phenomena and social
behavior through mathematical equations [12] or computational agents [21].
They are adapted to predict events where specific simulation frameworks are
accessible, for instance flood modeling and simulation frameworks [12][14].
Generative approaches are mature and well proven. These approaches require
a strong expertise in the target event field.

– Inferential approaches. Real world is complex and even though physics
and mathematics have greatly evolved, our knowledge of rules that control
observed phenomena is still superficial [38]. Thus, generative approaches still
deficient in cases where the knowledge of the system generating the event
is insufficient. Inferential approaches fill this gap. These approaches literally
learn and infer patterns from past data.

– Hybrid approaches. These approaches combine models constructed from
observed data with models based on physics laws. Hence, they employ gen-
erative and inferential approaches. The authors in [30] design hybrid ap-
proaches by ‘conceptual approaches’. The basic idea of hybrid approaches is
to use inferential methods to prepare the considerable amount of historical
data required as input to generative methods.

These categories will be further detailed in the rest of this paper:
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Fig. 1. Taxonomy of events prediction approaches

3 Generative approaches to event prediction

The flowchart in Figure 2 illustrates graphically the working principle of gener-
ative approaches. Three main steps can be distinguished. First, the theoretical
structure of the system generating the event is modelled. Second, the obtained
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model is calibrated and validated using real-world datasets. This step consists
in the estimation of the model parameters that fit at best the available data.
Finally, simulation is performed, the future states of the system are generated
and future event characteristics are deduced.

Fig. 2. Working principle of generative approaches

There are two main sub-categories of generative approaches:

– Dynamical system modeling. A dynamical system can be described as
a set of states S and a rule of change R that determines the future state of
the system over time T . In other words, the rule of change R : S × T −→ S
gives the consequent states of the system for each s ∈ S. These approaches
build the theoretical model, then construct a computational model that im-
plements the theoretical mathematical model [12]. In hydrology field, these
models are called hydrodynamic models [37]. Dynamical system modeling
approaches depend on the model robustness. They are mainly applied in
weather forecast and flood prediction.

– Agent-based simulation. These approaches consist in the modelling of the
system components behavior as interacting agents. They are effective when
human social behavior need to be considered [21].

The main difference between these two sub-categories concerns the model
conception foundation. In the first case, differential equations govern the system
evolution, whereas, in the second case, logical statements establish the rules and
interaction between agents [11].

4 Inferential approaches to event prediction

The working principle of inferential approaches is shown in Figure 3, where three
main steps are involved. First, data is created, analyzed and calibrated. Second,
predictive modelling (i.e. inference) is conducted. Inference may be based on
expert opinion or on a quantitative predictive model, as detailed in what follows.
Finally, the model is tested over unseen datasets. The event characteristics are
deduced from obtained results.

There are two main trends within inferential approaches: qualitative and
quantitative. The first case is conducted through human experts while the second
relies on statistical or machine learning techniques.
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Fig. 3. Working principle of inferential approaches

4.1 Qualitative approaches

Qualitative approaches relies on Human expertise. Experts in the target event
field analyze the data in order to deduce common patterns. Then, they construct
mathematical or logical relations between studied variables and event proba-
ble occurrence. These relations are commonly called indexes in finance context.
Unlike generative approaches where each model must have sound theoretical
foundation, qualitative approaches allow subjectivity in the constructed model.
According to [2], subjectivity is accepted when human behavior is under study.

4.2 Quantitative approaches

Within quantitative approaches, data is processed through algorithms and sta-
tistical techniques. There is a large number of quantitative approaches. The main
difference between them concerns the format of data used to carry out the study.
Hence, quantitative approaches are further subdivided according to data format
into three subgroups, which are detailed in the following paragraphs. We design
by et a target event and by eto the occurrence o of the event et and to its time
of occurrence with o ∈ [1..n]; n is the number of past events considered in the
study.

