11 research outputs found

    Post translational modulation and regulation of glutamate transporters

    Full text link
    Die Aktivität von L-Glutamat, dem wichtigsten excitatorischen Neurotransmitter im Zentralnervensystem (ZNS), wird durch spezifische Transporter aufgehoben. Dies verhindert eine anhaltende Aktivierung von Rezeptoren, die die synaptische Reizweiterleitung stören und zur excitotoxischer Neurodegeneration führen würde. Die vorliegende Arbeit charakterisiert die Regulation der Zelloberflächenexpression des Glutamattransporters EAAC1 unter Einfluss von Phorbolestern sowie die Rolle der PKC bei der Zielsteuerung dieses Glutamattransporters aus intrazellulären Speichern zur Zellmembran. Darüber hinaus konnte gezeigt werden, dass am Mechanismus der Zielsteuerung intrazelluläres Calcium, Calmodulin sowie die Calcium/Calmodulin abhängige CaM Kinase II beteiligt sind. Es scheint also einen Zusammenhang zwischen der Aktivierung der PKC und dem Signalweg der CaM Kinase in der regulierten Zielsteuerung von EAAC1 zu geben. Schließlich wurde gezeigt, dass eine Umverteilung der Glutamattransporter nach Stimulation durch Phorbolester oder Phosphataseinhibitoren zur Tyrosinphosphorylierung von EAAC1 führt. Transporter-mediated uptake is critical for terminating the actions of glutamate, the major excitatory neurotransmitter in the central nervous system (CNS), preventing the sustained activation of receptors that would otherwise disrupt signaling at synapses and lead to excitotoxic neurodegeneration. Present work characterizes the regulation of cell surface expression of EAAC1 in response to phorbol esters and the role of PKC in transporter trafficking from the intracellular pools to the membrane surface. Moreover, it was also shown that the trafficking mechanism of EAAC1 also depends on the intracellular calcium, calmodulin and calcium/calmodulin dependent CaM Kinase II. Taken together, there seems to be a cross talk between PKC signaling and the CaM kinase pathway in the regulated trafficking of EAAC1. Finally, it was also demonstrated that redistribution of glutamate transporter upon stimulation by phorbol esters and phosphatase inhibitors causes tyrosine phosphorylation of EAAC1

    The Glutamate Transporter Subtypes EAAT4 and EAATs 1-3 Transport Glutamate with Dramatically Different Kinetics and Voltage Dependence but Share a Common Uptake Mechanism

    Get PDF
    Here, we report the application of glutamate concentration jumps and voltage jumps to determine the kinetics of rapid reaction steps of excitatory amino acid transporter subtype 4 (EAAT4) with a 100-μs time resolution. EAAT4 was expressed in HEK293 cells, and the electrogenic transport and anion currents were measured using the patch-clamp method. At steady state, EAAT4 was activated by glutamate and Na+ with high affinities of 0.6 μM and 8.4 mM, respectively, and showed kinetics consistent with sequential binding of Na+-glutamate-Na+. The steady-state cycle time of EAAT4 was estimated to be >300 ms (at −90 mV). Applying step changes to the transmembrane potential, Vm, of EAAT4-expressing cells resulted in the generation of transient anion currents (decaying with a τ of ∼15 ms), indicating inhibition of steady-state EAAT4 activity at negative voltages (<−40 mV) and activation at positive Vm (>0 mV). A similar inhibitory effect at Vm < 0 mV was seen when the electrogenic glutamate transport current was monitored, resulting in a bell-shaped I-Vm curve. Jumping the glutamate concentration to 100 μM generated biphasic, saturable transient transport and anion currents (Km ∼ 5 μM) that decayed within 100 ms, indicating the existence of two separate electrogenic reaction steps. The fast electrogenic reaction was assigned to Na+ binding to EAAT4, whereas the second reaction is most likely associated with glutamate translocation. Together, these results suggest that glutamate uptake of EAAT4 is based on the same molecular mechanism as transport by the subtypes EAATs 1–3, but that its kinetics and voltage dependence are dramatically different from the other subtypes. EAAT4 kinetics appear to be optimized for high affinity binding of glutamate, but not rapid turnover. Therefore, we propose that EAAT4 is a high-affinity/low-capacity transport system, supplementing low-affinity/high-capacity synaptic glutamate uptake by the other subtypes

    Suppression of PKG by PDGF or nitric oxide in differentiated aortic smooth muscle cells: obligatory role of protein tyrosine phosphatase 1B

