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ABSTRACT

Flight data from an F-8 corsair and a Cessna 172 have been analyzed
to demonstrate specific improvements in the LRC parameter extraction com-
puter program. The Cramer-Rao bounds (diagonal terms in the dispersion
matrix) have been shown to provide a satisfactory relative measure of good-
ness of parameter estimates, It cannot be used as an absolute measure due
to an inherent uncertainty within a multiplicative factor, treced in turn
to the uncertainty in the 'noise' bandwidth in the statistical theory of
parameter estimation. The measure is also derived on an entirely non-
statistical basis, yielding thereby also an interpretation of the signifi-
cance of off-dicgonal (correlation) terms in the dispersion matrix. The
distinction between coefficients as 'linear' and 'non-linear' is shown to
be important in its implication to a recommenced order of parameter itera~
tion. Techniques of improving convergence generally, have also been
developed, and tested out on flight data. In particular, an easily im-
piemented modification incorporating a gradient search is shown to improve
initial estimates and thus remove a common cause for lack of convergence.
A close scrutiny of the 'maximum-likelihood' theory (which provides the
aasis for current extraction algorithms) indicating its limitations is an
irportant by-product of this study. A technique of 'pooling' has been
developed with demonstrated improvement in processing multiple maneuvers
under similar flight conditions., A variety of questions that arise in
interpreting computer results are also explicitly answered in the light
of the theory developed.
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1. SUMMARY

Flight data from an F-8 corsair and a Cessna 172 have bee. analvzed
to demonstrate specific improvements in the LRC parameter extraction com-
puter program. The Cramer-Rao bounds (diagonal terms in the dispersion
matrix) have been shown to provide a satisfactory relative measure of good-
ness of parameter estimates. It cannot be used as an absolute measure due
to an inherent uncertainty within a multiplicative factor, traced in turn
to the uncertainty in the 'noise' bandwidth in the statistical theory of
parameter estimation. The measure is also derived on an entirely non-
statistical basis, yielding thereby also an interpretation of the signifi-
cance of off-diagonal (correlation) terms in the dispersion matrix. The
distinction between coefficients as 'linear' and 'non-linear' is shown to
be important in its implication to a recommended order .. parameter itera-
tion. Techniques of improving convergence generally, have also been
developed, and tested out on flight data. In particular, an easily im-
slemented modification incorporating a gradient search is shown to improve
initial estimates and thus remove a common cause for lack of convergence.
A close scrutiny of the 'maximum-likelihood' theory (which provides the
basis for current extraction algorithms) indicating its limitations is an
important by-product of this study. A technique of 'paoling' has been
developed with demonstrated improvement in processing multiple maneuvers
under similar flight conditions. A variety of questions that arise in
interpreting computer results are also explicitly answered in the light

of the theory developed.



2. INTRODUCTION

Parameter extraction from flight data has been recognized to be
important for many purposes, for irstance:

i)  for comparison with wind-tunnel da’ 1

ii) for analytical and simulator studies for flight and handling

qualities, and

iii) for application to adaptive control [1].

While various techniques for parameter extraction have been in usr
for some time, it was not until the latter half of the 1960's that digital
computer processing based on the modified Newton-Raphson algorithm made its
advent [2], followed by accelerated activity along similar lines in the
early seventies [3,4]. We are now entering what may be called the second
phase of this effort, where we move from the many studies indicating
feasibility of the technique to the implementation of the program on a
routine day-to-day basis with minimal need for supervision by a specialist.
Before thi: an be accomplished, many factors have to be ironed out; the
most important question being the development of a calculable, satisfactory
measure of the goodness - the reliability - of the extracted parameters,
and its interpretation. A second and concommitant consideration is the
developme:t of a computer program that has the built-in ability to handle
cases wiere the 'normal' algorithm fails to produce acceptable estimates.,
In addition, this would make it possible to deterrrine if the data is so
poor as not to warrant further processing and thus save the time and
effort of computation.

This report is an attempt to improve the current Langley Research



Center (LRC) parameter extraction program. The study focuses an & nurber
of uestions arising fram the use to date of that program and provides
answers within the framework of two alterncte theories: one statistical
and other based on sensitivity. We begin in section 3 with the aircraft
models - the equations of motion and the type of aircraft analyzed. The
distinction between two types of parameters 'linear' and 'nai.--linear' is
an important consideration in the basic computational procedure for
parameter extraction, described in section 4, where the procedure prr se
is divorced from the rationale for using it. The performance of the pro-
cedure is then tested on {light data provided by LRC, using the Optimi-
zation Scftware (JSW) parameter extraction program. The scatter observed
in the estimates obtained by maneuvers under similar flight conditions
leads us to the primary question of the goodness of the estimates, and is
examined in the next two sections. The statistical theory is developed
in section 5, culminating in the Cramer-Rac (CR) bounds providing a
statistical measure of uncertainty. The error due tc the usually accepted
practice of taking the {two-sided) bandwidth of the noise as equal to the
campling rate is explained here for the first time. Section 6 describes
a non-statistical neasure in terms of +he largest possible variation in
the estimates for a fixed percent change in the ocost functional.

The question of how to take care of currently experienced difficulties
in parameter extraction centering on convergence problems is taken up in
section 7. A technique for pooling flight data obtained at identical ‘
flight conditions yielding estimates better than those from the individual !
runs is developed in section 8 and its performance evaluated. Questions ‘

arising in the use to date of parameter extraction programs are answered



in section 9, based on the theary developed in the previous sections.
Concluding remarks in section 10 summarize some of the specific sugges-

tions for possible program improvement.
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3. THE AIRCRAFT MODEL

a. FEqaation of Motion

We begin with the model - the linearized equations of airplane motion,
lateral mode only - in state space form, and associated sensor measurements.

Thus the state vector written as a colum is
X = col [8,p,r,s]

The control vector is
U = col (8,,8,,0,0,1)

The vectar of sensor measurements is denoted Y:
Y = col. [B,p,r,¢,aY]

The continuous time dynamic equations relating these quantities are

R X =AX + BU
Y=CX+DU+EX+N
where
B . )
Y sin(®) ~cos(a) cos(¢) cos(0) é
.- LB Lp Lr 0
NB Np Nr 0
0 1 cos(¢) tan(e) 0 .
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axd w.ere N is the 'noise' and is the one really vague quantity in this
lescription. As we shall see, it provides us with the 'rationale' for the
procecure for our estimation technique but quantitative interpretation is
beset with uncertainties. Generally, it is taken as white Gaussia: or

Gs 1ssian of large band compared to airplane respanse but the precise des-
cription is a crucial point to which we shall return in section 5. It is
as: uned that the noise is independent from sensor to sensor.

The parametems to be identified are the various derivatives indicated
by a subscript. The 'stability' derivatives are in the matrix A, the terms
sina, cosa, %cos¢ cosf, cos¢ tanf are taken to be known constants. (In
reality of course there may be a variation in time but this is taken to
be smail enough to be reglected. Actually there is no difficulty in
accounting for the dependence on time if it is known.) The 'control’
derivatives .n the B matrix are in the first two colums. The parameters
shown -.: the last colum are 'bias' parameters and in themselves there-
f~ > have no physical significance and can, in particular, change even
under icentical [iight conditions. A bias term also occurs in the matrix
D and is described as "YBIAS" - this accounts for the average cf the
(sin ¢» (cos ) g/v term as well as any instrument bias in the a, measure-

ment.
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b. Types of Aircraft Analyzed
All data presented in this study are confined to two
aircraft: A Cessna 172 and an F-8.
The Cessna 172 flight tests were conducted at NASA LRC. The Cessna

is a light high wing single engine general aviation air plane; relevant
physical characteristics are indicated below.

