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ABSTRACT 

Flight data from an F-8 corsair and a Cessrm 172 have been analyzed 

to chmstMte specific hpmvexents in -tire UC pamxeter ex&mction caw 

? ~ i w  program The Crwe~M b u n k  (- terrrs in the dispersion 

mtrix) have been sham to pmvide a satisfactuq relative msasure of gmd- 

hess of panmeter estimates. It cannot be used as an absolute ramsure due 

to an hhermt e t y  within a multiplicative factor, tmcd in npn 

to the umemahty in omiS~o bamhidth in the statistical theory of 

m t e r  estinatian. The -UP(? is also derived on an entirely non- 

statistical basis, yielding thereby also a r k  intqmtation of the s w i -  

of off-dii-gonal (-tion) terms in the d i . ~ ~ i a n  m&. 

dbtirrtion be- coefficients as 'linearo and 'ma-linear1 is shmm to 

be irqpartant in its inplication to a & orCer 05 parameter item- 

tion. T-ues of hpmving convergeme generally, have also been 

developed, and tested out an flight chta.  31 prticular , an easily ip- 

?lemmted modification inaxprating a gradier~t search is sham to bgmne 

initial estimates ard this mmve a comim =use for lack of convegeme. 

A close scxut* of the ' d ~ i i k e l i h o o d '  theory (which pruvides the 

-=is for cument extraction algari-1 indicating its limitations i s  an 

kprmt by-prudwt of this study. A technique of 'pooling1 has been 

developed w i t h  derrpnstrrrted i rqmmt  in processing nultiple ra~ewers 

under simiLar fli&t conditions. A variety of questions that arise in 

intaplpting V i C e r ,  mults are dlso explicitly in the light 

sf .ehe theory ~~. 
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Flight data f m  an F-8 corsair  and a Cessna 172 havc bee. ulal!rzecl 

t o  denunstmte specific impmvements in the LRC pammter extractiorl com- 

p u t e ~  progrwn. The Cramer-Rao bounds (diagonal t e r n  in the dispersion 

matrix) have been shown t o  provide a satisfactory re la t ive  measure of good- 

ness of parameter e s t k t e s .  It cannot be used as an absolute ma-ism due 

t o  an inherent uncertainty within a multiplicative factor,  traced in turn 

t o  the uncertainty in the 'noise' bandwidth in the s t a t i s t i c a l  theory of 

p a ~ n e t e r  e s t h t i o n .  The measure is  also derived on an ent i re ly  non- 

s t a t i s t i c a l  basis, yielding thereby a l so  an interpretation of the signif i- 

cance of off-diagonal (correlation) t e m  in the dispersion rratrix. The 

dist inction between coefficients as ' l inear '  and ' non-linear ' is shown t o  

be important i n  its implication t o  a rc:omnended order L, parameter i tera-  

t ion.  Techniques of improving convergence generally, have rilso been 

developed, ar.d tested out on f l igh t  data. In par t icular ,  an easily im- 

2lemented rrodification incbrpomting a gradient search Is sham t o  improve 

i n i t i a l  e s t h t e s  and thus m v e  a c o m n  cause fo r  lack of convergence. 

A close scrutiny of the 'maximum-likelihood' theory (which provides the 

bas is fo r  current extraction algorithms indicating its limitations is an 

important by-product of t h i s  study. A technique of 'pmling' has been 

developed with d m n s t r a t e d  improvement in processing multiple m e u v e r s  

under similar f l i gh t  conditions, A variety of qdest.ions that a r i s e  in 

interpreting computer results are also expl ic i t ly  answered in tne l igh t  

of the theory developed. 



2. INTRODUCTION 

P a ~ m e t e r  extraction from f l igh t  data has been recognized .to be 

important f o r  m n y  purposes, f o r  irstance: 

i) fo r  comparison with wind-tunnel da ' 1 

ii) fo r  analyticdl and simulator studies fo r  f l i gh t  and hmdling 

qual i t ies ,  and 

iii) fo r  application t o  adaptive control C11. 

While various techniques for  parameter extraction have been in u s  

fo r  some time, it was not un t i l  the latter half of the 1960 's  tha t  d ig i ta l  

computer processing based on the W i e d  Newton-Raphson algorimm mde i ts  

advent [21, followed by accelerated ac t iv i ty  along similar lines in the 

early seventies [ 3,41. ide are now entering w h t  my  be called the second 

phase of t h i s  effor t ,  where we mve from the m y  studies indicating 

feas ib i l i ty  of the technique t o  the implementation of the pmgrwn on a 

routine day-to-day basis with m k h d  need f o r  s~pe rv i s ion  by a specia l is t .  

Before thib an be accomplished, m y  factors h a ~ ~ e  t o  be h n e d  out; the 

mst important question being the development of a calculable, satisfactory 

masure of the goodness - the r e l i ab i l i t y  - of the extracted parameters, 

an3 its interpretation. A second and c o n c ~ t a n t  consideration is the 

developme;-t of a computer pmgram tha t  has the built-in ability t o  handle 

cases wile= the ' n o m l '  algorithm f a i l s  t o  produce acceptable estimates. 

In addition, t h i s  would make it possible t o  deternine i f  the data is  so 

poor as not t o  warrant further processing and thus save the time and 

effor t  of computation. 

This report is an attempt t o  improve the cur-~wt b i g l e y  Resexch 



mtcr (LAC) m t e r  extraction p r o g ~ m .  'he study focuses an a nMber 

01 jestions arising fmm the use t o  date of that program and provides 

,inswers within the fnmwork of two a l t e r n ~ r e  theories: one statistical 

and other based m sensitivity. We begin in section 3 with a i x m f t  

-1s - the equations af mtion  and +he type of aircraft analyzed. The 

distinction between two types of pa~meters ' linear' and 'nola-linear1 is 

an important m i d e r a t i a n  in the basic camputational pmcedure fo r  

p t e r  extmction, &scribed in section 4, where '& pmcedure r se 

is divoroed Erom the rationale for  using it. The performme of the p m  

c e d e  is then tested on 3 ig t i t  data provided by L X ,  using t?e Optimi- 

zation Scftware (Ski)  pmawter extmctioll program. %e sca t te r  observed 

in the estimates cbtained by rraneuTers clnOer sirriilar f l igh t  cmditions 

leads us t o  the p r b  question of the goodness of the estimates, and is 

examined in the next two sections. The s t a t i s t i c a i  theory is developed 

in sectiun 5, culminating i n  the Crame~Fao (CR) bounds providing a 

s t a t i s t i ca l  4xasm of uncertainty. The e m r  due tc the usually accepted 

_sractice of tajliiig Lye (two-sided) banchi* of the naise as equal t o  the 

sanrpling ra te  is explained here for -the f i r s t  tire. Section 6 &scrSes 

3 nm-stat is t ical  masm i n  terms of +ha largest p s s i 3 l e  v a i a t i o n  in  

the estimates for a fixed _percent c a g e  in tho cost functional. 

