140 research outputs found

    Exactly solvable Wadati potentials in the PT-symmetric Gross-Pitaevskii equation

    Full text link
    This note examines Gross-Pitaevskii equations with PT-symmetric potentials of the Wadati type: V=−W2+iWxV=-W^2+iW_x. We formulate a recipe for the construction of Wadati potentials supporting exact localised solutions. The general procedure is exemplified by equations with attractive and repulsive cubic nonlinearity bearing a variety of bright and dark solitons.Comment: To appear in Proceedings of the 15 Conference on Pseudo-Hermitian Hamiltonians in Quantum Physics, May 18-23 2015, Palermo, Italy (Springer Proceedings in Physics, 2016

    Neutrino-electron scattering in noncommutative space

    Full text link
    Neutral particles can couple with the U(1)U(1) gauge field in the adjoint representation at the tree level if the space-time coordinates are noncommutative (NC). Considering neutrino-photon coupling in the NC QED framework, we obtain the differential cross section of neutrino-electron scattering. Similar to the magnetic moment effect, one of the NC terms is proportional to 1T\frac 1 T, where TT is the electron recoil energy. Therefore, this scattering provides a chance to achieve a stringent bound on the NC scale in low energy by improving the sensitivity to the smaller electron recoil energy.Comment: 12 pages, 2 figure

    Solar fusion cross sections. II. The pp chain and CNO cycles

    Get PDF
    We summarize and critically evaluate the available data on nuclear fusion cross sections important to energy generation in the Sun and other hydrogen-burning stars and to solar neutrino production. Recommended values and uncertainties are provided for key cross sections, and a recommended spectrum is given for 8B solar neutrinos. We also discuss opportunities for further increasing the precision of key rates, including new facilities, new experimental techniques, and improvements in theory. This review, which summarizes the conclusions of a workshop held at the Institute for Nuclear Theory, Seattle, in January 2009, is intended as a 10-year update and supplement to Reviews of Modern Physics 70 (1998) 1265.Comment: 54 pages, 20 figures, version to be published in Reviews of Modern Physics; various typos corrected and several updates mad

    On Yangian and Long Representations of the Centrally Extended su(2|2) Superalgebra

    Get PDF
    The centrally extended su(2|2) superalgebra is an asymptotic symmetry of the light-cone string sigma model on AdS5 x S5. We consider an evaluation representation of the conventional Yangian built over a particular 16-dimensional long representation of the centrally extended su(2|2). Interestingly, we find that S-matrices compatible with this evaluation representation do not exist. On the other hand, by requiring centrally extended su(2|2) invariance and explicitly solving the Yang-Baxter equation, we find a scattering matrix for long-short representations of the Lie superalgebra. We notice that this S-matrix is invariant under a different representation of non-evaluation type, induced from the tensor product of short representations. Our findings concern the conventional Yangian only, and are not applied to possible algebraic extensions of the latter.Comment: Version accepted for publication in JHE

    Brezin-Gross-Witten model as "pure gauge" limit of Selberg integrals

    Get PDF
    The AGT relation identifies the Nekrasov functions for various N=2 SUSY gauge theories with the 2d conformal blocks, which possess explicit Dotsenko-Fateev matrix model (beta-ensemble) representations the latter being polylinear combinations of Selberg integrals. The "pure gauge" limit of these matrix models is, however, a non-trivial multiscaling large-N limit, which requires a separate investigation. We show that in this pure gauge limit the Selberg integrals turn into averages in a Brezin-Gross-Witten (BGW) model. Thus, the Nekrasov function for pure SU(2) theory acquires a form very much reminiscent of the AMM decomposition formula for some model X into a pair of the BGW models. At the same time, X, which still has to be found, is the pure gauge limit of the elliptic Selberg integral. Presumably, it is again a BGW model, only in the Dijkgraaf-Vafa double cut phase.Comment: 21 page

    Structure of hadron resonances with a nearby zero of the amplitude

    Get PDF
    We discuss the relation between the analytic structure of the scattering amplitude and the origin of an eigenstate represented by a pole of the amplitude.If the eigenstate is not dynamically generated by the interaction in the channel of interest, the residue of the pole vanishes in the zero coupling limit. Based on the topological nature of the phase of the scattering amplitude, we show that the pole must encounter with the Castillejo-Dalitz-Dyson (CDD) zero in this limit. It is concluded that the dynamical component of the eigenstate is small if a CDD zero exists near the eigenstate pole. We show that the line shape of the resonance is distorted from the Breit-Wigner form as an observable consequence of the nearby CDD zero. Finally, studying the positions of poles and CDD zeros of the KbarN-piSigma amplitude, we discuss the origin of the eigenstates in the Lambda(1405) region.Comment: 7 pages, 3 figures, v2: published versio

    Neutrinos

    Get PDF
    Report of the Community Summer Study 2013 (Snowmass) Intensity Frontier Neutrino Working GroupReport of the Community Summer Study 2013 (Snowmass) Intensity Frontier Neutrino Working GroupThis document represents the response of the Intensity Frontier Neutrino Working Group to the Snowmass charge. We summarize the current status of neutrino physics and identify many exciting future opportunities for studying the properties of neutrinos and for addressing important physics and astrophysics questions with neutrinos

    Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    Get PDF
    published_or_final_versio
    • 

    corecore