CESSNA PHYSICAL (HARACTERISTICS

Wing Area 174 ft?
Span 36.2 ft
Chord 4.87 ft
Weight 2200 1bs
Iy 872 slug-ft?
I, 1701 slug-ft?
Iy, 14 slug-ft?

In the data supplied, angle of attack and side~slip measurements were
corrected for instrument position by LRC. Accelerometer offset from the
C.G. was initially stated to be negligible. In the course of the OSW data
processing however, significant correlation between a, and p was detected
visually, indicating lateral accelerameter offset (above or below C.G.).
location
The accelerometer’was then taken as an additional unknown parameter to be
determined by the OSW parameter extraction progrem. This yielded an
estimate of approximately 0.9 ft below C.G., agreeing well with the
measured position. Any parameter that can be measured independently and
accurately, should of course be modeled as known. Thus, the measured

position of the accelerometer should be included, rather than neglected



as unimportant. The accelerometer location did in fact have a significant
effect on several of the minor coefficients and the r.m.s. residual fit
on a, was approximately halved by correcting for the instrument loca-
tion.

The second aircraft was a modified Navy F-8 Corsair 2. This particular
aircraft was fitted with a super-critical wing for evaluation and was
flown at NASA-Dryden. Physical characteristics are given below.

F-8 PHYSICAL DATA

Wing Area 25.5 M?
Span 13.14 M
Chord 2.08 M
Weight 10500 Neston
I 20500 Kg~M?
I, 140000 Kg-M?
Ies 4500 Kg-M?

The angle of attack vane in this aircraft had a significant error
(about 1°) that was not corrected in the data. Therefore, the sing term
in the A-matrix was allowed to be an extra unknown.

Data from both aircraft was transmitted on a PM link. For the F-8
the sampling rate was 25 samples a second. For the Cessna, the rate
was only 10 samples a second, low enough to cause concern, but proved
adequate nevertheless because of the good quality of the data (good

resolution, low noise and accuracy of the linear model).

* —



4, MAXTMUM LIKELIHOOD ESTIMATION PROCEDURE

a. The Cost Functional
The 'maximum likelihood' (it is not strictly maximun likelihood in
gtatistical terms as we shall indicate in section 5 below) technique of

estimating the parameters is to minimize the expression:

n n T
: 1 B o182
L toed; igl Tfo (¥, (0) - ¥, 05602/, at
where

the subindex i denotes ith camponent of the observation vecter. n
being the size of the vector, 5 in the present case. Q(G,t) is
the calculated observation vector using approximate parameter
values and the known input and is thus a function of the para-

meter vector 6.

{di}’ i=1,..n are non-negative constants, T Is the available

time-history.

The minimization is with respect to the parameter set

col. [0,d;,..d ]

Pending further examination (sec. 5) we may accept minimizing (4.1) as
a 'good thing' to do. Thus the second term in (4,1) is a 'mean-square
error', 'weighted' by {di}' Moreover at the 'true value' of the para-
meters in 6, the cost functional is a minimum. We can see this as
follows. At a minimum, the gradient (the first partial derivatives)

with respect to all the parameters must vanish. Thus we must have

1 7T A
d = 'r,{; (Y,(1) - ¥.(0,t0)% dt, i = 1,.a

and

10

(4.1)

(4.2)
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Because of (4.2), the minimization proceeds in two successive series

of steps: setting

A1 fT A 2
3, = -,f_/o' (¥, (1) - ¥.(8,00% at

and then minimizing the 'cost functional®:

A
(¥, () - yi(e,tn? dt

1l 7T
a® =5 ¥ f X
i=1 7o ot

with respect to 8, keeping Si fixed. Then calculate a new éi at the
minimum and repeat the minimization of (4.5). Note that (4.3) has the
minimal (ideal) zero value at the true value of the parameters 4.

Of course we do not expect to see 'exact' zero. HNote also that in

this way at the 'minimum' (4.5) reduces to -the value:
n,

. . A 1
again assuming we do not run across 'exact' zeros for di. We call

A 3 .. .
di = the mean square fit error corresponding to the ith

measurement
and

n

A
2. d; = total mean square fit error
1

Similarly we shall call

A A
Z () = Y(t) - ¥Y(8,t) O <t <T

. AL .
the residual, where 6 is the final parameter estimate,

11

(4.3)

(4.4)

(4.5)

(4.8)

(4.7)

(4.8)

v -~
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The column vector with components

n T

3 _1 _1_f 30 A :

g X ) G Y (0, (1) - Yi(e,t) dt (4.9)
J 1 7170 ™)

where «; are the camponents of 6, will be called the gradient (denoted

G(8)) of q(8),and the matrix S(§) with camponents
S(8) = {S(e)jk}

1 1 2 9 2 0
SOMES ) i =Y, (8,t) 5= Y, (8,t) dt (4.10)

will be called the 'sensitivity' matrix. It is recognized as the part of
the Hessian of q(@) which is independent of the data, and is moreover

non-negative definite.

b. Recommended Minimization Procedure

Since there are many ways of minimizing (4.5), we now describe a
'recommended’ procedure., [It is more than a recommendation; it will be
closely tied in with the theory in sections 5 and 6.1 When we have no
'good' initial values for {di}’ we take them all to be the same - not,
in other words, favoring cne measurement over another. Next we fix the
parameters in the A matrix at their nominal starting values and minimize
q(8) with respect to the unknown parameters in B and D - we shall refer
to the latter parameters as 'linear' parameters since the:- enter
*lincarly' in § (6,t). Moreover, derivatives of q(8) with respect to
these parameters of order higher than two vanish identically. As a result,

the minimizing paremeters are determined by:

12
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0, = 6, = S(6)™" 6(o) (4.11)
where 04 is the starting value of 0 and we simply set the derivatives with
respect to the 'non-linear' parameter to zero in G(@) and S(@). This is
because we have, by virtue of the fact that derivatives of order higher

than two are zero:

G(Ol) = G(OS) + S(@s) (Gl - Os) = 0, by (4,11)
We wish to note now that if we rewrite (4.11) as
s(es) [ol—oS] = - G(OS) , (4.12)

then (4.12) which is equivalent to (4.11) has a solution even if S(@s) is
singular, and this solution, even though not unique, will still yield the
minimizing 0. This can be seen as follows. Suppose for some non-zero

vector h we have that
S(es)h =0 (4.13)

where the camponents of h are zero corresponding to the parameters in the
matrix A. Because the derivatives of order higher than two are zero, we

have the Taylor expansion:
- l " Tl
qog + h) = q(o,) + [G(OS),h] + 5 [s(e)h,h] (4,1%)
where we have used the notation
[a,b] = Tr ab* = Tr ab
Since 1(0) is non-negative and

[S(es)h,h] =0,

it follows from (4,14) that

13
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[G(es):h] =0

also and that
a8 + kn) = q(8) (4 .5)

for any scalar multiplier k. Let {X;} denote the non-zero eigenvalues of
S(es) and {e;} the corresponding orthonormalized eigenvectors, in the
snace of parameter vectors whose components are zero corresponding to

the parameters in the matrix A. Then G(g) can be expressed in terms of
the {e;} as

G(es) = Z[ei, G('JS)] e;
and hence
S(es) [31 - eS] = -G(es)

has the solution

[ei, G(es)]

JEEREP NS Tl (4.16)

This solution is not unique since we can add any h satisfying (4.13) but
then the corresponding value of q(.) is the same by (4.15). Hence (4.12)
has a solution and any technique used to 'solve' (4,12) should yield an
acceptable el.