Tne question of how co take c a ~  of c ~ ~ m t l y  experienoed di f f icu l t ies  

in parameter extraction centering on convergence problows is taken up in 

section 7. A technique for  p~oling f l ight  data obtained at identical  

f l i & t  conditions yielding estirrrates better than those from the individual 

runs is developed in sectlon 8 and Lts performance evaluated. Questions 

arising in the use t o  date of parameter extraction program are atmered 



i n s e c t i o n 9 , ~ o n ~ ~ d a ~ a p e d i n ~ p r e v i r o r r S ~ .  

Cmcluding mmxb in section 10 smmhe sane of the specific sugges- 

tions for possible pm@wrn iPopmwmnt. 



3. ?HE AIRCRAET mDEL 

a. Eiiatian of M o t h  

We hegin dth the lrudel - the linearized equations of airplane rmtian, 

lateral mDde only - in state space form, and associated sensor measurem.nts. 

Thus the state vector written as a mlum is 

The clntrol vector is 

The vectm of sensor measurenwts is denoted Y: 

Y = col. [B,p,r,$,ayl 

?he mtinuws tinre dyMmic equations relating these quantities are 

where 





and w; .ere ti is the 'noise' and is the one really vague quantity in this 

.-m.Lption. As e shall see, it p v i d e s  us w i t 5  the 'mtianale ' for the 

~u'oc~yS1pe for  our e s t k t i m  teduvque but quantitative interpretation is 

beset w i t h  uncertainties. Generally, it is taken as white Gaussia I o r  

Gs zssian of large band ampand to airplane response but the precise des- 

cr-pt.ion is a aucial point t o  which we shall return in section 5. It is 

as; umed that the noise is independent from sensor t o  sensor. 

Zh. paremete- t o  be identified are the various derivatiws indicated 

by a subscript. The 'stability' ckrivatives are i n  -the m t r i x  A, the term 

sina, cosa, !as+ cos8, cos+ tan8 are taken t o  be 1QM wnstants. (In 

reality of course there may be a variation in t h  but this is taken t o  

be small enough t o  be reglected. ActudLly there is no difficulty in 

accountkg for the dependence on time i f  it is b m . 1  ?he 'mnhrol' 

derivatives a the B matrix are in the f i r s t  two columns. ?he paremeters 

sham :- :, the last m ~ m  are 'bias' parameters and in themselves there- 

fo 2 haw no physical significance and can, in particular, change even 

under i d % t i c a l  <light conditions. A bias tern also occurs in the matrix 

D and is deswibed as lYBIAS" - this accounts for  the average cf the 

(sin 4) (coe 0)  g/v tern as w e l l  as any instnment bias in the ql measure- 

,mt. 



b. Q p e s o f ~ A n a l y z e d  

A l l  data presented in this study are confined t o  two 

aiKcmft: A Cessna 172 and an F-8. 

Cessna 172 f l igh t  tests were canducted at NASA LRC. ?he Cessna 

is a l igh t  high wing single engine general aviation air plane; r e lwan t  

physical dmxecteristics are indicated belaw. 

W i n g  Area 

chord 

In the data supplied, angle of attadc and side-slip measurements were 

corrected for instrunent position by LRC. Accelerometer offset  the 

C.G. was i n i t i a l l y  stated to be neglLgible. In the course of the 0% data 

processing tawever, significant correlation between ay and was detected 

visually, indicating lateral accelemneter offset  (above or belcw C.G. 1. 
locat ion 

The accelemmtedwas then taken as an additional unkmm parameter t o  be 

determined by the 05W panmeter extraction p m g ~ m .  This yielded an 

estimate of appmxinrately 0.9 ft belaw C.G., agreeing well with the 

IIP-asured position. Any w t e r  that can be measured independently and 

accurately, should of course be &led as )awwn. Thus, the -sued 

p i t i o n  of the accelerometer should be included, nather than neglected 



a miqortarrt. The accelemmeter lacation did in fact have a signifimt 

effect  on several of -the minor ccefficients and the r.m.s. residual fit 

an ay was appmximately hdLv;d by oomcting f o r  the instmmmt loca- 

tion. 

?he second aircr&t was a d f i e d  Navy F-8 Corsair 2. This particuiar 

a h m f t  was f i t t e d  with a sqerwritical wing for evaluation and was 

flawn a t  NASA-Dryden. Physical characteristics are given belad. 

W i n g  Area 

Chord 

Weight 

25.5 M~ 

13.14 M 

2.08 M 

10500 Newton 

20500 Kg-M2 

1400GO ~ ~ - 4 4 ~  

4500 Q-M2 

The angle of attack vane in this aircraft had a significant emr 

(about lo) t h a t  was not c o m c t e d  in  the data. Therefore, the s h  term 

in the A-matrix was allawed to  be an e m  unknown. 

Data f r o m  both aircraft was transmitted on a PCM .link. For the  F-8 

the sampling r a t e  was 25 samples a second. For the Cessna, the mte 

was only 10 samples a second, law enough t o  cause concern, but proved 

adequate nevertheless because of the good quality of the data (good 

resolution, low noise and accuracy of the l i n ~ a r  model). 



4 . MAXU%IM LIKELIHOOD ESTIMATION PKXEDJRE 

a. The Cost Functional 

The 'maximum likelihood1 ( i t  is not s t r i c t l y  maximum likelihood in 

s t a t i s t i c a l  term as w e  shall indicate in section 5 belaw) technique of 

estimating the paramters is t o  minimize the expression: 

where 

the subindex i denotes i t h  caqment  of the observatim vector. n 
A 

being the s ize  of the vector, 5 in the present case. Y ( 9 ,t is 

the calculated observation vector using approximate parameter 

values and the hown input and is thus a function of the para- 

nreter vector 0. 

{ di} , i = 1,. .n are ncn-negative constants , T is the available 

t k - h i s t o r y  . 
The minimization is with respect t o  the parameter set 

Pending further examination (sec. 5 w e  may accept minimizing (4.1) as 

a 'good xhing' t o  do. Thus the second term i n  (4.1) is a 'man-square 

error' , 'weighted' by id. 1. Moreover at the ' t rue value' of the para- 
1 

meters in 0,  the  cost functional is a minimum. We can see this as 

fol lms.  A t  a minimum, the gradient (the f i r s t  partial derivatives) 

with respect t o  all the parameters n u s t  vanish. Thus we nust have 

and 



Because of (4.2 1 , the  minimization proceeds in two successive series 

of steps: setting 

and then minimizing the 'cost functional : 

A A 
with respect t o  0, keeping di f ixed  Then calculate a new di a t  I-he 

minimum and -repeat the m i M z a t i o n  of (4.5 ) . Note t h a t  (4 .3)  has the  

minimdl (ideal) zero value at the t rue  value of the p a r a i t e r s  4. 

Of c o m e  we do not e q c t  t o  see 'exact' zero. Kote also t h a t  in 

t h i s  way at the 'minimum' (4.5 ) reduces t o  .the value : 

A 
again asslming we do not IUI across 'exact ' XTOS for  d We call i' 

A 
di = the man square fit ermr corresponding t o  the ith 

measurement 

and 
" A C di = tot& man square f i t  error 

1 

Similarly we shall call 

A A 
Z (t) = Y(t) - Y(0,t) 0 < t < T 

A 
the x-esidxal, where 0 is t he  final p a r m t e r  estimate. 