4.2.1 Matrix data structure-based approaches In this case, data has
the format of a matrix. This format is commonly used in statistics. Cases (i.e.
observations or learning set) representing the matrix rows are event instances
eto. Matrix rows can also be control-cases ctz representing random situations that
take place at time tz such that to ̸= tz with z ∈ [1..m]; m is the total number
of control-cases. The matrix columns are variables (i.e. features, biomarkers,
attributes) Xk with k ∈ [1..K]; K is the total number of variables. Finally, data
used has the following format: M = (xij) with i ∈ [1..n+m] and j ∈ [1..K]; and
xij is the value of variable Xj for each observation. Approaches dealing with such
format are classification approaches and event frequency analysis approaches.

Classification approaches The prediction process involves predictor variables ref-
erenced above as Xk. Classification can be supervised or unsupervised. For su-
pervised classification, a decision variable D such that D ∈ {Xk} specifies the
predicted outcome. The decision variable can be the event magnitude or simply
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a binary valued variable specifying the actual occurrence of the event or not [32].
In unsupervised classification, clusters are deduced and interpreted as prediction
outcomes [32]. Classification techniques for prediction purpose can be applied as
single classifiers [3][47] or as hybrid classifiers [15][13] which is the recent trend
in this area. The authors in [32] give a summary of hybrid classifiers for business
failure prediction.

Event frequency analysis approaches The event occurrences are described by a
unique random variable or a set of variables Xo. This can be the event inten-
sity (i.e. magnitude for earthquakes) or other characteristics such as the volume
and duration for floods [61]. In this category of approaches, the variable out-
comes are estimated by analysing frequency distribution of event occurrences.
The estimation of outcomes relies on descriptive statistics and consists practi-
cally in approximating the variables distribution then deducing their statistical
descriptions.

There are two cases for this type of approaches: (i) rare events with a focus
on maximum values for Xo (i.e. extreme events) [25]; and (ii) frequent events.
For the first case, extreme value theory has become a reference. It involves the
analysis of the tail of the distribution. For the second case, known distributions
such as Poisson, Gamma or Weibull are considered. Studies extending the ex-
treme value theory for the multivariate case exist but are rather difficult to apply
for non-statisticians [17].

4.2.2 Temporal approaches In temporal approaches, the time dimension
is explicitly considered. Here, eto will be identified on a set of K time series,
each time series represents a variable X measured at equal intervals over a time
period T such that the time of occurrence of eto, namely to, is included in T (see
Figure 4). The set of time series which actually represent the studied data is
denoted by ST = {Xk(t); t ∈ T}, k ∈ [1..K]. Temporal approaches may consider
unique time series (i.e. univariate time series) or several time series. Two types
of methodologies are possible.

Fig. 4. Target events identification on time series over time interval
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Approaches dealing with univariate time series In this special case, a unique
time series is under consideration. The event prediction can follow two patterns:

– Time series forecasting and event detection For this case, time series
values are forecasted. Then the target event is detected. It is important to
note that event prediction on the basis of time series data is different from
time series forecasting. The difference consists in the nature of the predicted
outcome. For event prediction, the outcome is an event, hence the goal is to
identify the time of occurrence of the event through the analysis of the effect
the precursor factors have on time series data. For time series forecasting,
the outcome consists in the future values of the time series. The authors in
[54] applied this approach for computer systems failure prediction.

– Time series event prediction We refer to time series event [43][45] as a
notable variation in the time series values that characterizes the occurrence
of the target event under study. In this special case, researchers analyze
variations, mainly trends, in time series data, preceding the time series event
and deduce temporal patterns that can be used for prediction.

Approaches dealing with multivariate time series Most works under this category
deduce temporal patterns from multiple time series followed by clustering or
classification of these patterns in order to deduce future events [8][41]. These
approaches adopt the same strategy as with time series event prediction but
they are more adapted to the complex aspect of multivariate time series.