After this first iteration step, all parameters in 9 are allowed to
change and algorithm (4.12) is used. Since we are no longer confined to
linear parameters, S(en) is no longe~ the Hessian. Hence (4.12) is
referred to as the 'modified' Newtun-Raphson technique (Taylor and

1h

P



and Iliff [2]). An element of the actual Hessian is

o1 22 4
5(0) ;T'f > ziV(aa oy YA t)> (¥, () - Y. (0,0)) dt

i=1 a
(4,17)

and the correction term is small if the residual is small. The moc+
compelling reason for using only the first term is that the calcul

of 2nd partial derivatives of Q(G,t) can be quite tedious normally, < the
improvement obtained would not be significant. This is because the N-R
technique is itself efficient only "close" to the true parameter values,
so that the residual must be small to begin with.

Note also that when allowing all paremeters to change, the gradient
is not necessarily zero at each step, because the 3rd and higher order
derivatives are no longer zero. In fact the cost functional q(0) may
not be monotone decreasing with each iteration if S(On) has eigenvalues
close "0 zero. ‘'Normally' however these difficulties will not appear.
How to deal with them when they do occur will be discussed further down
below under improving convergence in section 7.

Illustration. The normal situation is illustrated by Cessna data:

Run 11. Here the quantities {ai} were initially set at d;_l = 9,37, d;l =
= 3.55, d;F = 3.64, 47T = .2, d:' = 8300. The starting parameter values
were:
¢y = -.006 c =-.1 cY6 = 0 ch = .001
0 P a r
C 2 - 01 = . o = -, = .
. Clr 1 ¢, 0013 c, 0002
B 8, 5.,
CNB = .00032 C“r = -1 CNG = -.00005 CNG = .00C2
5 a r
C = -,
Y

15
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The behavior of q(@) by iteration is plotted in Figure 1. The
cost functional at iteration 1 was obtained by varying 'linear parameters'
only fram the 'starting values' at iteration O. At the suceeding itera-
tion, all parameters were changed at each iteration using the modified
N.R. algorithm, It is to be ncted that the most significant reduction
in the cost functional took place in the first iteration and that the
functional levelled off by about the third. TIables 1 show the corres-
ponding parameter values at each iteration, Table 2 the gradient, and
Table 3 the r.m.s. resicual of each sensor measuremernt.

The gradients of the non-linear terms were not computed for the
first iteration, as only the linear terms were needed there. Note tne
dramatic decrease in the gradient of the linear terms from iteration O
(starting values) to iteration 1. This decrease is about 4-1/2 orders
of magnitude. These numbers should theoretically be 0, but this decrecse
is well within expected numerical accuracy in solving a 8 dimensional
system on the IBM in single precision (the 5 bias terms are not listed).

Overall, this case exhibits ideal convergence characteristics.

c. Results: Cessna 172 Flight Data

Using the procedure outlined above, several runs of the Cessna 172
data were processed. The results obtained for 4 cases (2 aileron and 2
rudder) are summarized in Table 4. The starting values of {d;} (same
as before) as wzll as the parameters were the same in all cases. The
bias parameters are not tabulated.

Since the flight conditions were close enough to be identical, we

would expect that the extracted parameter values should be the same.

i6
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Unfortunately this is not borne out by the data, even though the fit
errors an all the runs are about the same and acceptably low enough.
The most striking discrepancies are highlighted in Table 5.

Representative time history plots - actual and calculated - for a
rudder run (case 10) and an aileron run (case 11) are shown in Figures
2 and 3 respectively. The fits are generally good, the only evident
abnormality I ing due to the accelerameter location problem referred
to earlier. This correction did not however affect the parameter

discrepancies observed.
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5. ERROR BOWNDS: STATISTICAL THEORY

a. Continuous Time Moael
In this section we shall indicate a 'statistical' approach to the basic
question of how can we tell how good our determination of the parameters is?

The basis of this theory rests on the assumption that the limiting error in

the observation Y(t) is 'random noise'. We begin with the 'most idealized'

case: where we assume that the noise is temperature-limited black-body

radiation - that the noise is 'Gaussian white'. Unfortunately, current fad

in-Stochastic Process theory requires us to be more pedantic as follows:

AGE) =ft Y(s)ds = ft v(s)ds + G W(t)
0 0

where W(t) is a full-rank Wiener Process and

we say

G = Diag [gl’"gn]
g]?_ corresponds to the spectral density of the ith noise component,

E + [GIO(@H(E)?] = diag. (g,..g0) = &

where
E * stands for Expected Value, and
V(t) = Cx + Du + ER - (Ax + Bu)
In this formalism, we assume that the {g;} are known. Then the

logarithm of the likelihood functional becomes
T oA
z - %f G “Y(o,t), Q(e,t)] dt
0

T
7 2o, am) (5.1)
0
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Note that (5.1) cannot be expressed in the usual 'least squares'
form, (cf 4.5)). Nevertheless, the gradient of (5.1) is the same,

since the term that is missing is of the form
T =2
f [67¢dA(t), dA(D)]
0

which of itself is meaningless in the Wiener process formalism. But (5.1)
is a true likelinood functional and hence maximizing it would yield a

'maximm-likelihood! estimator. At the maximum the gradient of (5.1) vanishes:

T
G(O) = 3 f [G‘2 5%— Yo,t), %o, bt - dA(t)” =0 (5.2)
.0 j

To solve (5.2) we use the modified N~k algorithm:

R |
9n+1 = en S(@n) G(Qn) (5.3)
where
T
. 2 3 5 3 4
S(en) = 3-/(; [G é—a—{ Y(9,t), -—-aak Y(@,t)] dt} (5.4)

We can prove: (asymptotic consistency theorem)

Theorem 5.1 Suppose

Lim .}s(e) = 3 (5.5)

T> o
is positive definite in an open parameter set N containing the unknown
point ©,. Then thure exists a non-zero neighborhood at @, in which (5.2)

has a root, for all T sufficiently large. Let GT denote the root. Then
A 2
Elllep -6,01°1~ 0 (5.6)

and in fact
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Proof For a proof see Balakrishnan [5 ].

The main calculation is that

0 = G(Qy) +S(8) (& - 0,) + higher order terms
We also have the C-R bound for unbiased estimators:
Var. &, 3 S~
In fact for large enough T we can use the approximation:
8 = 0,- S0~ 6o + -+ - -

where the second term is Gaussian with mean zero and variance

S(Oo)-l ~ -S-S—%-—-

Since % is unknown, one usually calculates
A =
s(ap™
as an estimate of the variance.

Limitations

(5.7)

(5.8)

The main drawback in the above is the fact that the spectral density

matrix

diag (g2,..¢2)

20
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is assumed known. But this drawback is only in the calculation of the
C-R bound. We can show that we may use any non-zero diagonal matrix in
place of {gi} and still obtain asymrtotic unbiasedness and asymptotic
consistency of the parameters €.

Band-Limited Noise Approach

We may make the more reasonable assumption that N(t) is band-limited
Gaussian, with bandwidth large compared to that of IY\(e,t). Moreover we
may ther. also consider the case where the noise power is unknown as well.
We shall show we can then estimate the noise power as well but that un-
certainty will again arise in the C-R bound due to lack of precise knowledge
of the bandwidth.