The colm vector with capmen t s  

where ai are the ccmpamts of 8, w i l l  be called the gradient (denoted 

G( 8) of q( f3 1, and the matrix S( 8 with components 

will be called the 'sensit ivity '  matrix. It is recognized as part of 

the Hessian of q(9) which is independent of the data, and is mreover 

non-negative definite. 

Since there ae many ways of minimizing (4.51, we now describe a 

lrecarmrrendedl procedure. [It is mre than a recammiation; it w i l l  be 

closely t i ed  in with the theory in sections 5 and 6.1 \hen we have no 

'good' initial values fo r  {di} , we take them all t o  be the sime - not, 

in other words, fawring m e  ~~t over another. Next we f i x  the 

parwetem in the A matrix at t h e i r  nominal s tar t ing values and minimize 

q( 8) with respect t o  the unknown pammters in  B and D - we sha l l  r e f e r  

t o  the latter pammters as ' l inear1 parameters since t l l ~ 3 ~ .  enter 
A 

l l i n ~ a r l y '  in Y ( f 3  ,t) . lbmowr, derivatives of q(f3) w i t h  respect t o  

these parameters of order higher than two vanish identically. As a resu l t ,  

the minimizing parjrneters are determined by: 



wllem Os is the s tar t ing value of O and we simply set the derivatives with 

respect t o  the 'non-linear' p a r a e t e r  t o  zero in G(o) and S ( O ) .  This is 

because we have, by virtm of the fact  that  derivatives of order higher 

than two are zero: 

G(o1) = G(os) + S(O,) (01 - 0,) = 0, by (4.11) 

We wish t o  note now that i f  we m i t e  (4.11) as 

then (4.12) which is equivalent t o  (4.11) has a solution even i f  S(oS) is 

singular, and t h i s  solution, even though not uniq*, w i l l  s t i l l  yield the 

minimizing Q1. This can be seen as fo l lws .  Suppose for  s m  non-zero 

vector h we have that  

where the ccrrgonents of h are zero ccmsponding t o  the paramters in the 

n-at17ix A. Because the derivatives of order higher than two are zero, we 

have the Taylor expansion: 

where we have used the notation 

Since 1(0) is non-negative and 

CS(~,)h,hl = 0 ,  

it  follaws frwn (4.14)  that 



also and that 

for  any scalar multiplier k. kt {X.} denote the non-zem eigenvalues of 
1 

S ( 0,) and {ei} the corresponding orth~onndlized eigenvectors , in the 

sxce of pammter vectors whose c a p n e n t s  are zero corresponding t~ 

the parameters i n  the matrix A. Then G( 0,) can be expressed in  t e r m  of 

the {eil as 

and hence 

has the solution 

This solution is not unique since we can add any h satisfying (4.13) but 

then the comspnding value of q( . is the same by ( 4.15 . Hence (4.12 

has a solution and any technique used t o  'solve' (4.12) should yield an 

acceptable el. 
After this f i r s t  i teration step, a l l  parameters in 0 a,m allowed t o  

change and algorithm (4.12) is used. Since we are no longer confined t o  

linear parmeters, S(e,) is no lcnsp- the Hessian. Hence (4.12 is 

r e f e m d  to  as the 'rrodified' Newtun-ihphson technique (Taylor and 



and Iliff C2 1). An elemnt  of the actual Hessian is 

and the correction term is small i f  the  residual is small. The mc+ 

co~npeUing reason fo r  using only the f i r s t  term is tha t  the calcill - I ,  

of 2nd partial derivatives of Q(0,t) can be quite tedious nollrally, G I ~  t h ~ ?  

impmvement obtained would not be significant. ?his is because the N-R 

technique is i t s e l f  eff ic ient  m l y  llclosell to  the true p a m e t e r  values, 

so that  the residual must be small t o  begin w i t h .  

Note a lso tha t  when allwing all parameters t o  change, the gMdient 

is not necessarily zero a t  each step, because the 3rd and higher order 

derivatives a- no longer zero. In fact the cost functional q(O) m y  

not be nonotone decreasing with each i temt ion  i f  S( On) has eigenvalues 

close -:o zero. 'Normally' hawever these d i f f icu l t ies  w i l l  not appear. 

How t o  deal with them when they do occur w i l l  be discussed further down 

belm under improving convzrgence in section 7. 

I l lustration.  The nonnal si tuation is i l lus t ra ted  by Cessna data: 

Run U. Here the quantities {ai} were i n i t i a l l y  s e t  a t  dil = 9.37, d;' = 

= 3.55, dil = 3.64, d;' = 4.28, dil  = 8300. The s ta r t ing  par-ter values 

w e r e  : 



The behavior of q(0) by i t e ra t ion  is plotted in Figure 1. The 

r s c  1: ; t functional a t  i tera t ion 1 was obtained by varying linear parameters 

on ly  frwn the ' s tar t ing ,ralues ' at  i t e ra t ion  0. A t  the suceeding i tera-  

t ion ,  a l l  parmeters wem changed a t  each i t emt ion  using the modified 

N.R. algorithm. It is t o  be n ~ t e d  that the mst significant, reduction 

i n  the c-t functional took place in the first  i t e ra t ion  and tha t  the 

functional levelled off  by about the  third, Tables 1 show the co rns -  

pnding parameter values a t  each i tera t ion,  Table 2 the pradiznt, and 

Table 3 the r.m.s. ~ s id i c l a l  of each sensor rrreasumnt. 

The gmdients of the non-linear terms were not computed f o r  the  

f i r s t  i tera t ion,  as on1.y the linear t e r m  were needed there. Note tne 

dnmatic decrease in the p d i e n t  of the linear t e r n  fmn i te ra t ion  0 

(s tar t ing values) t o  i t e ra t ion  1. This demise is about 4-1/2 orders 

of rmgnitude. These nuhe r s  should theoretically be 0, but t h i s  decrease 

is  well within expected nurrrerical accuracy L1 solving a 8 dimensional 

system on the IBM i n  single precision (the 5 bias t e r n  are not l i s ted) .  

Overail, this case exhibits ideal  convergence characterist ics.  

c ,  Results: Cessna 1 7 2  Flight Data 

Using the p m d m  outlined above, several runs of the Cessna 172 

data were processed. The results obtained f o r  4 cases ( 2  ai leron and 2 

rudder) are s m i z e d  in Table 4. The s ta r t ing  values of {di} (sam 

as  b e f m )  as wzll as the paranreters were the same in a l l  cases. The 

bias paMmeters a m  not tabulated. 

Since the flight conditions w e r e  close e n o w  t o  be identical ,  we 

would expect tha t  the extracted p a ~ m e t e r  values should be the sarrre. 



Unfortunately *is is mt borne out by the data, even though the fit 

errors on all the runs ar?e about the and acceptably law enough. 

The mst striking discrepancies a m  highlighted in Table 5. 

