910 research outputs found

    Survey for Cultural Workers = Questionnaire pour travailleurs culturels

    Get PDF

    Crossing geographical, legal and moral boundaries: the Belgian cigarette black market

    Get PDF
    Objectives: To describe and analyse the cigarette smuggling trade in Belgium and its role in the international cigarette black market. Design: Analysis of Belgian customs and prosecution files concerning the cigarette smuggling trade in the period 2000 to 2006 and interviews with law enforcement authorities and private tobacco industry. Results: Analyses were made of the geographical aspects, the modus operandi and the participants of the cigarette smuggling trade in Belgium. Belgium is mainly a transit country. The cigarettes are transported via the fine-meshed Belgian highway network to the UK, which is often the destination country of the cigarettes. China is the most popular country of origin, especially for counterfeited cigarettes. In order to transport the cigarettes often use was made of legal transport companies and warehouses were frequently used to store the cigarettes. Many of the persons involved in the Belgian cigarette smuggling trade are strongly connected to legitimate business activities. Conclusions: Belgium is an important transit country for cigarette smuggling to the UK. This study pictures the illicit tobacco trade as a complex, ambiguous phenomenon involving several legal and illegal participants whereby the transit of cigarettes across the licit/illicit divide is paralleled by the moral careers of those who smuggle them, not to mention those who consume them. From the legal world to the illegal and back again, this trade and its practitioners and customers blur the line between criminality and non- criminality. Dealing with this phenomenon therefore requires more than a strategy focusing on these lawbreakers alone

    Mechanical and barrier properties of MOCVD processed alumina coatings on Ti6Al4V titanium alloy

    Get PDF
    This study focuses on the implementation of different aluminum oxide coatings processed by metal-organic chemical vapor deposition from aluminum tri-isopropoxide on commercial Ti6Al4V titanium alloy to improve its high temperature corrosion resistance. Films grown at 350 °C and at 480 °C are amorphous and correspond to formulas AlOOH, and Al2O3, respectively. Those deposited at 700 °C are composed of γ-Al2O3 nanocrystals dispersed in a matrix of amorphous alumina. Their mechanical properties and adhesion to the substrates were investigated by indentation, scratch and micro tensile tests. Hardness and rigidity of the films increase with increasing deposition temperature. The hardness of the coatings prepared at 350 °C and 480 °C is 5.8 ± 0.7 GPa and 10.8 ± 0.8 GPa respectively. Their Young's modulus is 92 ± 8 GPa (350 °C) and 155 ± 6 GPa (480 °C). Scratch tests cause adhesive failures of the films grown at 350 °C and 480 °C whereas cohesive failure is observed for the nanocrystalline one, grown at 700 °C. Micro tensile tests show a more progressive cracking of the latter films than on the amorphous ones. The films allow maintaining good mechanical properties after corrosion with NaCl deposit during 100 h at 450 °C. After corrosion test only the film deposited at 700 °C yields an elongation at break comparable to that of the as processed samples without corrosion. The as established processing–structure–properties relation paves the way to engineer MOCVD aluminum oxide complex coatings which meet the specifications of the high temperature corrosion protection of titanium alloys with regard to the targeted applications

    A study on the dispersion, preparation, characterization and photo-degradation of polypropylene traced with rare earth oxides

    Get PDF
    This research work deals with the effect of rare earth oxides on the PP matrix with respect to the thermal and mechanical properties and to the photo-degradation under UV irradiation exposure. The rare earth oxides are used as tracers for the identification of polymer materials, in order to have an economically efficient recycling and high speed automatic sorting of plastic wastes. The addition of 0.1 wt% of such particles of a micrometric size has a minor effect on the mechanical and thermal properties of the traced materials, as well as on the photo-degradation of the polymer after UV irradiation exposure. For 1 wt% tracer content, before UV irradiation treatment, the melting and crystallization temperatures as well as the thermal stability of the PP matrix are slightly increased, whereas the elongation at break decreases from 10 to 50% for a cross-head speed of 250 mm/min. However, the addition of 1 wt% of CeO2 improves the photo-degradation resistance of the PP matrix to UV exposure due to the UV light screening effects offered by these particles. The SEM images together with the results obtained from image processing show a homogenous dispersion of tracers in the PP matrix.This research work deals with the effect of rare earth oxides on the PP matrix with respect to the thermal and mechanical properties and to the photo-degradation under UV irradiation exposure. The rare earth oxides are used as tracers for the identification of polymer materials, in order to have an economically efficient recycling and high speed automatic sorting of plastic wastes. The addition of 0.1 wt% of such particles of a micrometric size has a minor effect on the mechanical and thermal properties of the traced materials, as well as on the photo-degradation of the polymer after UV irradiation exposure. For 1 wt% tracer content, before UV irradiation treatment, the melting and crystallization temperatures as well as the thermal stability of the PP matrix are slightly increased, whereas the elongation at break decreases from 10 to 50% for a cross-head speed of 250 mm/min. However, the addition of 1 wt% of CeO2 improves the photo-degradation resistance of the PP matrix to UV exposure due to the UV light screening effects offered by these particles. The SEM images together with the results obtained from image processing show a homogenous dispersion of tracers in the PP matrix

    The cellular interactions of PEGylated gold nanoparticles : effect of PEGylation on cellular uptake and cytotoxicity

    Get PDF
    Poly(ethylene glycol) (PEG) is frequently used to coat various medical nanoparticles (NPs). As PEG is known to minimize NP interactions with biological specimens, the question remains whether PEGylated NPs are intrinsically less toxic or whether this is caused by reduced NP uptake. In the present work, the effect of gold NP PEGylation on uptake by three cell types is compared and evaluated the effect on cell viability, oxidative stress, cell morphology, and functionality using a multiparametric methodology. The data reveal that PEGylation affects cellular NP uptake in a cell-type-dependent manner and influences toxicity by different mechanisms. At similar intracellular NP numbers, PEGylated NPs are found to yield higher levels of cell death, mostly by induction of oxidative stress. These findings reveal that PEGylation significantly reduces NP uptake, but that at similar functional (= cell-associated) NP levels, non-PEGylated NPs are better tolerated by the cells
    corecore