We invoke the cost functional:

T (Qi(e,t) - Yi(t))2

I n 1
2ilg 4t L oF = at (5.9)
i=1 =1 7o 1

which we minimize with respect to {di} and ©. As before (see sec. ka) we

take:
g =& T(Q(eﬂ v.(0)? at (5.10)
i 7T 1(0,0) - (1) | -
0
and minimize
i=1 " % 9

Now (5.11) is not the log likelihood functional, even apart from the fact
é\i is only an estimate for di' Nevertheless it can yield us an asymptot-
ically unbiased and asymptotically consistent estimate for O. Denoting

the gradient with respect to © of (5.11) by
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d,
1

A
5o = {f: %’fT (= %;e,0) (o0 ;Yi(t))

we have the Taylor Expansiaon, denoting the root by al‘:
= 6le,) + S [B. -0+ - -
where S(O) is the matrix:
& 1 T [
s(e) = E-A—f rY(et)-——Y(et)dt
1 Td. O 92
i 0 .
we have that
&, = 6, - sto)™! atey)

where

o Lagl

A

d.
1

n (5= Q(e £))n, (tat
> )nt |
2 f

oy |

ni(t) being the noise in the ith observation. HNow

1 T A 2

’r‘,{ E[(Yi(eo,t) - Yi(t)) ]dt
1 2

= "r‘./: E [n;()%]at

Ri(O)

E[4; ]

where Ri(t) is the covariance function of the noise process ni(t).

. . A .
é\i is an unbiased estimate of the noise-variance. Replacing d; by its

expectation in (5.15), we have for the variance of G(8 o)

22
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(5.13)

(5.14)

(5.15)

Hence




T A o
(S %Y-(eoss)ehlfsds)l’i(f)df} (5.16)

where P.(f) is the spectral density of the noise n;(t). If we take

2
Pi(f) g; for "Bi< f< Bi

n

0 otherwise

and assume B; large, we can reduce (5.16) to:

3 4 3 4

i‘: 1 gi (
1 -T-? R.(0) 0

where we note that

2
i .1
X7 * %

Hence within the approximation of replacing
A A
we have that

A
var.[ 9, -0.]

_ 1)1 1 1 (Tfrag 3 -1
=z S@o) 12 ?ﬁ;m/(; (éa-}’Yi(@o,‘t) 3—(;}:Qi(oo’t)dt) S(Go)

i=1 -

which if we use the reasonable approximation
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7%—:—=%§foralli,
i

we set

var. [61. - 6o]

o
So1 T 3 0 T -
- 1X _7_/0' sol--j-ch D 3 eyt at (5.17)
gi {

Note that again the use of this formula requires knowledge of the bandwidth:

2 _ a3
g; = d;/28 (5.18)

Within the band-limited noise assumption we can also show then the variance

A
of the estimate di

= E ( [4,] - R, (07

R,(0)?
s g (5.19)

b. Discrete Time Theory
In the discrete-time theory, the data is sampled periodically at 2B
samples per second, and it is assumed that the noise samples are independ-

en+* We have then the discrete version of (4.1)

n n N (€. (0,kat) - Y. (kat))?
3 log d; + (l y, 17 = ) (5.20)
1 = - '
i=1 k=1 i
where
At = 1/2B

U



Taking the gradient yields

8 =3 ZN; @ (o)kat) - ¥; (kat))? (5.23)
k=1

and the parameters in 0 are determined so as to minimize

5 2

n N, (Y, (0,kAt) - ¥, (kat))

> (% i - ) (5.22)
i=1 k=1 dy

1

or use the algorithm

; -1
e = 6, — 5(q) " &gy
where
G - En 1 }% 3¢ (o,xat)) (2.( (x
(On) = 2 N - "M—jYi 0,kaAt i 0,kAt) -Yi At)
()-f}llNa?(kt) 3§ (0,kat)
@k R T (e o) (3 o)

The estimate is again asymptotically unbiased and consistent. The variance

of the estimate is

3 1 5 (2290 o)) =2 8.c N (s
- -élr ? 5o 13 (0 _skat)] |55 Y, (0 skat .23)
. ] m

The difficulty with the need to know spectral density is somewhat

hidden in the 'discrete-time' analysis: here the sampling rate ‘is
2B

sanples/sec and (5.13) is expressed as:
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N
1 a A 9
S =2 = 2 (5— Y. (0 ,kAt)) (‘é"‘ ¢.co ,kAt))

I 4 1 4 o ® L O°

which is

o =3 ZN:("Q(e kAt))(aQ(ekm) -1
Se —4 . N .
T T \%y io S, i (28)g;

But 1 ;
At = 7§ s ;
and hence this (assuming the sampling rate is adequate) yields the continuous

time integral in (5.13). The assumption is made in this that
(g9 = a./28
g i

and the error in this is that (2B) is overestimated so that gi is under-
estimated with the result that the C-R bound is also underestimated by a
sizeable factor. Thus, the customary 50 samples/sec yields a bandwidth
of 25 Hertz which in comparison with the actual observed bandwidth of the
residual can be as much as ten times the actual. Any discrete-time (or
sampled) theory requires that the noise samples be independent sample to
sample which is less likely the higher the sampling rate [or assumed noise

bandwidth].
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c. Illustration

The F-8 data furnishes a good example of the importance of the role
played by the noise bandwidth in the calcul\ation of the C-R bound. The
four runs - 4, 5, 20 and 21 - are at essentially the same flight conditions
listed in Table 6.

To provide a check on the calrulations made with actual data, a
simulated test was run first using the converged values from case 21 as the
'true' values, and the same control input as in case 21. Four different cases
were computed with independent noise samples with the same total power as in run
21 but with (ti.e one-sided) bandwidths set precisely to be 1/2At, At
being the sampling interval. The OSW extraction program was then used
to estimate the coefficients using each of the four simulation runs,
yielding four independent estimates for each coefficient. The sample
standard deviation & calculated based on these four samples is then
compared with the calculated C-R bound averaged over the four cases -
the bounds were in fact very nearly the same on the four cases., The
comparison is indicated in Table 7, The last colum of this table lists
the ratio of G to the C-R bound (standard deviation). [Control derivatives
are not included since only two estimates were available for these.] We
see that the ratio is very close to unity, the agreement being excellent
considering the small sample size,

The same camparison was then carried out using the F-8 flight data.
The results are given in Table 8. The C-R bounds were calculated on the
basis of a (one-sided) bandwidth of 1/2At, just as in the simulated case,
following current practice, In striking contrast to the simulated data,
the ratio of 6 to C-R bound (s.d) is now roughly of the order of 10,

27



This discrepancy is explained by our theory as being due to the actual
noise bandwidth being much smaller than the arbitrery and incorrect

specification of the bandwidth as 1/24t.
Figures 4, 5, 6, 7, and 8 show the p.s.d. of the residuals for the

F-8 flight data, based on which one may assess the true (one-sided)
bandwidth at about 1 Hertz in contrast to 1/2At which is 12-1/2 Hertz,
Table 9 shows the C-R bounds calculated for the Cessna runs 9, 10,

11 and 12 based on a noise bendwidth 1/2At. For psd's on the Cessna

data see section 8.
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6. ERROR BOWDS: NON-STATISTICAL THEORY

It is possible to develop an interpcetation of the accuracy of the ex-
tracted parameter values without invoking any statistical not’~ms, and based
entirely on the minimizati-a of the functional (4.1). The functional it-
self can be interpreted without involving any notion of noise. Thus the
second term of the cost functicnal is recognized as an "output fit error",
normalized by te weighting parameter {d;}. The latter can reflect our
relative degree of confidence in each of the different instruments.