Representative time history plots - actual and calculated - for a 

rudder run (case 10) and an aileron n m  (case U) are shown in F m  

2 and 3 respectively. The fits are generally good, the only evident 

abncmmlity f. ing due to  the accelera~ter location problem referr(ed 

t o  earlier. ?his corrpcthn did not hoklever affect the partmeter 

discrepancies observed. 



4 
A 

5. ERROR Bourn: STATISTICAL mow 
t 

a. b r t i n u o u s T h b 1  
* 
> 
? 

In th i s  sectim we shdll indicate a 'statistical' approach to the bzsic 

questim of h w  can we tell  hcw good ollr determination of the panmeters is? 

The basis of this theory rests on the assuuption that the limiting error in 

the cbservation Y(t) is 'mQm noise'. We begin w i t h  the 'nrost idealized' 

case: = assum that the noise is t-limited bladc-body 

d a t i a n  - that the noise is 'Gaussian uhite' . Unfort;wately, current fad 

in .Stochst ic  m s s  th- r x q u k s  us to be xm pedantic as fo l lm:  

'=say 

where W( t) is a full-- Wiener Prooess and 

2 gi mmpmds to the spectral density of the ith noise cuqonent, 

or, 

2 2 E . LM(t)(GW(t))*l = diag. (gl,..g,) = G 2 

-&re 

E . stands for Expected Value, and 

V ( t )  = Cx + I)1 + ER-l(Ax + Bu) 

In this formalism, we assunc that the {gi} are knahn. Tnen the 

logarithm of the likelihood functional b e a m s  



Note that (5.1) cannot be expressed in the usual 'least s q m s 9  

form, (cf 4.5)). Nevertheless, the pdient  of (5.1) is the s a ,  

sirlcx the term that is missing is of the form 

which of itself is rrreaningless in the Wiener process fomalism. But (5.1) 

is a t r w  L i k e ~ o c d  functional and hence nrrudmizing it woulc? yield a 

' , ~ l i k e M t  estimator. A t  the mxhm the merit of ( 5.1) vanishes : 

To solve (5.2 we use the mdified N-R algorithm: 

We can pmve: (asymptotic consistency h e o m )  

Theom 5 . 1  Scppse 

is positive definite in an open parmeter set N containing the unknown 

point 0,. ?hen there exists a non-zero ~~eighbortiood at in whidl (5.2 

has a mot, for all T su f f i c i e~ t l y  l c q e  . Let 4 denote the m t  . Then 

a d  in fact 



I%of For a proof see Balakrishnan [ 5 1. 
7 

The main calculation is that 

0 = G(Oo) + S(BJ (4 - go) + higher order tern 

We also have the C-R bound for unbiased esthtom: 

A -1 
var. c+ 3 S(oJ 

In fact for large enough T we can use the approximation: 

:hero, the second term is Gaussian with man 2.- and variance 

Since oo i s  unknm, one usually calculates 

as an estimate of the variance. 

?he main drawback in the above is -the fact that tile spectral density 

matrix 



is issumd hum. But this dmdadc is cnly in the calculation of the 

C-R bound. We can show that we may use any non-zero diagonal ~atrix in 
2 

place of {gi} and still obtain asym~tot ic  unbiasedness and asymptotic 

m i . s t e n c y  of the parameters C. 

Band-Limited N~ise Appmfh 

\de m y  TP&F, the mre reasonable assumption t l a t  N ( t )  is band-limited 
A 

Gaussian, with badwidth large conp>ared t o  that of Y(O,t) . breover we 

may ther, also ccmider the  case where the noise pmer is unknawn as well. 

We shail show we can then e s t h t e  the noise per  as ell but that a- 

certainty w i l l  again arise in the C-R bound due t o  lack of precise kncwledge 

of the bandwidth. 

We invcdce the cost fcnctional: 

which we minimize with respect t o  Idi} and 0. As before (see sec. 4a we 

take : 

and minimize 

Now (5.11) is not the log likelihood functional, even apart from ~ l e  fact  
A 
di is on1.y an estimate f o r  di. Nevertheless it can yield us an q q t o t -  

i ca l ly  unbiased and asymptotically c w i s t e n t  estimate for 0. Denoting 

the gradient with respect t o  O of (5.11) by 



A 
we have the Taylor Expansion, denoting the mot by By: 

where S(8) is the matrix: 

we have that 

where 

I 

ni(t) being the noise in the i t h  observation. lJckJ 

where Ri( t ) is the covariance function of the noise process ni( t . Hence 
A A 
di is  an unbiased es t imte  of the noise-variance. Replacirlg di by its 

expectation in ( 5.15 ) , m, have for the variance of G( go) 



where Pi( f ) is the spectral density of the noise ni( t ) . If e take 
2 P.(f) = gi for -Bi< f < Bi 

1 

= 0 otherwise 

and assume Bi large, we can reduce (5.16 1 to: 

where w e  note that 

Hence within the appmximation of repiacing 

we have that 

which i f  we  use the =asonable approximatian 



we set 

Note that again the use of t h i s  f o d a  requires h w l e d g e  of the bandwidth: 

W i t h i n  the band-limited noise assumption we can also show then the variance 
A 

of the e s t h e t e  di 

b, Discrete Time Theory 

In the discrete-tine theory, the data is sampled periodically a t  2B 

samples per second, and it is assumed that the noise samples are independ- 

en+ We have then the discrete version of (4.1) 



Taking the gradient yields 

and the pammters in O are determined so as to minimize 

or use the algorithm 

where 

The estimate is again asymptotically unbiased and consistent. The variance 

of the estimate is 

?he difficulty with the need t o  knew spectral density is somewhat 

hidden in the ldiscrete-time' analysis: here the sampling rate ,is 

sanples/sec and (5.13) is expressed as: 



which is 

But 1 
A t =  X' 

and hence this (assuming the sampling rate is adequate) yields the zontinuous 

t b  integral in ( 5.13 1. The assumption is mde in t h i s  that 

2 and the e m r  i n  this is that (2B) is overestimated s o  that  gi is under- 

estimated with the resul t  tha t  the C-R bound is also underestimated by a 

sizeable factor. Thus, the customary 50 samples/sec yields a bandwidth 

of 25 Hertz which i n  camparison w i t h  the actual observed bandwidth of the 

residual can be as much as ten times the actual. Any discrete-time (or 

sampled) theory requires tha t  the noise samples be independent sample t o  

sample which is less likely the higher t!e sampling rate [or assumd noise 

bandwidth]. 



c. I l lus tMtion 

The F-8 data furnishes a good example of the importance of the role 

played by the noise bandwidth in the calculation of the C-R bound. The 
L 

four runs - 4, 5, 20 and 2 1  - are at essentially the s m  f l i gh t  conditions 

l i s ted  in Table 6. 