4.2.3 Event oriented approaches When the available data is a collection
of events, event prediction strategy follows a different path, where the central
focus becomes the chronological interrelations between events data and a special
target event, the latter can a simple or complex event. In what follows, we will
detail two cases: the first is event sequence identification, which is adapted for
simple events, and the second is complex event processing which is adapted to
complex events.

Event sequence identification Within event sequence identification, we consider
a set L of secondary events {esl } with l ∈ [1..L] (see Figure 5). These events
are events occurring around the target event and can be used to predict the
target event. The secondary event esl occurrences are denoted by {eslz}with z ∈
[1..Zl]; Zl the total number of occurrences for the secondary event with index
l. The secondary event esl is also described by a set of K variables {Xk} with
k ∈ [1..K] (the authors in [59] described these variables as a set feature value
pairs). All events set {eslz} (with l ∈ [1..L] and z ∈ [1..Zl]), in addition to {eti}
(with i ∈ [1..n]), are considered over a common time interval T and temporal
sequences are deduced. These events and the corresponding variables describing
each event occurrence represent the data format for event sequence identification
approaches.

This category of approaches is mainly used in online system failure prediction
[34][49] where secondary events are identified from computer log files.
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Fig. 5. Graphical illustration of target and secondary events over time

Complex event processing A complex event is a sequence < e1, . . . , em > of
different simple events chronologically related. The CEP aim at detecting com-
plex events on the basis of an event space as a dataset. The CEP solutions has
been applied successfully to predict heart failures [36], where simple events like
symptoms are detected and hence an alert predicting the heart stroke (complex
event) is enabled. Other applications include computer system failure prediction
[6], Internet of things failure prediction [56] and bad traffic prediction [1].

5 Hybrid approaches to event prediction

The working principle of hybrid approaches is given in Figure 6. As shown in
this figure, hybrid approaches combine steps from generative and inferential
approaches. The starting point is both available historical data (like generative
approaches) and knowledge about system generating the event (like inferential
approaches). The outputs of these two parallel steps are combined into a general
model. The next step consists in model calibration and validation against real-
world datasets (similarly to generative approaches). Finally, simulation of the
future states of the system is performed and the predicted outcome is deduced.

Fig. 6. Working principle of hybrid approaches

This category can be further subdivided into two sub-groups:

– Scenario based approaches. These approaches construct a mathemati-
cal model of the system generating the target event. Then, they vary the
model input data according to different possible scenarios extracted from
the historical data records. The various outputs of the model represent all
possible results. Scenario based approaches are often seen as solution to
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uncertainty issues [28]. A classic example of scenario based approaches is en-
semble streamflow prediction [23], which is mainly used in flood prediction.

– Mixed data models approaches. These approaches combine models con-
structed from observed data with models based on physics laws. Hence they
employ generative and inferential modeling techniques. The authors in [30]
design this type of approaches by ’conceptual models’. Generally, genera-
tive models involve a considerable amount of historical data, so inferential
models, such as time series modelling techniques, are used to generate the
required input data.

6 Discussion

Table 1 provides some examples illustrating the application of discussed cate-
gories of methods in different application domains. This table shows that some
approaches are devoted to some specific event types. For example, hybrid ap-
proaches are widely applied in hydrology, especially for flood prediction. Event
sequence identification is mainly applied for computer system failure prediction.
This is due to the availability of secondary events through system logs. Multi-
agent simulation requires strong knowledge in computer science and may be too
complex for non-specialists. This explains its application for restrained fields.
Qualitative prediction approaches are well adapted to predict low risk related
events such as in financial context. However, they can be unreliable for major
events such as floods and earthquakes.

The approaches depicted in the taxonomy have several drawbacks. For in-
stance, generative and hybrid approaches fail to produce a model that generates
exactly the real-world outcomes of the studied systems [38]. Dynamical system
modeling approaches perform the prediction under the assumption that the sys-
tem generating the event is deterministic. However errors due to the incomplete
modeling of the system make this assumption very strong in some cases. For
instance, earthquake prediction studies until now fail to model the dynamics of
tectonic plaques accurately [39].