The uncertainty in the estimates ) s c’i\i may be evaluated in the follow-
ing way: how much can we change 6, é\i keeping the cost functional within
a fixed percent? In other words (looking at 8 for the time being), now
'large' can we make z:

6 g 6 +z
keeping: (£(.) denoting the cost functional used)

|£(8 + 2)- £(B)| < ¢ £(B)
where c is a fixed fraction (say 1%). The question how 'large' depends on
the measure we wish to choose. In general, it may be measured by the square
of a linear weighted sum, more campactly expressed:

[Lz,Lz] = ||lz| 2
where [. is a given rectangular matrix. Moreover, since the changes are
small, we may approximate the cost functional by retaining only the linear
and quadratic terms:

£B + 2) = £(B) + [6(B),2] + 1/2 [S(B)z,2]
sijnoe di is fixed (for the time being) f(@) = q(@) and f(@) = n; a(B) =0
so that

£B+2) - £8) _1 oA
- = = [S(©)z,z]

£(0)
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Hence we have the problem of maximizing

2 .
|1Lz}]
subject to

[S(@)zzzl : o

2n

This probiem is readily solved by using Lagrange multiplier A and maximizing

[1z,lz] - A [S(B)z,2] = [(LAL - ) 5(8))z,z]
or, the optimal z will satisfy:
LAz = ) S(8)z

and hence the answer to our problem is:

max | |Lz] ]2 2 ne (largest eigenvalue of: S(5)™1 L#L)

6.1)

2 nc (smallest eigenvalue of: (L™t s

according as either S(@) is non-singular, or (L¥L) is non-singular. Also

we may replace in 6.1):
st AL by JOFL s®Tt /O
s by (/FTHT s®  FTHT
We shall now consider various special cases of L:

case 1

z is required to be of the form kei where e is a courdinate vector

and k is a scalar. In other words we perturb one particular component
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variable only.

max HI.z||2 = 2nc/sii uhere S(8) = {s..)

1]

Thus the smaller the diagonal elements in the ‘'sensitivity' matrix S('é),
the larger the uncertainty. The correlation in the S( 8 matrix plays

no role.

But it doos, as soon as we consider

Case 2

12 2
Hizl|” = lej,z]

where e, is a coordinate vector with 1 for the ith component and zero
elsewhere. Although the measure of uncertainty is based only on the ith
component of z, all compenents of z are allowed to change. In this case

the answer is
max ||Lz|[2 = (2n) ¢ (d;)
ii

where

- caByyl
@g5) = (5B

Note that now the answer is different from case 1 as soon as S(@) is not

diagonal. In fact we note the elementary inequality that

and equality holds for all i, if and only if S(8) is diagonal. Note

the connection with the statistical variance measure - we have in fact

31
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the (=R pound but with an arbitrary constant of proportionaiity. For a
:imi lar- approach, see Klein [6] and even earlier Shinbrot [7].

1=t us next consider the case in which correlation in the S(e)'l

matrix plays a role. Thus take
Case 3

2 . .
“LZ“ o= [eiazlz + [ej,z]2 14])

let Y be the i-jth correlation coefficient:

= . vd.. a..
Y le dll 1]
Then for
Y=0°max'|LzH2=2nc max. (d...d..)
) ' IR & S b
- 1. 2 _
y= l:max ||1lz]]“ =2nc (dii-l-djj)

It is interesting to note that the z that achieves the maximum (for y = *1)

has the form

]

In other words we may choose 2. arbitrarily provided we also make z;a
fixed multiple of 2 5 Such a possible linear relationship has been

noted in reference [8]. Correlation makes the uncertainty worse.
Finariy we may consider the case where we weight the z, conversely

A
with respect to the © values {a nE

Case U4

[z ,e.1?
2 _ ™ A
|1z} -}:-——-7—u_ » O -{ai}

1

3?

. —

» "q"“"‘(“‘”"%‘«ug}' n " s

P ey e T e e



In this case

max i|I..z||2 2nc Largest eigenvalue cf a s(® L«

1

2nc / Smallest eigenvalue of ot s® o
where
a = diago [l/d.l,...l/un].

Table 10 shows the results for the Cessna run 9 with a 1% cost change.
The second and third colums show the calculation for cases 1 and 2; the
maximal uncertainties are shown as a percent of the calculated 8 value.
The final colum shows the calculation for case 4; the values of the corresponding
optimal z vector are indicated as a percent of the estimated parameter values.
These values would appear to be rather high for only a 1% change in cost,
and indicates in particular that run 9 was of poor quality. From C-R
bounds given in Table 8, we see that the aileron runs are generally
better than the rudder runs.
We may also study the uncertainty in the estimated d i values, The

minimal value of (4,1) is given by:

n
2 log z?+n
1

where
7 _1 T A A 2
2 T_/ & (o) - v,(0? at

0

And accounting for both 8and 31‘.’ we can write up to second order terms:

33



e et AR -

2
AL A AN [S(@z,2] , s Vi
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Hence

2 _ A2
max ;o = (2n c) di
and this result is consistent with di being unbiased with variance

. . A . A
proportional to diz. The uncertainty in the di 1s proportional to di .
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7. CONVERGENCE IMPROVEMENT TECHNIQUES

The basic computational preblem is the minimization of q(@) defined
by (4.5). Let OS denote the starting value of the parameters, including
both the 'linear' and the 'mon-linear', and let 01 denote the end of the
first iteration using the N-R algorithm when only the linear terms are
allowed to vary. The full non-linear terms are allowed to vary next using
the N-R algorithm predicated on the assumption that the Hessian given by
(4.17) is positive definite and that 91 is "sufficiently close" to the
true [or minimizing] value Op. In fact, we know that ”enﬂ - 6.1.!] <

k |le, - 6T| |2 where k is a constant involving third derivatives of
q(.). It is difficult, if not impossible, to determine the closeness in
any calculable quantitative way. On the other hand, if the closeness
condition is not satisfied, the cost functional q(©) need not be monotone
decreasing - in other words, q(0) oscillates and we experience lack of
convergence,

In practice we can determine whether O is 'close encugh' by running
the program using the N-R algorithm. If there is lack of convergence
and this cannot be traced to other sources, we should suspect that the
starting values were not close enough. In other words, when non~-convergence
is due to poor starting values, the trouble can be with the N-R algorithm
rather than any intrinsic defect of the maximum likelihood formulation.

The N-R algorithm should always be used on the 'linear' coefficients
as already noted. Implementation of this is relatively casy. After
computation of the gradient and the matrix S, a short routine can be

inserted to reset the 'non-linear' terms in the gradient to zero., It
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should also set the off diagonal elements in S corresponding to these
temms also to weroy and the diagonal terms to 1. This is not very efficient
in that it computes the non-linear terms and then ignores them. The
computational effort is not large; however, since it applies only to the
first iteration. On the other hand, it has the advantage that it is an
easy, compact addition to any program, reducing to a one-line call to a
short subroutine. More efficient implementation is also possible if the
program is well modularized.

If the initial iteration of determining the linear terms is not
adequate for congervence, we may use one of two methods to improve starting

values: the a) gradient method, or b) the a'priori weighting method.

a) The Gradient Technique
In the initial stages we may substitute the gradient technique
in place of the N~R technique. In the gradient iteration we proceed as

follows:
Gn+l = @n * n G(en)

where vy is a numerical coefficient determining the 'step size', The step
size is not unique and can be chosen in many ways. In the 'steepest
descent' version Y is determined by taking the value of Yn corresponding

to

min q(@ +y G(e )
Y

If we omit terms higher than those of second degree in the expansion of

q(@), this would yield
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[G(en), G(en)]
[Hn G(Gn), G(Qn)]

where H is the Hessian at © = 9 Since the determination of H involves
second derivatives, we may replace H by S¢0 n), defined by (4.11).
Alternately, fixed step sizes may be used (such as 0.6); or more time-
consuming 'search' procedures may be employed.
Performance

The use of the gradient for initial improvement will be illustrated
by the Cessna 172 flight data. As starting values we use the following

non-dimensional matrices, rounded off from PA-30 data:

AN -0001 -.5 ol 0
00015 "ol "ol 0
0 0 0 0
G .001
N

~e 0000"" . 0002
0 1]

0o O o o
o O o o
QO o O o

The starting di values were:

150

7

600
25
50000
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None of the four cases 9, 10, 11 or 12 converged from these values
at the first attempt using the N-R algorithm, Case 11 was then singled
out for detailed study.