To pmvide a check on the calculations mde with actual data, a 

s i r d a t e d  t e s t  was run first using the converged values fran case 2 1  as the  

values, and the sam control input as in  case 21. Four different cases 

w e r e  computed with i n d e p d e n t  noise samples with the same t o t a l  p e r  as in run 

2 1  but with (Le one-sided) bandwidths set precisely t o  be 1 / 2 A t ,  A t  

being the sampling interval. The OSW extraction p r o g ~ m  was then used 

t o  estinrate the coefficients using each of the four simulation runs, 

yielding four independent estimates fo r  each coefficient. The s q l e  

standard deviation 3 calculated based on these four samples is then 

mqmred with the calculated C-R bound averaged over the four cases - 
the bounds were in fact  very nearly the same on the four cases. The 

ccsnparison is indicated in Table 7. The last column of t h i s  table lists 

the r a t i o  of 8 t o  the C-R bound (standard deviation). [Control derivatives 

are not included since only two estimates were available fo r  these. 1 We 

see that the r a t i o  is very close t o  unity, the agreement being excellent 

considering the small sawle  size. 

The same comparison was then carried out using the F-8 f l igh t  data. 

'he resul ts  are given i n  Table 8. The C-R bounds were calculated on the 

basis of a (one-sided) bandwidth of 1 / 2 A t ,  just as in the simulated case, 

following c m n t  practice. In str iking contrast t o  the simulated data, 

the r a t io  of 2 t o  C-R bound (s.d) is nar roughly of the: order of 10. 



This discrepancy is explained by our theory as being due to the actual 

noise bandwidth being mu31 smaller than the arbitmry and incorrect 

specification of the bandwidth as 1/2At. 

Figures 4, 5, 6,  7, and 8 show the p.s.d. of the residuals for  the 

F-8 f l ight  data, based on which m e  may assess the true (one-sided) 

bandwidth a t  about 1 Hertz in contmst t o  1 /2At  which is 1 2 4 2  Hertz. 

TaSLe 9 shows the C-R bounds calculated for the C e s s ~  runs 9, 10, 

11 and 1 2  based on a noise bmdwidth 1 / 2 A t .  For psd's on t'he Cessna 

data see section 8. 



6. E m R  B O W :  NON-STATISTICAL lNEORY 

It is possibie t o  develop an interpetat ion of the d c c u ~ c y  of the ex- 

twcted p a ~ m e t e r  values without invoking any s t a t i s t i ca l  n ~ + - ' ~ - s ,  and based 

entirely on the minimizati -.I of the functional (4.1). The functional it- 

self can be interpreted without involvint, any notion of noise. Thus the 

second term of the cost functimal is  cognized as an "output f i t  e r ~ m r ~ ' ,  

n o d z e d  by the wei&ting pammter {di}. The latter can reflect our 

relative &gme of confidence in each of the different instrunrents . 
A 

The unoertainty i n  the estimates 0 ,  di may be evaluated in the follar- 
A A 

ing way: h m  nuch can we change 8, di keeping the oost functional within 

a fixed percent? In o t h e ~  words (looking at 8 for the tim being) , i ~ o w  

large1 can we make z : 

keeping: ( f ( . ) denoting the cost functional used) 

l f(6 + 2)- f(8) 1 6 c f(8) 

where c is a fixed fracticn (say 1%). The question how ' l a c e '  depends on 

the measwe we wish t o  choose. In  general, it may be measued by the square 

of a linear weighted sum, mre cu'snpactly expressed: 

CLz,Lzl = I ILzI l 2  
&ere 1.. is a given mctangular matrix. Moreover, since the changes are 

small, we may approximate the cost functional by retaining only the linear 

and quadratic t e rm : 

f ( 8  + 2) = f(8) + C G ( ~ ) , Z I  + 112 C S ( ~ ) Z , Z ]  

since di is fixed (for  the t b  baing) f(0)  = q ( ~ )  and f(8) = n; ~ ( 6 )  = O 

so that 



Hence we have the p h l e m  of maximizing 

silb j ect t o  

?his problem is madily solved by using Lagrange multiplier A and mimizL74 

or,  the optimdl z w i l l  sat isfy:  

L * L ~  = x ~ ( 6 1 ~  

and hen= the answer t o  our pmblem is: 

n*w 1 1 h 1 I = 2 ia (largzat eigenvalue of: s ( O ) - ~  L*L) 1 (6.1) 

axorckng as e i ther  S(O) is non-singular, or (L*L) is nm-singdar. Also 

we may replace in (6.1): 

7le sha l l  now consider various special cases of L: 

Zase 1 - 
z is required to be of the form kei where ei is a coxdinate vector 

and k is a scalar. In other words we perturb one particular comjnmt 



lhlo the W e r  the di-a1 el-ts ir. the 'sensitivity1 matrix ~ ( 6 1 ,  

the larger the uncertainty. ?he mrrelticn in the s(& matrix plays 

no role. 

But it &xi, as smn as we mi&r 

Case 2 - 

where ei is a cxnrduate vector with 1 for the ith c a p n e n t  and zero 

elsewhe=. Although the masure of uncertainty is based only on the i-th 

cnrponent of z ,  all compc?xnts of z are allowed to change. In this  case 

the answer is 

where 

Note that now the answer is different from case 1 as soon as ~ ( 8 )  is not 

diagonal. In fact *de note the elemntary inequality that 

d . .  3 2 1 s . .  
11 11 

and e q d t y  holds for al l  i ,  if and only if ~ ( 8 )  is diagonal. Note 

-the connection with the statistical vwiarLce measure - we have in fact 



the (:OH mmd but with an a r b i t ~ l y  sn s t an t  of pportidity. For a 

.: i m i  1,s. appmach, see Klein [6] and even earlier Shinbmt [7]. 

k t  us next ccnsickr the case in which c ~ e l a t i c n  in the 

rnt1 . i~  plays a role. lhus take 
cdse 3 - 

1 1 ~ / 1 '  = [ei,z12 + [e.,z12 I i f j 

Let  Y be the i-j th c a m l a t i a n  coefficient: 

lhen f o r  

It is interesting t o  note that the z that achieves the maximum ( f ~ r  y = t l)  

has the form 

:R other we may choose ti arb i t ra r i ly  provided we also d c e  z j a 

fixed multiple of zi. Sue. a possible linear relationship has been 

*mtd in refsmce [8]. Cornlation makes the uncertainty worse. 

F i n a i y  we my consider the case where we wei@t the z conversely 

A 
w i t h  respect t o  the O values {ail : 

Case 4 - 
2 

[Z ,eil ,, 
= , e = {ail 

ai 



In this  case 

A -la 
IIWC / I Lz 1 1 = 2nc Largest eigenvalue cf a S( 0) 

A -1 = 2nc U e s t  eigenvalue of S ( B) a 

Table 10 shcrws the results fo r  the Cessna run 9 with a 1% cost change. 

?he second and third cmlumns shaw the calculation f o r  cases 1 and 2; the 
A 

mxbd uncertainties are  sham ae a p m e n t  of the calculated 8 value. 

The final c o l m  shows the calculation fo r  case 4; the values of the corresponding 

optimal z wcto r  are indicated as a p e m t  of the es t imted  parameter values. 

These values would appear t o  be rather high fo r  only a 1% change i n  cost, 

and indicates in particular +ht run 9 was of p r  quality. Fram C-R 

bounds given i n  Table 9,  w e  see that the a i l e m  runs are generally 

better than the rudder runs. 

