1,184 research outputs found

    The time evolution of cosmological redshift as a test of dark energy

    Full text link
    The variation of the expansion rate of the Universe with time produces an evolution in the cosmological redshift of distant sources (for example quasar Lyman-α\alpha absorption lines), that might be directly observed by future ultra stable, high-resolution spectrographs (such as CODEX) coupled to extremely large telescopes (such as European Southern Observatory's Extremely Large Telescope, ELT). This would open a new window to explore the physical mechanism responsible for the current acceleration of the Universe. We investigate the evolution of cosmological redshift from a variety of dark energy models, and compare it with simulated data. We perform a Fisher matrix analysis and discuss the prospects for constraining the parameters of these models and for discriminating among competing candidates. We find that, because of parameter degeneracies, and of the inherent technical difficulties involved in this kind of observations, the uncertainties on parameter reconstruction can be rather large unless strong external priors are assumed. However, the method could be a valuable complementary cosmological tool, and give important insights on the dynamics of dark energy, not obtainable using other probes.Comment: 9 pages, 2 figures. Matching published versio

    Mapping the galactic gravitational potential with peculiar acceleration

    Get PDF
    It has been suggested recently that the change in cosmological redshift (the Sandage test of expansion) could be observed in the next generation of large telescopes and ultra-stable spectrographs. In a recent paper we estimated the change of peculiar velocity, i.e. the peculiar acceleration, in nearby galaxies and clusters and shown it to be of the same order of magnitude as the typical cosmological signal. Mapping the acceleration field allows for a reconstruction of the galactic gravitational potential without assuming virialization. In this paper we focus on the peculiar acceleration in our own Galaxy, modeled as a Kuzmin disc and a dark matter spherical halo. We estimate the peculiar acceleration for all known Galactic globular clusters and find some cases with an expected velocity shift in excess of 20 cm/sec for observations fifteen years apart, well above the typical cosmological acceleration. We then compare the predicted signal for a MOND (modified Newtonian dynamics) model in which the spherical dark matter halo is absent. We find that the signal pattern is qualitatively different, showing that the peculiar acceleration field could be employed to test competing theories of gravity. However the difference seems too small to be detectable in the near future.Comment: 11 pages, 10 figures, 3 tables, minor changes, accepted for publication by MNRA

    Interactive effects of nanoparticles with other contaminants in aquatic organisms: Friend or foe?

    Get PDF
    none3The increasing production and use of nanoparticles (NPs) will lead to their release into the aquatic environment, posing a potential threat to the health of aquatic organisms. Both in the water phase and in the sediments NPs could mix and interact with other pollutants, such as organic xenobiotics and heavy metals, leading to possible changes in their bioavailability/bioconcentration/toxicity. However, whether these interactive effects may lead to increased harmful effects in marine organisms is largely unknown. In this work, available data mainly obtained on carbon based NPs and n-TiO2, as examples of widespread NPs, in aquatic organisms are reviewed. Moreover, data are summarized on the interactive effects of n-TiO2 with 2,3,7,8-TCDD and Cd(2+), chosen as examples of common and persistent organic and inorganic contaminants, respectively, in the model marine bivalve Mytilus. The results reveal complex and often unexpected interactive responses of NPs with other pollutants, depending on type of contaminant and the endpoint measured, as well as differences in bioaccumulation. The results are discussed in relation with data obtained in freshwater organisms. Overall, information available so far indicate that interactive effects of NPs with other contaminants do not necessarily lead to increased toxicity or harmful effects in aquatic organisms.openCanesi, L; Ciacci, C; Balbi, TCanesi, L; Ciacci, C; Balbi,

