2,275 research outputs found

    An explicit solution to the optimal LQG problem for flexible structures with collocated rate sensors

    Get PDF
    We present a class of compensators in explicit form (not requiring numerical computer calculations) for stabilizing flexible structures with collocated rate sensors. They are based on the explicit solution, valid for both Continuum and FEM Models, of the LQG problem for minimizing mean square rate. They are robust with respect to system stability (will not destabilize modes even with mismatch of parameters), can be instrumented in state space form suitable for digital controllers, and can be specified directly from the structure modes and mode 'signature' (displacement vectors at sensor locations). Some simulation results are presented for the NASA LaRC Phase-Zero Evolutionary Model - a modal Trust model with 86 modes - showing damping ratios attainable as a function of compensator design parameters and complexity

    Combined structures-controls optimization of lattice trusses

    Get PDF
    The role that distributed parameter model can play in CSI is demonstrated, in particular in combined structures controls optimization problems of importance in preliminary design. Closed form solutions can be obtained for performance criteria such as rms attitude error, making possible analytical solutions of the optimization problem. This is in contrast to the need for numerical computer solution involving the inversion of large matrices in traditional finite element model (FEM) use. Another advantage of the analytic solution is that it can provide much needed insight into phenomena that can otherwise be obscured or difficult to discern from numerical computer results. As a compromise in level of complexity between a toy lab model and a real space structure, the lattice truss used in the EPS (Earth Pointing Satellite) was chosen. The optimization problem chosen is a generic one: of minimizing the structure mass subject to a specified stability margin and to a specified upper bond on the rms attitude error, using a co-located controller and sensors. Standard FEM treating each bar as a truss element is used, while the continuum model is anisotropic Timoshenko beam model. Performance criteria are derived for each model, except that for the distributed parameter model, explicit closed form solutions was obtained. Numerical results obtained by the two model show complete agreement

    Some nonlinear damping models in flexible structures

    Get PDF
    A class of nonlinear damping models is introduced with application to flexible flight structures characterized by low damping. Approximate solutions of engineering interest are obtained for the model using the classical averaging technique of Krylov and Bogoliubov. The results should be considered preliminary pending further investigation

    Application of optical distributed sensing and computation to control of large space structures

    Get PDF
    A real time holographic sensing technique is introduced and its advantages are investigated from the filtering and control point of view. A feature of holographic sensing is its capability to make distributed measurements of the position and velocity of moving objects, such as a vibrating flexible space structure. This work is based upon the distributed parameter models of linear time invariant systems, particularly including the linear oscillator equations describing the vibration of large flexible space structures. The general conclusion is that application of optical distributed sensors bring gains in the situation where Kalman filtering is necessary for state estimation. In this case, both steady state and transient filtering error covariance become smaller. This in turn results in smaller cost in the LQG problem

    Reduction of boundary value problem to Possio integral equation in theoretical aeroelasticity

    Get PDF
    The present paper is the first in a series of works devoted to the solvability of the Possio singular integral equation. This equation relates the pressure distribution over a typical section of a slender wing in subsonic compressible air flow to the normal velocity of the points of a wing (downwash). In spite of the importance of the Possio equation, the question of the existence of its solution has not been settled yet. We provide a rigorous reduction of the initial boundary value problem involving a partial differential equation for the velocity potential and highly nonstandard boundary conditions to a singular integral equation, the Possio equation. The question of its solvability will be addressed in our forthcoming work. Copyright (C) 2008 A. V. Balakrishnan and M. A. Shubov

    Efficient load measurements using singular value decomposition

    Get PDF
    Various basic research was performed on efficient load measurement estimation techniques for aircraft structure analysis. An overview is presented of the load measurement problem. Two basic equivalent approaches to load measurement evaluations were considered. Under approach 1, the load values are modeled as depending linearly on the measured values. Under approach 2, the measured values depend linearly on the load values. By using the modern Singular Value Decomposition method, it was shown that under all conditions of the number of loads and number of gages, approach 1 is equivalent to approach 2. By using the conventional normal equation (linear regression) approach, approach 1 is only valid when the number of loads is equal to or greater than the number of gages, while approach 2 is the reverse. Furthermore, except for the case of the number of loads equals the number of gages, the load prediction formulas under the two approaches are not equivalent

    A survey of the state-of-the-art and focused research in range systems

    Get PDF
    In this one-year renewal of NASA Contract No. 2-304, basic research, development, and implementation in the areas of modern estimation algorithms and digital communication systems have been performed. In the first area, basic study on the conversion of general classes of practical signal processing algorithms into systolic array algorithms is considered, producing four publications. Also studied were the finite word length effects and convergence rates of lattice algorithms, producing two publications. In the second area of study, the use of efficient importance sampling simulation technique for the evaluation of digital communication system performances were studied, producing two publications

    Improvements in aircraft extraction programs

    Get PDF
    Flight data from an F-8 Corsair and a Cessna 172 was analyzed to demonstrate specific improvements in the LRC parameter extraction computer program. The Cramer-Rao bounds were shown to provide a satisfactory relative measure of goodness of parameter estimates. It was not used as an absolute measure due to an inherent uncertainty within a multiplicative factor, traced in turn to the uncertainty in the noise bandwidth in the statistical theory of parameter estimation. The measure was also derived on an entirely nonstatistical basis, yielding thereby also an interpretation of the significance of off-diagonal terms in the dispersion matrix. The distinction between coefficients as linear and non-linear was shown to be important in its implication to a recommended order of parameter iteration. Techniques of improving convergence generally, were developed, and tested out on flight data. In particular, an easily implemented modification incorporating a gradient search was shown to improve initial estimates and thus remove a common cause for lack of convergence

    Morphological filtering on hypergraphs

    Full text link
    The focus of this article is to develop computationally efficient mathematical morphology operators on hypergraphs. To this aim we consider lattice structures on hypergraphs on which we build morphological operators. We develop a pair of dual adjunctions between the vertex set and the hyper edge set of a hypergraph H, by defining a vertex-hyperedge correspondence. This allows us to recover the classical notion of a dilation/erosion of a subset of vertices and to extend it to subhypergraphs of H. Afterward, we propose several new openings, closings, granulometries and alternate sequential filters acting (i) on the subsets of the vertex and hyperedge set of H and (ii) on the subhypergraphs of a hypergraph
    corecore