For the first iteration, only the 'linear' coefficients were
determined as explained above. The cost function decreased from 13750 to
5511.

Then the gradient iteration (explained above) was used on all the
coefficients. The cost functional values were: 5511, 4867, 4387, 3937,
3316, 2875, 2638, 2526, 2u26, 2371, 2331. The coefficient values (of

the 'non-linear! cnes) at the final iteration were:

CY = -,005992
B

B
&G °* +,0006061
B

The other non-linear ccefficients showed little change.

At this point we switched to the N-R technique (determining only the
linear terms at the first iteration) and the corresponding cost functionals
by iteration were: 4318, 1336 (linear only), 2634, 746, 199.6, 174, 174,

The final coefficient values (ncn-linear) were:

-.004650 0 0 0
-,0006259 -.2376 .00758
.0003358 -.055835 ~,07167 0

0 0 0
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L. 'A Priori Weighting'
In this technique we modify the functional q(g) by adding a positive

definite quadratic form:

q'(0) = q(0) + [K(0 - 8], 0 - Gl]

where X is a diagonal "default" matrix with positive entries corresponding to the
non-linear parameters and zero otherwise. We may interpret this as assign-
ing an a priori Gaussian density to the non-linear parameters and taking
the 'unconditional' log likelihood function. The effect is basically to
keep the search for the minimun in a chosen region. It has also the
effect of making the Hessian positive definite for suitably chosen K.
After a few iterations using K, one then starts all cver from the
parameter values reached setting K to zero thereafter.
To demonstrate how this technique actually works out, we use the same
Cessna case as above. A default matrix K was used: diagonal with ncn=

zero entries as below:

1360 .15 15 500 800 5 800

A multiplicative factor was left open. Runs were made with factors
1, 10, 100 and 1000 with no resulting convergence. Taking the factor
as 100000, the following set of successive cost functionals obtained:
13800, 5600, 5500000, 143000, 29300, 24300, 8900.
The monotone behavicr after the second was encouraging. In <erms of the

corresponding parameter values, Cn overshot to negative values and
B
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then regained slowly over the monotonic decreasing portion. The corres-

ponding actual C, values were

B
.0015 .0015 -.000805
-.0006847 -.0007170 -.0002629

The multiplying factor was then increased to 107, The correspending

cost functional values became

13800 7800 62000 8160 34200 1347 417

The noticeable feature here is the smallness of the final cost functional,
significantly lower than the starting value. The coefficient value at
the last iteration indicated that CnB was the only non-linear coefficient
changing significantly from the starting value, Herce, the starting
value of ’Zn was chan: 1 from .0015 to .00032, the final value obtained.

B
The cost functional then behaved satisfactorily:

3225 433 449 200 174+ 174 174

Moreover the coefficients obtained were identical to those obtained with
the gradient technique.

It can be seen that the a priori weighting technique is very ad hoc
in nature and is subject to the criticism that it is "massaging the data

to get the answer you want."
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8, POOLING TECHNIQUE

a. Theory

When we have a set of runs all at or near the same flight conditions,
we should, from the statistical noise theory point of view, 'pool' them
in the following way: (as opposed to averaging the parcmeter estimates
obtained independently from each run). Thus let us number the
time-histories Yi(t), i = 1,..r wilere the initial time is normalized to

zero in each case so that we have m observation (vectors):

Yt), 0 ¢t €Ty i=,...m

i’
The main assumption is that the noise in each of the runs is statistically
independent from run to run ~ this assumption is statistified if there is
a time difference of a few seconds between the end of one and the beginning
of the next - the runs are in practice cbtained 'sequentially' in time

anyway. The cost functional to be minimized is

.n
log d.

. . \2
n m m -1 . (Q.J(O,t) - Y.J(t))

+ )y X frj 2 = at (8.1)
iz =1 \T d

0 di

A3 .
where Yij(@,t) is the calculated response for fixed parameters.

The form of (8.1) is derived from the fact the conditional probability:
P [Y,¥%,..Y" |o]

=P [¥}] 0].. P [Y"| €]
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which is in turn based on the independence of the noise processes from
run to run. The noise variances from run to run are of course taken to
be the same. The bias terms and the initial conditi~ms are allowed to be
dependent on the run. Only the aircraft stability and control derivatives
are fixed for all the runs.
We have:
m T . A3
Y f 81,0 - £.9t0? at
i i
A
d, = (8.2)
i

m
Yy T
T 3

and we minimize for fixed {é‘i},

n m T. . .
NOED YD f  (CRICRI Qiloc))?/é‘i at  (8.3)

1 1T & .
?13._0

with respect to all the other unknown parameters. We have again the

modified N-R algorithm:

- . -1
941 = O - S0 &(e)

where

0 is of course a vector of the form:

0 = col [aji, °"k] j=1,..m

i=1,..p, say

k=1, ...r, say

u2



The double-indexed parameters are the bias terms and initial conditions

which enter linearly and are allowed to vary from run to run. The gradient

G(®) is the colum vector of partial derivatives:

m n T. .
IR DD L—f J (LQiJ(e,t)).

1o
T. O

j 83
&i (0,1 - 2,3t at

7 (8.4)
i

where o denotes the generic parameter. Similarly S(@) is the matrix

3_¢.] 3_§3
m n T. =—VY."(p,t) =Y. °(p,t) dt
S(@) = .Z 2: _l__ f J Ja_ 1 ’ - s 1

m
ZTt. O di
13

(8.5)

where ¢, B stand for the parameters.

The main question that remains is the C-R bound for the aircraft

parameters. We have the expansion, O denoting the true total parameter
vector set:

6-0 = - -1 .6
0 OO S(Oo) G(OO) (8.6)
from which we calculate that
E ((B-0) (B0)®
o) o)
2 2 030u0) (2 8 o0gm) |
- S 90 ? § m 2 4 2 .
z
-1
S(Oo) (8.7
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where

2 _ . j _
(gi) = spectral density of Ni (t) = di/ZBi

This is a little complicated and can be simplified further i we assume

that the bandwidths are the same:

and of course the variances are the same:
E NJ(1)?] = a,
L 1

In that case

A
Hence replacing d; by d; in the formula (8.5) for S(0), the expression (8.7)

simplifies to

2 L83, & 930 ,vat
-1 nonn B fT] du "1 Q?’ B 1 -1
s(e ) Y X, 2 > s(6,)
o m d.
1 1 T 0 i
173
o~ 3 1 Ty 8 43 3 87 -
AT X & [ B0 HYiene (8.8)
1 1 g 0

where we emphasize that

(2B) gi2 = di
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The "pooled" C.R. bound is thus the inverse of

‘ m noq T, 3 3 3 ;
II‘: (21; g—fjo. 3 (0,51 373'91 (Oo,t)dt)

1

wiiich is also the inverse of
>
= S. (8.9)
i1 B

where Sj are the individual sensitivity matrices. Note that if we tock as

the composite the average of the m determminations, the variance would be

1 s (gL (8.10)
Z xS -

and of course this variance would pe larger:

1 I -1 m -1
> X 5,7 2 21: S (8.11)
pl 1

<he improvement being bigger, the farther apart the individual matrices
3. are. Note alvo that there is the advantage that (8.9) will tend :o be

mere non-sirgular than the individual matrices.

t. Performance

Performance of this technique was tested on the Cessna 172 flight data.
The rudder input cases (9 and 10) yield poorer results thar the aileron
cases (11 and 12). Since the flight conditions are very close, it seems
natural to pool the rudder and aileron cases. Thus, run ¢ was pooled with
mmn 11 (and designated 9-11) and run 10 was pooled with ro. 12 (designated

10-12). The estimates of the ccefficients and the C-k Zcunds are presented

u5



in Table 11. The fits are shown in Hgures 9-12 and the residuals in
Figures 13-16. We note first that there is a significant reduction in
the scatter of the estimates from the individual runs. The agreement
between the two pooled runs is also quite good. The C-R bourds are
slightly better than for the individual aileron runs and significantly
better than the individual rudder runs. These bounds were calculated
on the basis of a (one-sided) bandwidth of 1/2At (5 Hertz).