    No full text
    Treatment of aortic smooth muscle cells with PDGF induces the upregulation of protein tyrosine phosphatase 1B (PTP1B). PTP1B, in turn, decreases the function of several growth factor receptors, thus completing a negative feedback loop. Studies have reported that PDGF induces the downregulation of PKG as part of a repertoire of dedifferentiation of vascular smooth muscle cells. Other studies have reported that chronic nitric oxide (NO) treatment also induces the downregulation of PKG. In the present study, we tested the hypothesis that the downregulation of PKG by PDGF or NO in differentiated rat aortic smooth muscle cells can be attributed to the upregulation of PTP1B. We found that treatment with PDGF or NO induced an upregulation of PTP1B levels. Overexpression of PTP1B induced a marked downregulation of PKG mRNA and protein levels, whereas the expression of dominant negative PTP1B or short interfering RNA directed against PTP1B blocked the capacity of PDGF or NO to decrease PKG levels. We conclude that the upregulation of PTP1B by PDGF or NO is both necessary and sufficient to induce the downregulation of PKG via an effect on PKG mRNA levels

    High Mobility Group Box2 Promoter-controlled Suicide Gene Expression Enables Targeted Glioblastoma Treatment

    No full text
    Achievement of specific tumor cell targeting remains a challenge for glioma gene therapy. We observed that the human high mobility group box2 (HMGB2) gene had a low level of expression in normal human brain tissues, but was significantly upregulated in glioblastoma tissues. With progressive truncation of a 5′-upstream sequence of the HMGB2 gene, we identified a 0.5-kb fragment displaying a high transcriptional activity in glioblastoma cells, but a low activity in normal brain cells. To test the feasibility of using the HMGB2 promoter sequence in targeted cancer therapy, we constructed a baculoviral vector expressing the herpes simplex virus thymidine kinase (HSVtk) gene driven by the HMGB2 promoter. Transduction with the viral vector induced cell death in glioblastoma cell lines in the presence of ganciclovir (GCV), but did not affect the survival of human astrocytes and neurons. In a mouse xenograft model, intratumor injection of the baculoviral vector suppressed the growth of human glioblastoma cells and prolonged the survival of tumor-bearing mice. Our results suggest that the novel 5′ sequence of HMGB2 gene has a potential to be used as an efficient, tumor-selective promoter in targeted vectors for glioblastoma gene therapy

    Combinatorial Control of Suicide Gene Expression by Tissue-specific Promoter and microRNA Regulation for Cancer Therapy

    No full text
    Transcriptional targeting using a tissue-specific cellular promoter is proving to be a powerful means for restricting transgene expression in targeted tissues. In the context of cancer suicide gene therapy, this approach may lead to cytotoxic effects in both cancer and nontarget normal cells. Considering microRNA (miRNA) function in post-transcriptional regulation of gene expression, we have developed a viral vector platform combining cellular promoter–based transcriptional targeting with miRNA regulation for a glioma suicide gene therapy in the mouse brain. The therapy employed, in a single baculoviral vector, a glial fibrillary acidic protein (GFAP) gene promoter and the repeated target sequences of three miRNAs that are enriched in astrocytes but downregulated in glioblastoma cells to control the expression of the herpes simplex virus thymidine kinase (HSVtk) gene. This resulted in significantly improved in vivo selectivity over the use of a control vector without miRNA regulation, enabling effective elimination of human glioma xenografts while producing negligible toxic effects on normal astrocytes. Thus, incorporating miRNA regulation into a transcriptional targeting vector adds an extra layer of security to prevent off-target transgene expression and should be useful for the development of gene delivery vectors with high targeting specificity for cancer therapy

    30-Day Morbidity and Mortality of Bariatric Surgery During the COVID-19 Pandemic: a Multinational Cohort Study of 7704 Patients from 42 Countries.