Within inferential approaches, the authors in [25] argue that in event fre-
quency analysis, fitting event characteristic variables to a known probability law
can lead to inaccurate results [25]. The predictive ability of event frequency anal-
ysis approaches is relatively limited but they can be used to assist the prediction
process by analysing the studied phenomenon. In addition, the authors in [2]
remark that inferential approaches fail to analyze the data holistically and they
mainly focus on a truncated aspect of the data. In addition, they fail to take
into account the system dynamics and interactions between variables [2]. At this
level, one should observe that classification approaches can take into account
interactions between variables. Furthermore stream mining models, prepared to
deal with concept drift, can address system dynamics by evolving the machine
learning model.

The authors in [2] advocate that qualitative approaches are more effective if
they are combined with quantitative analysis, since a holistic consideration of
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event context, its dynamics but also temporal evolution by experts may over-
come the restrictive view of data by quantitative approaches. The advantage of
classification based approaches as a prediction technique is the availability of a
range of proven tools and computing packages, making its application open to
large public. However, classification based approaches fail to handle uncertainty
in data and do not take into account preferences in input variables. In addition,
classification based approaches neglect time dimension, as stated in [5]. Further-
more, the approximate time to event occurrence defined by [59] as lead time can
be inaccurately estimated, which is a drawback for risk prevention procedures,
especially concerning major events such as floods and earthquakes. At this level,
we should mention that the proposal of [26] presents some solutions to address
this issue by using composed labels having the form (Event, Time) for predi-
cating event occurrence time and (Event,Intensity,Time) for predicating event
occurrence time and intensity.

Table 1. Examples of event prediction methods and applications

Category Business Stock Earthquakes Floods Heart Computer Internet
failure market stroke/ System of Things

variation Health events failure failure

Dynamical system modelling [42] [7] [12] [55]

Multi agent simulation [31]

Qualitative prediction [52]

Event frequency analysis [48]

Classification [15][13][29] [47] [3][50] [27]

Temporal patterns (Univariate) [44] [35][22][4][40] [16]

Temporal patterns (Multiple) [8][57]

Forecasting/Event detection [54]

Event sequence identification [34][49]

Complex event processing [36] [6] [56]

Hybrid models approaches [10][9]

Scenario based approaches [53][33]

An interesting approach to reduce the effect of these shortcomings is to com-
bine classification and pattern identification techniques, as suggested by [5]. In
this respect, the authors in [20][19] combine self-organising maps and tempo-
ral patterns to predict firms failure. More specifically, the authors in [20] use
the term ‘failure trajectory’ to refer to temporal patterns representing the firm
health over time while the author in [19] uses the term ‘failure process’ as a
temporal pattern, and refers to it as a typology of firm behaviour over time. In
both cases the patterns are used to classify firms; hence predict business failure
event. More recently, the authors in [26] introduce rough set based classification
techniques with an explicit support of temporal patterns identification.
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7 Conclusion

This paper introduces a taxonomy of event prediction approaches. It represents
a generic view of event prediction approaches that oversteps the problem con-
sidered and application domain. The proposed taxonomy has several practical
and theoretical benefits. First, it extends the application domain of existing and
new event prediction approaches. Second, opens road for designing and develop-
ing more advanced and context-independent techniques. Third, it helps users in
selecting the appropriate approach to use in a given problem.

Several points need to be investigated in the future. First, the proposed
taxonomy is far from exhaustive. We then intend to extend the present work
by considering additional application domains and event types. Second, several
event prediction approaches can be used for the same event type. Then, it would
be interesting to design a generic guideline or some rules permitting to select
the event prediction method to be used in a given problem, which will reduce
the cognitive effort required from the expert.
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