We my also study the uncertainty in the estimated di values. The 

. . 
mulundl value of (4.1) is given by : 

A A 
And accounting for  both O and di, we can write up t o  scmnd order terms: 



Hence 

A 
and this  result is consistent with di being unbiased with variance 

2 A A proportional to di . The uncertainty in the di is pmprt ional  to di . 



The basic conputational pmblem is t l ~ e  minimization of q(O) defined 

by (4.5). let Os denote the s ta r t ing  value of the parameters, including 

both the lineart and the 'm-linear , and let el denote the end of the 

first i terat ion using the N-R algorithm when only the linear term are 

a l lwed  t o  vary. The f u l l  non-linear term are allck~ed t o  vary next using 

the N-R algorithm ?r?edi-d on the assumption -that the Hessian given by 

(4.17) is positive def ini te  and that Ell is "sufficiently close1' t o  the 
A true [or minimizing] v a b  ElT. h fac t ,  we hem that 1 - 0 ~ 1 1  G 

k I Ion - $1 I where k is a constant involving t h i r d  derivatives of 

q . 1. It is d i f f icu l t ,  if not impossiblz, to  tietennine the closeness in 

any calculable quantitative way. Gn the other hand, if the closeness 

condition is  not sat isf ied,  the cost  functional q(O) need not be mnotone 

decreasing - in other words, q(O) osc i l l s tes  and we experience la* of 

convergence. 

In pmctice w e  can determine whether C$ is  lclose ena-lghl by running 

the pmgmm using the N-R algorithm. If there is  lack of convergence 

and this cannot be traced t o  other sources, we should suspect that  

s tar t ing values were mt close enough. In other words, when non-convergence 

is due t o  poor s tar t ing values, the trouble can be ki th  the N-R algorithm 

rather than any in t r ins ic  defect of the mxbmm l ike l ihml  formulation. 

The N-R algorithm should always be used on the ' l i n e a l  coefficients 

as already noted. Implementation of this is relatively asy.  After 

computation of the w e n t  and the matrix S, a short nut ine  can be 

inserted t o  reset  the 'non-linear1 t e r n  in the gradient to zero. It 



should also set the off diagonal elements in S comsponding t o  these 

tt7lns also t o  ::tlm, and t\e diagonal -kern t o  1. ;71s is not very eff ic ient  e 

ir: that it computes tile non-linear terns and t l l tn  ignores them. The 

computational e f for t  is not large; however, s i n e  it applies only t o  the 

f i r s t  i temtion.  On the other hand, it has the advantage that it is an 

easy, compact addition t o  any pmgram, reducing t o  a one-line c a l l  t o  a 

short subroutine. More eff ic ient  implementation is also possible i f  the 

program is w e l l  dular ized .  

If the initial i terat ion of determining the linear terms is not 

adequate fo r  conge-vence, we my use one of two methods t o  inprove s tar t ing 

values: the a) gradient mthod, o r  b) the a tp r io r i  weia t ing  rrethod. 

a )  The Gradient Technique 

In the i n i t i a l  stages we rrray substi tute the gradient technique 

in place of the N-R techique.  In +he gradient i terat ion we proceed as 

:allows : 

where yn is  a numerical coefficient determining the 'step s i ze t .  The s tep 

s ize  is  not unique and can be chosen in r m y  ways. In tne 'steepest 

descent' version yn is determined by taking the value of yn comsponding 

If we omit terms hi@er than -those of second degree in the expansion of 

q(@, this would yield 



where is the Hessian at 8 = On. Since the determination of Hn involves 

second derivatives, we m y  replace Hn by S(on), defined by (4.11). 

Alternately, fixed step sizes m y  be used (such as 0.6); or mre tinre- 

consuming 'search1 pmcedures may be employed. 

Perfomce 

?he use of the gradient for initial impmvaxmt will be illustrated 

by the Cessna 172 flight data. As starting values we use the following 

non-dimensional matrices, rounded off from PA-30 data: 

The starting di values were: 



None of the four cases 9, 10, 11 o r  12 converged fm these  values 

at  t h e  first attempt using the N-R algorithm. Case 11 was then  singled 

out  for de ta i l ed  study. 

For the first i t e r a t i o n ,  only the 'linear' coe f f i c i en t s  e r e  

determined as explained above. The cost function decreased f m m  13750 t o  

5511. 

Then t h e  gradient i t e r a t i o n  (explained above) was used on a l l  the 

coeff icients .  'Ihe cost functional values were: 5511, 4867, 4387, 3937, 

3316, 2875, 2638, 2526, 2426, 2371, 2331. The coefficient values (of  

the Inon-linear1 mes) at the final itenation were: 

?he o the r  nm-linear coe f f i c i en t s  shawed l i t t le  change. 

A t  this point we switched to  the N-R technique (determining only the 

linear term at t h e  first i t e r a t i o n )  and the corresponding cost funct ionals  

by i t e r a t i o n  were: 4318, 1336 (linear only), 2634, 746, 199.6, 174, 174. 

The final coe f f i c i en t  values ( non-linear were : 



L. 'A Pr ior i  Weighting' 

In t h i s  technique we mdify the  functional q(0) by adding a positive 

r lef i n i t e  quadratic fern: 

where K is a d i a g ~ n a l  "default" matrix with positive entr ies  corresponding t o  the 
.L 

non-linear v t e r s  and zero otherwise. We m y  interpret  t h i s  a s  assign- 

ing an a p r io r i  Gaussian density t o  the  non-linear panmeters and taking 

the 'unconditional' log likelihood function. The effect  is basically t o  

keep the search for  the r~~ in a chosen region. It has a lso the  

effect  of rraking the Hessian positive def ini te  fo r  suitably chosen K. 

After a few i temt ions  using K, one then starts a l l  over f m m  the 

parameter values reached se t t ing  K t o  zero thereafter. 

To demnstrate how this technique actually works o ~ t ,  we use the sane 

Cessna case as  above. A default m t r i x  K was used: diagonal with ncx- 

zero zntries as below: 

A multiplicative factor was l e f t  open. Runs w e r e  mde with factors 

1, 10 ,  100 and 1000 with no msul t ing convergence. Taking the factor 

a s  100000,  the following s e t  of successive cost functionals obtained: 

13800, 5600, 5500000, 143000, 29300, 24300, 8900. 

The mnotone behavicr a f t e r  the second was encowciging. In : e m  of the 

corresponding F a r e t e r  values, C overshot t o  negative values and 
nf3 



then regained slowly over the mnotonic decreasing portion. The corres- 

[anding actual Cn values w e r e  
B 

The multiplying factor was then increased t o  lo7.  The correspcnding 

cost functional values became 

The noticeable feature here is the smllness of the final cost functional, 

significantly lower than the s tar t ing value. The coefficient value a t  

the last i t emt ion  indicated that Cn was the only non-linear coefficient 
B 

changing significbrltly fram the s tar t ing value. Hence, the s ta r t ing  

value of " was char.;.. 3 f m 9  .0015 t o  .00032, the f i na l  value obtained. 

The cost functional then behaved satisfactorily:  

3225 433 449 200 174 174 174 

Moreover the coefficients obtained were identical  t o  those obtained w i t h  

the gradient technique. 