Figures 17-21 show the power spectral density of the residuals. It
is based on the first 512 time point of the combined residuals from all
four cases. Based an these plots, a bandwidth of around 1 Hertz or
iess would be reasonable. This would indicate that the C-R bounds should
be 2 or 3 times larger at least. The resulting error estimates are

consistent with the estimate scatter.
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3. QUESTIONS AND ANSWERS

In this section we shall provide explicit answers to the questions
raised by LRC in the Statement of Wcrk., The theory leading to the answers
has been presented in sections 4 through 8 in this report and will be

drawn upon as needed.
Question 1 - Does non-uniqueness of derivatives always occur with
high correlation?

Answer - With S(0) as defined in this report, one may refer to high

correlation in S(@) or, as LRC suggests, in its inverse - the dispersion
matrix. Uncertainty in derivative extraction can be interpreted either
with the statistical theory (section 4) or the non-statistical theory
(section 5). In either case we have shown that the diagonal elements in
the dispersion matrix provide a direct measure of this uncertainty and is
higher, the higher the correlation in the S(0) matrix. Also, correlation
in S(@! has an additional effect of increasing this uncertainty. In this
sense, high correlation is indicative of non-uniqueness of derivatives;

see under case (3) of section 6,

Question 2 - Can we tell which parameters are 'observable'? a) What
statistics or what part of the program can we interrogate to find out?
b) Why won't the variances tell us if a parameter is not observable?
Answer - The observability of a parameter ic measured by the corres-
ponding diagonal entry in the dispersion matrix st The interpretation
of this can be statistical or non-statistical. However, there is un-
certainty in this within a multiplicative factor owing to the uncertainty

in the noise bandwidth (see section 4). Hence, an 'absolute'
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(as opposed to relative) quantitative use of the variance can be mislead-

ing (and may be inconsistent with observed scatter).

Question 3 - When two parameters are highly correlated, we can vary
either parameter over a wide range, provided we campensate by changing the
other parameter. Since we can vary the parameters in this manner, why do
we converge on one value for each parameter, and still have indicated low
variance for each parameter?

Answer - By 'parameter correlation' what is meant here is the correla-
tion in the dispersion matrix S™1. We have shown in section 5 that when
such correlation occurs we may change either parameter linearly with
respect to the other with little or no change in the cost functional being
minimized. However, how much the parameter can be changed in this manner
is still determined by the sum of the corresponding variances, as indi-

cated in section 5.

Question 4 - Under what conditions do correlations of parameters
occur? Is it caused by correlations of states? Is there some other
reason?
Answer - Again, by 'correlation of parameters' is meant the correlation

1 matrix. In the statistical theory, this correlation is actually

in the S~
the correlation in the error covariance and not in the parameters them-
selves. The parameters are not conceived as random variables. In any
event, the correlation in the dispersion matrix is not due to correlation
in the states, and does not have any direct interpretation other than as
indicating 'stiffness' in the dispersion matrix (large eigenvalue spread).

On the other hand, correlation in the matrix S(0) wou.c indicate closeness
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to singularity and hence largeness of the C-R bounds. Also, the 'two-by-
two! correlation by itself need not be large and yet sub-determinants may
be zero or close to zero. Hence, singling out two-by-two correlations for

attention does not appear tc be of much direct relevance.

Question 5 - What does 'correlation' between parameters and/or states
really mean?
Answer - Correlation between states is apparently interpreted as in

the following type of situation :
p = k8

(the time history p(t) is a constant multiple of g(t)). More generally,

if x(t) represents the state, then we may consider
[vyx(t)] =0 0<t«<T

for some non-zero vector v. Presumably this is satisfied at the true
parameter values. But this has nothing to do with the dispersion matrix
since the latter is determined by partial “erivatives with respect to the
parameters. In other words, it does not follow, for example, that *he

sensitivity matrix S(G) is singular.

Question 6 - If correlation between Cn and Cnlp is 1:1, will &~

B
incremental change in C, produce the same effect as an identical incre-

mental change in Cn ? If correlation between two derivatives is less

r
than 1.0, what does it mean?

L9



Answer - Continuing to interpret correlation as again that in the
dispersion matrix, it is clear first of all that correlation of #1 cannot
occur, since otherwise the matrix would be singular. On the other hand,
if the correlation is merely "close to one" then the implication is only
that the matrix is 'stiff', If the correlation in the S matrix is taken,
however, occurrence of exactly + 1 would mean that it has a zero eigenvalue

and hence if 6’[‘ is the optimal estate,
A A
S(BT) = S(OT + de)
where e is the eigenvector corresponding to the zero eigenvalue and hence

also

a8 = q(B + se)
up to the second order approximation. Thus, if the 'correlation between

C, and Cn is +1' is interpreted to mean that the corresponding correla-
B r

tion in the S matrix is 1, then the eigenvector e has zero entries except

1 1

corresponding to the CnB, Cnr places where it 1s /E' s - /% and we may
keep the cost functional the same by proportionately changing Cn and

B8
C_ . This statement continues to be approximately true if the ccrrelation is

r
sufficiently close to + 1.

Question 7 - Is it possible to specify flight-test techniques that
will minimize correlations and maximize observability? Is there any
analytical basis for determining best surface to use, and best control-
input time history to minimize correlations? Will control to minimize
correlations also maximize sensitivity parameters, or will minimizing

correlations also minimize state sensitivity to the parameters.,
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Answer - It is quite possible to require that the input u(.) be such
as to make the correlations in the S matrix or the dispersion matrix to be
small. However, the only real analytical basis for determining the basic
surface to use will be to require that the trace of the dispersion matrix
be minimized, The optimal solution corresponding to this criterion will
have a smaller trace than the case where the correlations in the S matrix
are zero.

Minimizing correlations in the dispersion matrix will mean very

little if the trace is unaffected - see section 5, case 3.
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10, CONCLUDING REMARKS

By way of conclusion, some of the specific recommendations for
improving current parameter extraction programs will now be itemized.

1. Using approximate noise variances where available or otherwise
making them all the same, the first iteration should vary only the 'linear'
coefficients. Using the residuals as estimates for the noise variances,
all the parameters are allowed to vary from then on,until convergence is
obtained. The new set of residuals is then used to repeat the above
procedure until the residuals stabilize.

2, If convergence difficulties arise - or even otherwise routinely -
after the 'linear' first iteration is completed, it is recommended that
the gradient technique described be employed until the gradient stabilizes
and then the switch to the N-R algorithm be made. The a priori weighting
technique is too subjective and ad hoc and is not recommended.

3. The proper measure of uncertainty or observability of the
parameters is provided by the diagonal terms in the dispersion matrix.
However, there is some danger in using this as an "absolute" measure
rather than a 'relative' measure because it will always contain an uncertain
multiplicative factor.