    No full text
    BACKGROUND There are data on the safety of cancer surgery and the efficacy of preventive strategies on the prevention of postoperative symptomatic COVID-19 in these patients. But there is little such data for any elective surgery. The main objectives of this study were to examine the safety of bariatric surgery (BS) during the coronavirus disease 2019 (COVID-19) pandemic and to determine the efficacy of perioperative COVID-19 protective strategies on postoperative symptomatic COVID-19 rates. METHODS We conducted an international cohort study to determine all-cause and COVID-19-specific 30-day morbidity and mortality of BS performed between 01/05/2020 and 31/10/2020. RESULTS Four hundred ninety-nine surgeons from 185 centres in 42 countries provided data on 7704 patients. Elective primary BS (n = 7084) was associated with a 30-day morbidity of 6.76% (n = 479) and a 30-day mortality of 0.14% (n = 10). Emergency BS, revisional BS, insulin-treated type 2 diabetes, and untreated obstructive sleep apnoea were associated with increased complications on multivariable analysis. Forty-three patients developed symptomatic COVID-19 postoperatively, with a higher risk in non-whites. Preoperative self-isolation, preoperative testing for SARS-CoV-2, and surgery in institutions not concurrently treating COVID-19 patients did not reduce the incidence of postoperative COVID-19. Postoperative symptomatic COVID-19 was more likely if the surgery was performed during a COVID-19 peak in that country. CONCLUSIONS BS can be performed safely during the COVID-19 pandemic with appropriate perioperative protocols. There was no relationship between preoperative testing for COVID-19 and self-isolation with symptomatic postoperative COVID-19. The risk of postoperative COVID-19 risk was greater in non-whites or if BS was performed during a local peak

    Safety of Bariatric Surgery in ≥ 65-Year-Old Patients During the COVID-19 Pandemic

    No full text
    Background Age &gt;= 65 years is regarded as a relative contraindication for bariatric surgery. Advanced age is also a recognised risk factor for adverse outcomes with Coronavirus Disease-2019 (COVID-19) which continues to wreak havoc on global populations. This study aimed to assess the safety of bariatric surgery (BS) in this particular age group during the COVID-19 pandemic in comparison with the younger cohort.Methods We conducted a prospective international study of patients who underwent BS between 1/05/2020 and 31/10/2020. Patients were divided into two groups - patients &gt;= 65-years-old (Group I) and patients &lt; 65-years-old (Group II). The two groups were compared for 30-day morbidity and mortality.Results There were 149 patients in Group 1 and 6923 patients in Group II. The mean age, preoperative weight, and BMI were 67.6 +/- 2.5 years, 119.5 +/- 24.5 kg, and 43 +/- 7 in Group I and 39.8 +/- 11.3 years, 117.7 +/- 20.4 kg, and 43.7 +/- 7 in Group II, respectively. Approximately, 95% of patients in Group 1 had at least one co-morbidity compared to 68% of patients in Group 2 (p = &lt; 0.001). The 30-day morbidity was significantly higher in Group I ( 11.4%) compared to Group II (6.6%) (p = 0.022). However, the 30-day mortality and COVID-19 infection rates were not significantly different between the two groups.Conclusions Bariatric surgery during the COVID-19 pandemic is associated with a higher complication rate in those &gt;= 65 years of age compared to those &lt; 65 years old. However, the mortality and postoperative COVID-19 infection rates are not significantly different between the two groups

    Effect of BMI on safety of bariatric surgery during the COVID-19 pandemic, procedure choice, and safety protocols - An analysis from the GENEVA Study

    No full text
    Background: It has been suggested that patients with a Body Mass Index (BMI) of &gt; 60 kg/m2 should be offered expedited Bariatric Surgery (BS) during the Coronavirus Disease-2019 (COVID-19) pandemic. The main objective of this study was to assess the safety of this approach. Methods: We conducted a global study of patients who underwent BS between 1/05/2020 and 31/10/2020. Patients were divided into three groups according to their preoperative BMI -Group I (BMI &lt; 50 kg/m2), Group II (BMI 50-60 kg/m2), and Group III (BMI &gt; 60 kg/m2). The effect of preoperative BMI on 30-day morbidity and mortality, procedure choice, COVID-19 specific safety protocols, and comorbidities was assessed. Results: This study included 7084 patients (5197;73.4 % females). The mean preoperative weight and BMI were 119.49 &amp; PLUSMN; 24.4 Kgs and 43.03 &amp; PLUSMN; 6.9 Kg/m2, respectively. Group I included 6024 (85 %) patients, whereas Groups II and III included 905 (13 %) and 155 (2 %) patients, respectively.The 30-day mortality rate was higher in Group III (p = 0.001). The complication rate and COVID-19 infection were not different. Comorbidities were significantly more likely in Group III (p = &lt; 0.001). A significantly higher proportion of patients in group III received Sleeve Gastrectomy or One Anastomosis Gastric Bypass compared to other groups. Patients with a BMI of &gt; 70 kg/m2 had a 30-day mortality of 7.7 % (2/26). None of these patients underwent a Roux-en-Y Gastric Bypass. Conclusion: The 30-day mortality rate was significantly higher in patients with BMI &gt; 60 kg/m2. There was, however, no significant difference in complications rates in different BMI groups, probably due to differences in procedure selection
    corecore