    Inversion of neurovascular coupling after subarachnoid hemorrhage in vivo

    Get PDF
    Subarachnoid hemorrhage (SAH) induces acute changes in the cerebral microcirculation. Recent findings ex vivo suggest neurovascular coupling (NVC), the process that increases cerebral blood flow upon neuronal activity, is also impaired after SAH. The aim of the current study was to investigate whether this occurs also invivo. C57BL/6 mice were subjected to either sham surgery or SAH by filament perforation. Twenty-four hours later NVC was tested by forepaw stimulation and CO2 reactivity by inhalation of 10% CO2. Vessel diameter was assessed invivo by two-photon microscopy. NVC was also investigated ex vivo using brain slices. Cerebral arterioles of sham-operated mice dilated to 130% of baseline upon CO2 inhalation or forepaw stimulation and cerebral blood flow (CBF) increased. Following SAH, however, CO2 reactivity was completely lost and the majority of cerebral arterioles showed paradoxical constriction invivo and ex vivo resulting in a reduced CBF response. As previous results showed intact NVC 3h after SAH, the current findings indicate that impairment of NVC after cerebral hemorrhage occurs secondarily and is progressive. Since neuronal activity-induced vasoconstriction (inverse NVC) is likely to further aggravate SAH-induced cerebral ischemia and subsequent brain damage, inverse NVC may represent a novel therapeutic target after SAH

    Apparent Clustering of Intermediate-redshift Galaxies as a Probe of Dark Energy

    Full text link
    We show the apparent redshift-space clustering of galaxies in redshift range of 0.2--0.4 provides surprisingly useful constraints on dark energy component in the universe, because of the right balance between the density of objects and the survey depth. We apply Fisher matrix analysis to the the Luminous Red Galaxies (LRGs) in the Sloan Digital Sky Survey (SDSS), as a concrete example. Possible degeneracies in the evolution of the equation of state (EOS) and the other cosmological parameters are clarified.Comment: 5 pages, 3 figures, Phys.Rev.Lett., replaced with the accepted versio

    Implications for quintessence models from MAXIMA-1 and BOOMERANG-98

    Full text link
    Prompted by the recent MAXIMA-1 and BOOMERANG-98 measurements of the cosmic microwave background (CMB) anisotropy power spectrum, and motivated by the results from the observation of high-redshift Type Ia supernovae, we investigate CMB anisotropies in quintessence models in order to characterize the nature of the dark energy today. We perform a Bayesian likelihood analysis, using the MAXIMA-1 and BOOMERANG-98 published bandpowers, in combination with COBE/DMR, to explore the space of quintessence parameters: the quintessence energy density \Omega_\phi and equation of state w_\phi. We restrict our analysis to flat, scale-invariant, inflationary adiabatic models. We find that this simple class of inflationary models, with a quintessence component \Omega_\phi < ~0.7, -1 < = w_\phi < ~-0.5, is in good agreement with the data. Within the assumptions of our analysis, pure quintessence models seem to be slightly favored, although the simple cosmological constant scenario is consistent with the data.Comment: 4 pages, 3 figures. Reflects version accepted for publication by ApJ Letter

    Cultura de paz e direito à saúde

    Get PDF
    O presente artigo tem como objetivo a análise da manifestação da Cultura de Paz no Direito à saúde, em vias de se compreender e para assim contribuir com o seu desenvolvimento

    Sudden death after valve-in-valve procedure due to delayed coronary obstruction. A case report

    Get PDF
    Background: Valve-in-valve transcatheter aortic valve implantation for degenerated aortic bioprostheses is an effective option for patients at high risk for redo surgery, even if it may be burdened by complications more common in specific settings, such as, coronary artery obstruction. Case presentation: We present the case of a Caucasic 84-year-old woman with degeneration of a previously implanted aortic Mitroflow bioprosthesis. She underwent a valve-in-valve transcatheter aortic valve implantation with a CoreValve® bioprosthesis. End-procedure coronary angiography demonstrated maintained perfusion of both coronary arteries. However, few hours later, she experienced sudden cardiac death. An autopsy showed that Mitroflow prosthesis leaflets were higher than the left main coronary ostium, and no other possible cause for the sudden death. Fatality was thus ascribed to left main coronary ostium obstruction due to apposition of the Mitroflow leaflet pushed upward by the late expansion of CoreValve®. Conclusions: Coronary artery obstruction is a frequently fatal complication which usually presents just after valve implantation, but, as reported in our case, it may also have a delayed presentation. Accurate patient's selection and intraoperative preventive measures can reduce this eventuality
    • …
    corecore