11 research outputs found

    Lessons from Toxicology: Developing a 21st‑Century Paradigm for Medical Research

    Get PDF
    Biomedical developments in the 21st century provide an unprecedented opportunity to gain a dynamic systems-level and human-specific understanding of the causes and pathophysiologies of disease. This understanding is a vital need, in view of continuing failures in health research, drug discovery, and clinical translation. The full potential of advanced approaches may not be achieved within a 20th-century conceptual framework dominated by animal models. Novel technologies are being integrated into environmental health research and are also applicable to disease research, but these advances need a new medical research and drug discovery paradigm to gain maximal benefits. We suggest a new conceptual framework that repurposes the 21st-century transition underway in toxicology. Human disease should be conceived as resulting from integrated extrinsic and intrinsic causes, with research focused on modern human-specific models to understand disease pathways at multiple biological levels that are analogous to adverse outcome pathways in toxicology. Systems biology tools should be used to integrate and interpret data about disease causation and pathophysiology. Such an approach promises progress in overcoming the current roadblocks to understanding human disease and successful drug discovery and translation. A discourse should begin now to identify and consider the many challenges and questions that need to be solved

    Polyphenols Sensitization Potentiates Susceptibility of MCF-7 and MDA MB-231 Cells to Centchroman

    Get PDF
    Polyphenols as “sensitizers” together with cytotoxic drugs as “inducers” cooperate to trigger apoptosis in various cancer cells. Hence, their combination having similar mode of mechanism may be a novel approach to enhance the efficacy of inducers. Additionally, this will also enable to achieve the physiological concentrations facilitating significant increase in the activity at concentrations which the compound can individually provide. Here we propose that polyphenols (Resveratrol (RES) and Curcumin (CUR)) pre-treatment may sensitize MCF-7/MDA MB-231 (Human Breast Cancer Cells, HBCCs) to Centchroman (CC, antineoplastic agent). 6 h pre-treated cells with 10 µM RES/CUR and 100 µM RES/30 µM CUR doses, followed by 10 µM CC for 18 h were investigated for Ser-167 ER-phosphorylation, cell cycle arrest, redox homeostasis, stress activated protein kinase (SAPKs: JNK and p38 MAPK) pathways and downstream apoptosis effectors. Low dose RES/CUR enhances the CC action through ROS mediated JNK/p38 as well as mitochondrial pathway in MCF-7 cells. However, RES/CUR sensitization enhanced apoptosis in p53 mutant MDA MB-231 cells without/with involvement of ROS mediated JNK/p38 adjunct to Caspase-9. Contrarily, through high dose sensitization in CC treated cells, the parameters remained unaltered as in polyphenols alone. We conclude that differential sensitization of HBCCs with low dose polyphenol augments apoptotic efficacy of CC. This may offer a novel approach to achieve enhanced action of CC with concomitant reduction of side effects enabling improved management of hormone-dependent breast cancer

    S-phase fraction as a useful marker for prognosis and therapeutic response in patients with aplastic anemia

    Get PDF
    BACKGROUND: The functional definition of aplastic anemia (AA) is the failure of hematopoietic stem cells to proliferate. The aim of the present study was to analyze the S-phase fraction (SPF) (proliferative activity) in patients with AA at diagnosis to explore its relationship with disease characteristics and its value in discriminating among patients with different prognoses. We also investigated whether the SPF value influenced the response to immunosuppressive therapy in AA patients. PATIENTS AND METHODS: The analysis of SPF at the time of diagnosis was carried out by flow cytometry on peripheral blood samples from 53 consecutive patients with AA and 30 age- and sex-matched controls. All patients were given cyclosporine and followed up periodically to determine response to therapy. RESULTS: Based on the median SPF, AA patients were divided into two groups: patients with SPF ≤0.59% (n=27) and patients with SPF >0.59% (n=26). An SPF >0.59% was associated with advanced age (P=.02) and elevated serum LDH level (P=.01). Patients with an SPF >0.59% also had a higher incidence of paroxysmal nocturnal hemoglobinuria and cytogenetic abnormalities. During a median follow-up of 18 months, 3.7% of patients with SPF ≤0.59 and 11.5% of patients with SPF >0.59% developed dysplasia and one patient with SPF >0.59% converted into AML. A significantly higher (P=.018) overall response rate of 53.9% was found in patients with SPF >0.59% versus 22.2% of patients with SPF ≤0.59% at 6 months. CONCLUSIONS: Independently of the peripheral blood count, the SPF at diagnosis may provide information on the expected response to immunosuppressive therapy and the propensity for disease to evolve into MDS/AML. Hence, SPF may serve as an early indicator for the evolution of MDS/AML in patients with AA and thus contribute to therapeutic decisions

    Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis

    No full text
    Osteoporosis is a disease of low bone mass most often caused by an increase in bone resorption that is not sufficiently compensated for by a corresponding increase in bone formation(1). As gut-derived serotonin (GDS) inhibits bone formation(2), we asked whether hampering its biosynthesis could treat osteoporosis through an anabolic mechanism (that is, by increasing bone formation). We synthesized and used LP533401, a small molecule inhibitor of tryptophan hydroxylase-1 (Tph-1), the initial enzyme in GDS biosynthesis. Oral administration of this small molecule once daily for up to six weeks acts prophylactically or therapeutically, in a dose-dependent manner, to treat osteoporosis in ovariectomized rodents because of an isolated increase in bone formation. These results provide a proof of principle that inhibiting GDS biosynthesis could become a new anabolic treatment for osteoporosis

    Lessons from toxicology: Developing a 21st-century paradigm for medical research

    No full text
    Biomedical developments in the 21st century provide an unprecedented opportunity to gain a dynamic systems-level and human-specific understanding of the causes and pathophysiologies of disease. This understanding is a vital need, in view of continuing failures in health research, drug discovery, and clinical translation. The full potential of advanced approaches may not be achieved within a 20th-century conceptual framework dominated by animal models. Novel technologies are being integrated into environmental health research and are also applicable to disease research, but these advances need a new medical research and drug discovery paradigm to gain maximal benefits. We suggest a new conceptual framework that repurposes the 21st-century transition underway in toxicology. Human disease should be conceived as resulting from integrated extrinsic and intrinsic causes, with research focused on modern human-specific models to understand disease pathways at multiple biological levels that are analogous to adverse outcome pathways in toxicology. Systems biology tools should be used to integrate and interpret data about disease causation and pathophysiology. Such an approach promises progress in overcoming the current roadblocks to understanding human disease and successful drug discovery and translation. A discourse should begin now to identify and consider the many challenges and questions that need to be solve

    Lessons from Toxicology: Developing a 21st-Century Paradigm for Medical Research

    No full text
    Biomedical developments in the 21st century provide an unprecedented opportunity to gain a dynamic systems-level and human-specific understanding of the causes and pathophysiologies of disease. This understanding is a vital need, in view of continuing failures in health research, drug discovery, and clinical translation. The full potential of advanced approaches may not be achieved within a 20th-century conceptual framework dominated by animal models. Novel technologies are being integrated into environmental health research and are also applicable to disease research, but these advances need a new medical research and drug discovery paradigm to gain maximal benefits. We suggest a new conceptual framework that repurposes the 21st-century transition underway in toxicology. Human disease should be conceived as resulting from integrated extrinsic and intrinsic causes, with research focused on modern human-specific models to understand disease pathways at multiple biological levels that are analogous to adverse outcome pathways in toxicology. Systems biology tools should be used to integrate and interpret data about disease causation and pathophysiology. Such an approach promises progress in overcoming the current roadblocks to understanding human disease and successful drug discovery and translation. A discourse should begin now to identify and consider the many challenges and questions that need to be solved
    corecore