It can be seen that the a pr ior i  weighting technique is very ad hoc 

i n  nature and is  subject to the cri t icism that  it is  "massaging the data 

t o  get  the answer you want." 



8. POOLING TEWIQUE 

a. Theory 

When we have a se t  of runs all a t  or  near the same f l ight  conditions, 

we should, from the s t a t i s t i ca l  noise theory point of view, 'poolt them 

in the f o l l h g  way: (as apposed t o  averaging the parelmeter estimates 

obtained independently f m  each run). Thus l e t  us n~mber the 

tine-histories yi( t) , i = 1,. .rf wilere the initial tine is normalized t o  

zero in  each case so that we have m observation (vectors) : 

The main assumption is that *the noise in each of the runs is s ta t i s t ica l ly  

independent from run t o  run - th is  assumption is s ta t i s t i f ied  i f  there is 

a time d i f f e m c e  of a few seconds between the end of one and the beginning 

of the next - the runs a in pmctioe obtained 'sequentially1 in time 

anyway. 'Ihe cost functional t o  be minimized is 

A j where Yi ( O , t )  is the calculated response for  fixed pananeters. 

The form of (8.1)  is  derived f m  the fact the conditional probability: 

P [S,y2,..ym lo] 

1 
= P [Y I 81.. P [PI ,I 



which is in tum based on the independence of the noise pmcesses frwn 

run t o  run. The noise variances frwn run to run are of course taken t o  

be the same. The bias t e r m  and the initial conditinns ax allvwed to  be 

dependent on the run. Only the aircraft stability and control derivatives 

are fixed fo r  all the runs. 

We have : 

A 
and we minimize fo r  fixed {di3, 

with respect t o  all the other urhown parameters. We have again the 

modified N-R algorithm: 

where 

O is of course a vector of the form: 

e =  col [a:, %] j = l , . .m 

i = l , . . p ,  say 

k = 1, ... r, say 



Thp double-indexed parameters are the bias term and in i t i a l  conditions 

which enter linearly and are allwed to vary from rn to run. Tile gradient 

G ( 8 )  is the c o l m  vector of partial derivatives: 

where a denotes the generic paramter. Similarly S(O) i s  the matrix 

where c, 6 stand for the paramters. 

The rrain question that remains is  the C-R bound for the aircraft 

pawreters. We have the expansion, o0 denoting the true total  parameter 

vector set : 

from which we calculate that 



where 

2 
(gi) = spectral derlsity of ~~'(t) = di/2Bi 

This is a little complicated and can be simplified further if we assum 

that the bandwidths are the same: 

and of course the variances are the same: 

In that case 

A 
Hence replacing di by di in the formula (8.5) fur S(O), the e x p ~ s s i o n  (8.7) 

shqlifies to 

where we errrphasize that 



Ihe Npooled" C.R. bound is thus the inverse of 

h;,ich is also the inverse of 

here S. are the individual sensi t ivi ty  matrices. Note tha t  i f  we took as 
3 

the m i t e  the average of the m determinations, the variance would be 

and of course +his variance would ~e larger: 

:Ye irrqmvemnt being bigger, the fzrther apart the individual =trices 

5: e. Note also that them is the advantage that (8.9) :rill tend to be 

=re nm-sir@ar than the individual matrices. 

5. Performance 

Pe r fo~mce  of this techrique wa5 tested on the Cessnz 172 f l igh t  data. 

3 e  rudder input cases (9 and 10 yield poorer results '&. the a i l e r m  

=ases (11 and 12 1. Since the f l igh t  conditions are ver;, close, it seem 

ilam*al t o  pi the rudder and aileron cases. Thus, ~ u n  9 ;ms p l e d  with 

I-m 11 (and designated 9- l i )  and run 10  was pooled with rz. 1 2  (designated 

- 1 .  The estimates of the aefficients and the C-Ii 'x3:& are presented 



in Table 11. The f i t s  are sham in Elguns 9-12 and the msiduals in 

Figures 13-16. We note first tlat there is a significant reduction in 

the scatter of the e s t b t e s  frxn,  the individual runs. ihe agmemnt 

between the two pooled runs is also quite good. ?he C-R bour,ds are 

sl ightly better than for the individual ai lemn runs and significantly 

better than the individual rudder runs. 'Ihese bounds were calculated 

m the basis of a (one-sided) bandwidth of 1/2At (5 Hertz). 

Figures 17-21 shaw the pwer spec- density of the residuals. It 

is based on the first 512 t h  point of the d i n e d  residuals frwn all 

four cases. F k d  cm a e s e  plots, a bandwidth of arc& 1 Hertz or 

less w u l d  be reasonable. ?his would i d a t e  that the C-R bounds should 

be 2 or 3 times larger a t  least. ?he resulting error esthtes are 

consistent with the e s t k t e  scatter. 



9. CUESTIONS AND ANSWERS 

In this section w e  shall pmvide expl ic i t  answers t o  the questions 

r\aised by LRC in  the Statement of Ncrk. The theory leading t o  the answers 

has been presented in sections 4 thmq$ 8 in this report and w i l l  be 

drawn upon as needed. 

Question 1 - Does non-uniqueness of derivatives always occur w i t h  

hi@ correlation? 

Answer - With S( 0) as defined i n  this report, one may refer t o  high 

comelation in S(8) or ,  as LRC suggests, in its inverse - the dispersion 

matrix. Uncertainty in derivative extmctiori can be interpreted e i ther  

w i t h  the s t a t i s t i d  theory (section 4) o r  the non-statisticdl theory 

(section 5). In e i ther  case we have sham tha t  the diwnal elements i n  

the dispe-xion mtrix pmvide a direct msure of t h i s  uncertainty and is 

higher, the higher the correlation in the S(Q) matrix. Also, correlation 

in ~ ( 0 1 - l  has an additional effect  of this uncertainty. In  this 

sense, high correlation is i a c a t i v e  3f non-uniqueness of derivatives ; 

see under case (3 )  of ssction 6. 

Question 2 - Can w e  t e l l  which parameters are 'observable1? a) What 

statistics o r  what part of the progrwn can we interrogate t o  find out? 

b) Why wl't the variances t e l l  us i-f a parameter is not observable? 

Answer - - 'Ihe obsermbili ty of a parameter is measured by the corns-  

pending diagonal en- in the dispersion matrix s (o) -~ ,  ?he interpretation 

of this can be statistical o r  non-statistical. Hawcve~, there is un- 

certainty in this within a milt iplicative factor awing t o  the uncertainty 

in the noise bandwidth (see section 4). Hence, an 'absolute1 



(as opposed t o  relative) quantitative use of the var- can be mislead- 

iile (and m y  be inconsistent with observed scatter). 

Qast ion 3 - When tm parwneters are highly a m e l a t e d ,  w e  can vary 

e i ther  p t e r  over a wide w e ,  provided we capensate b> changing the  

other pa ra~ te r .  Since we can vary the parameters in this manner, why do 

we converge on one value fo r  each parameter, and still have indicated law - 
v a r i t x e  for ech pamneter? 