4. The p.s.d's of the residuals may be used to estimate actual
noise bandwidth.

5. Where multiple maneuvers at identical or similar flight condi-
tions are available, the 'pooling technique' should be used in contrast
to averaging the estimates from the individual maneuvers. It is
particularly helpful to pair the aileron-input data with the rudder-input
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data so as to improve the estimates since the latter generally turn out to be
worse. [A study of this phenomenon, verifying whether the aileron input
alway:: yields better results than the rudder input and if so, what the
reasons are, should be of value - and would shed much light on the 'optimal
input! problem,]

6. Caution is necessary in using the dispersion matrix at the end
of the first 'linear' iteration as a measure of the data since the matrix
may well be non-singular and acceptable at the starting values and yet
singular at the true values.

7. Minimizing correlations in the dispersion matrix is of little

value - minimizing its trace is more meaningful.
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PARAMETER VALLUES BY ITERATION: CESSWA #11

START ITERATION

Q 1 2 3 4 5 6
CYE -006 | -.006 -005132 | -.00532 | -.005261 | -.005268 | -,005263
C_;5 -0 | -.00 -,0005543 | -.006450 | -,006462 | -,006446 | -,0006444
C"e 00032 | .00032 0002834 | 0003064 | .0002992 | ,0002991 | 0002991
Clp -5 -5 -.2831 -0 | -2 -2V | -26
C,\p -1 -1 -07248 | -.07877 |{-.0855 1} 0,834 | -.0835
C,:r 1 1 03043 00652 | .0672 | 06634 | .06686
Cnr -1 -1 -.05865 | -.07137 |-.0703 | -.0025 | -.0027
¢, |0 .0008262 | .001008 | .000%79 | .J009833 | 0009863 | 0009861
Ci; -,0013 | -,001619 | -.0009193 | -,0008871| -,0009/64{ -.0009735{ -,0009731
C,, | -»00005 | -,0001444 | -,0001118 | -.J001132| -.0001335] -.0001327| -,00013%7

TaBLE 1
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GRADIENTS BY ITERATION: CESSNA #11

ITERATION
1] 1 2 3 4 5
VCY (not computed)| -1000 550 -8 5.4 9
B
ch - -14000 17000 2000 -39 15
8
Vcn - -23000 -80000 | <4700 850 -6/
8
ch - -3,2 -8.5 -16 25 012
p
A - 19 v 28 4.8 10
"p
ch - n -59 5.7 .66 -,0%5
r
A - -280 170 -26 1.1 -85
nY‘
Ve -8200 .49 o 12 -10 =082
Ys
a
. +260000 -3.7 -20000 | 3800 -160 -18
Laa
7 +1000000 -14 -21000 | -4300 1400 31
n
5
a
TABLE 2
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RMS RESIDUALS BY ITERATION: CESSMA #11

2,24 | S5M 516 34 350 350 350
28 | L1 JO4 562 563 561 501
1,85 | .868 325 582 S84 585 .585
3.4 | .90 559 502 % 497 497
0333 | 048 | 018 | 012 | 0112 | .OLD i 0110

TaBLE 3
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CESSNA: PARAMETER ESTIMATES

ITERATION

START 9 10 1 12
G, | 06 | -0Mm | -l | -0 | -5l
G | 0L | 000Gl | -0007716 | -.0005MA | 0006358
. 00032 | .000MEOL | LODOMBM6 | 000294 | 000305
G, | -5 -, %16 -,3178 -,2916 -, 28%
G| -1 -,01867 004523 | -,085% -, 0852
., 1 08562 0893 06685 7048
G, | -l -, 08268 -.07520 -.07077 - 07753
G, 0 — — 0009861 | 001057
cz: -, 0013 — — -, 009731 | -.0009885
cn: 00005 | — — -0001327 | -.0001347
cy: 001 | -39 | -,0031 — —
cg: 0002 | -.0001862 | -,0001874 — —
ca: 0002 | 0006266 | L0005 — —




CESSNA DATA
SIGNIFICANT SPREADS IN COEFFICIENTS

rMER Uiy C“e C&>

9 -.0008411 0004801 -.0186/
10 -.0007716 0004846 ~,004523
1 -, 0006444 0002991 -.08534
12 -,0000358 0003015 -, 08502

TABLE 5
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B FLIGHT CONDITIONS
RN MacH Arva @ v INPUT

4 806 385 211.1 7792 4

5 .78 400 2003 .8 &
0 JB 4w 177, - 8,
2 7% 3.8 177.9 S

TABLE 6



F8 SIMILATED DATA

COEF VEA C.R. 6 =
Gy, - Q22 00020 00017 87
G, SOB05 | 00003 | L0002 | .38
- 0023 | .7 | .l | .8
C,, - 14367 0064 0052 2
- 006 | L0038 0033 87
Ce, 32%0 034 0% %6
Cn, - 2648 il a7 78

TaBLE 7
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8 FLIGHT DATA

OEF | MEAN 5 C.R 2
G, | B | e | |28
A R G s | 1y
Gy 20| .03 | oS |92
G, | - 7 M8 | B
G, | e | K157 9.7
C,, 1957 41 035 1.7
G, | -y 2 18 13.9

TasLE 8
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CESSNA

CRA'ER-RAD FOUDS
3 10 1 4,
Gy, 000086 0001 0013 0001
Gy 00012 000035 | .o000 | 0000091
Cng 003061 000020 | ,0000061 | 0000051
Cy 048 014 0069 0058
o
G, 025 0080 0045 004l
p
C!. |U‘35 .wm '0331 G’J’
r
o, W25 12 013 13
&G, | — | 0067 | 000056
6&
Gy | —-me 200019 0MI6
a
Ge | T . 000013 00012
6a.
CY 'O:)Oll IU\)O].L' _____________
61"
Cg 5 ' mg |m12 --------------
r
- 000014 0000063 | --—----
61“
TABLE 9
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|

(ESSNA RN 9

PERCENT PARAVETER SPREAD FOR 1% CHANGE IN COST

(EF ESTIMATED 1 Percent| 2. PErcent!| case 4
VALLE Sii case 1 Hease 2

G, - 0076 3.83 5,48 089

G - 00084 1.53 62,7 5.8

G, 00048 1.6 56.9 53.3
B

cl -036 2|58 59:9 51:6
p

Cn _|019 1“!2 598|6 557:7
p

C, 086 6,46 27.9 2.5
r

C“r -, 383 2.54 13.7 12,9

CYG -, 0014 16.4 37.3 1.93
r

C"é - 0019 1.81 6.8 5/.39
r

C, 00063 0.31 10.4 9,32
61‘

Gy 017 32,8 41,8 1.89
0

G 0036 0.40 2.9 2144
0

C_-,o -,00%2 0.27 16.0 14,9

% A1 15.0 150.2 6.72

ABIAS 0% 3.29 7.8 0.32

TABBL_E 10




CESSNA

POOLED MANEUVERS (zar = .8)

EsTIMATES C-R Bows (sd)

¢-11 10-12 911 10-12
Gy, - 006472 | -,006384 000066 | 000065
Gy, -,0006950 | -,0006769 000011 | 000012
- 000300 | 0003494 0000049 | 0000047
G,y -3l -,2869 009 0043
G ~0638 | -n6317 0022 0021
C,. 07112 07253 0024 0023
Gy, 0578 | -.075® 00097 00091
cYGa Q006652 | 0007154 § ,000OM4 | 000048
Cos. -0 | -,0004 | 000016 | .O0O0IS
Co. -,00006977 | -,00007758 § 0000’7 | 000072
Cr, -,0007583 | -,0008231 00011 300089
r -,0001335 | -,0001250 Q003 | ,00ulo
cn; Q005766 | 0005460 (0000054 | 00000
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