Answer - By l p a r w ~ ~ t e r  correlation' what is =ant here is the correla- - 
tion in the dispersion matrix  s-~. * have sham in section 5 that &en 

such aomla t icm occurs we nay change either pammter linearly with 

respect to  the other with little or no change in the cost functional being 

mininkzed. Hcwever, hCkJ much the paraaaeter can be changed i n   is manner 

is still deternrined by the sum of the corresponding variances, as indi- 

cated in section 5. 

Question 4 - Under what conditions do correlations of p a w ~ t e r s  

occur? Is it caused by correlations of s ta tes?  Is there some other 

reason? 

,411swer - Again, by 'correlation of parameters' is meant the correlation - 
j:, the S-l matrix. In the statistical theory, t h i s  correlation is actually 

the correlation in the ermr covariance and not in the paneters  them- 

selves. The pirumtern are not conceived as randm vaziables. In any 

event, the carrelation in the dispersion matrix is - not dw t o  comelation 

in  the s ta tes ,  and does not have any direct interpretation other than as 

indicating ' s t i f fness  l i n  the dispersion matrix (large eigmalue spread) . 
On the other hand, cormlatian i n  the matrix S(O) wail L d c a t e  closeness 



t o  sing.ilarity and hence largeness of the C-R bounds. Also, the 'two-by- 

two' correlation by i t s e l f  need not be large and yet  sub-determinants may 

be zero or  close t o  zem. Hence, singling out two-by-two correlations for  

attention does not appear1 +o be of much direct  relevance. 

Question 5 - What does 'correlation' between parameters and/or s ta tes  

really mean? 

Answer - Correlation between states is apparently interpreted as in - 
the follcwing -type of si tuatioh : 

(the tim history p ( t )  i s  a constant multiple of $( t ) ) .  Eore generally, 

if x ( t  represents the stzte, t\en we may mnsider 

for  som mn-zero vector v. PresurMbly t h i s  is  sa t i s f ied  a t  the true 

parameter values. But t h i s  has nothing t o  do with the dispersion rratrix 

since the latter. is determined by partial ,'cr5vatives with respect t o  the 

pxemeters. In other \.tor&, it does not follow, fo r  e m l e ,  that 5~ 

s e n s i t i v i t y  matrix S(6)  is singulm. 

!&estion 6 - If c o l ~ l a t i o n  between Cn and C is 1 : 1, w i l l  2:: 
8 "r 

h c r w e n t a l  change in Cn pmduce the sarre effect  as an identical  incre- 
.. 

mental change in Cn ? 1; correlation between two derivatives is  less  
r 

than 1.0,  what does it mean? 



Answer - Continuing t o  interpret correlation as again that in the - 
dispersion matrix, it is  cl- f i r s t  of all that correlation of 5 cannot 

cmur, since otherwise the mtrix would be singular. On the other hand, 

i f  the correlation is merely "close t o  one" then the implication is only 

tha t  the matrix is ' s t i f f1 .  If the  correlation in the S matrix i s  taken, 

hawever, occurrence of exacrly 2 1 would man tha t  it has a zero e i g e m l u e  

and hence if $ is the optimal es ta te ,  

where e is the eigenvector comsponding t o  the  zem eigwlvalue and hence 

also 

up t o  the second order approximation. Thus, if  the ' c o rn l a t i on  between 

Cn and C is +1' is interpreted t o  mean that the m m s p n d i n g  co rn l a -  
B "r 

t ion in the S mtrix is 1, then the eigenvector e has zem entr ies  except 

1 corresponding t o  the Cn , C places where it is - and we rmy 
B "r 47' - fi - 

keep the cost functianal the sam by proportionately changing Cn and 
f3 

C . ?his statement continues t o  be appm-tely true i f  t h e  c c r r e l a t  ior, I s  
"r 

sufficiently close t o  L 1. 

Question 7 - Is it possible t o  s p e c i e  f l ight- tes t  techniques t ha t  

w i l l  minimize correlati.ons and maximize observability? Is there any 

analytical  basis f o r  determining best  surface t o  use, and best  control- 

input time history t o  minimize correlations? W i l l  control t o  minimize 

correlations also rrvaximize sensi t iv i ty  parameters, o r  w i l l  minimizing 

correlations a lso minimize s t a t e  sensi t iv i ty  t o  the parameters. 



Answer - It is quite possible to require that the input u(.) be su& - 
as to  make the carrelations in the S matrix or  the dispersion rmtrix t o  be 

s d l .  bever ,  the only real analytical basis for determining the basic 

surface t o  use w i l l  be t o  require that the trace of the dispersion rmtrix 

be minimized. The optin& solution corresponding to  this criterion will 

have a smller trace than the case where the correlations in the S matrix 

are Zero. 

Minimizing correlations in  the dispersion matrix w i l l  m s n  very 

l i t t l e  if the tmcw is unaffected - see section 5, case 3. 



By way of conclusion, some of the specific recomnendations fo r  

*roving current parameter extraction programs w i l l  naw be itemized. 

1. Using a p p x d t t e  noise variances where available o r  otherwise 

nraking them all the saw, the first i t a t i o n  should vary only the 'linear1 

coefficients. Using the residuals as estimates fo r  the noise variances, 

all tl-e paramters are allowed t o  vary from then on,until convergence is 

obtained. The new s e t  of residuals is then used t o  repeat the above 

pmcedure un t i l  the residuals stabil ize.  

2. If convergence d i f f icu l t ies  a r i s e  - o r  even otherwise routinely - 
a f t e r  a e  'linear' first i t e r s t ion  is completed, it is mcomnended that 

the gradient technique described be employed unt i l  the gradient s tabi l izes  

and then the switch t o  the N-R algorithm be made. The a p r io r i  weighting 

technique is too subjective and ad hoc and is not recamnended. 

3. The proper measure of uncertainty o r  observability of the 

p a ~ m e t e r s  is  provided by the diagonal term i n  the dispersion mtrix. 

However., there is som danger i n  using this as an ttabsolute" measure 

rather than a 'relative' measure because it w i l l  always contain an uncertain 

multiplicative factor. 

4. The p.s.dls of the residuals m y  be used t o  estimate actual 

noise bandwidth. 

5 .  Where multiple nraneuvers a t  identical o r  similar f l i gh t  condi- 

t ions are available, the 'pooling technique' should be used i n  contmst 

t o  avemging the estimates from the individual maneuvers. It is 

particularly helpful t o  pair the aileron-input data with the rudder-input 



data so as t o  improve the estimates since the latter g-ly turn out t o  be 

worse. [ A  study of this phen-n, verifying whether the ai lemn input 

alwdy: ; yields better results than the rudder input and i f  so, what the 

reasons are, should be of value - and wuld shed mch light  on the 'optimal 

.input ' problem. 1 

6. Caution is necessaqy in using the dispersion matrix a t  the a d  

of the first ' lineart i temtion as a nvasure of the data since the mtrix 

may well be non-singular and acceptable at the starting values and yet 

singular at the trw values. 

7. Minimizing correlations in the dispersion m t r i x  is of little 

value - minimizing its trace is mre nreaningful. 
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