653 research outputs found

    Erratum to: Search for PeVatrons at the Galactic Center using a radio air-shower array at the South Pole

    Get PDF
    The original article contains typographic errors in the appendix B, which deals with the process of generating a noise trace

    Search for PeVatrons at the Galactic Center using a radio air-shower array at the South Pole

    Get PDF
    The South Pole, which hosts the IceCube Neutrino Observatory, has a complete and around-the-clock exposure to the Galactic Center. Hence, it is an ideal location to search for gamma rays of PeV energy coming from the Galactic Center. However, it is hard to detect air showers initiated by these gamma rays using cosmic-ray particle detectors due to the low elevation of the Galactic Center. The use of antennas to measure the radio footprint of these air showers will help in this case, and would allow for a 24/7 operation time. So far, only air showers with energies well above 10 16 1016 eV have been detected with the radio technique. Thus, the energy threshold has to be lowered for the detection of gamma-ray showers of PeV energy. This can be achieved by optimizing the frequency band in order to obtain a higher level of signal-to-noise ratio. With such an approach, PeV gamma-ray showers with high inclination can be measured at the South Pole

    Melamine formaldehyde-metal organic gel interpenetrating polymer network derived intrinsic Fe-N-doped porous graphitic carbon electrocatalysts for oxygen reduction reaction

    Get PDF
    Fe, N doped porous graphitic carbon electrocatalyst (Fe-MOG-MF-C), obtained by pyrolysis of an Interpenetrating Polymer Network (IPN) comprised of melamine formaldehyde (MF as hard segment) and Metal-Organic Gel (MOG as soft segment), exhibited significant Oxygen Reduction Reaction (ORR) activity in alkaline medium. BET surface area analysis of Fe-MOG-MF-C showed high surface area (821 m2 g-1), while TEM, Raman and XPS results confirmed Fe and N co-doping. Furthermore, a modulated porous morphology with a higher degree of surface area (950 m2 g-1) has been accomplished for the system (Fe-MOG-MFN-C) when aided by a sublimable porogen, such as naphthalene. XPS results further demonstrated that these systems exhibited a better degree of distribution of graphitic N and an onset potential value of 0.91 V vs. RHE in 0.1 M KOH solution following an efficient four-electron ORR pathway. The electrocatalytic activity of Fe-MOG-MFN-C is superior to that of Fe-MOG-MF-C by virtue of its higher graphitic N content and surface area. Thus, the study presents a new class of IPN derived MF-MOG nanocomposites with the potential to generate extended versions of in situ Fe-N doped porous graphitic carbon structures with superior ORR activity

    Velocity independent constraints on spin-dependent DM-nucleon interactions from IceCube and PICO

    Full text link
    [EN] Adopting the Standard Halo Model (SHM) of an isotropic Maxwellian velocity distribution for dark matter (DM) particles in the Galaxy, the most stringent current constraints on their spin-dependent scattering cross-section with nucleons come from the IceCube neutrino observatory and the PICO-60 C3F8 superheated bubble chamber experiments. The former is sensitive to high energy neutrinos from the self-annihilation of DM particles captured in the Sun, while the latter looks for nuclear recoil events from DM scattering off nucleons. Although slower DM particles are more likely to be captured by the Sun, the faster ones are more likely to be detected by PICO. Recent N-body simulations suggest significant deviations from the SHM for the smooth halo component of the DM, while observations hint at a dominant fraction of the local DM being in substructures. We use the method of Ferrer et al. (JCAP 1509: 052, 2015) to exploit the complementarity between the two approaches and derive conservative constraints on DM-nucleon scattering. Our results constrain sigma SD less than or similar to 3x10-39cm2 (6x10-38cm2) at greater than or similar to 90% C.L. for a DM particle of mass 1 TeV annihilating into tau+tau- (bb) with a local density of rho DM=0.3GeV/cm3. The constraints scale inversely with rho DM and are independent of the DM velocity distribution.Aartsen, MG.; Ackermann, M.; Adams, J.; Aguilar, JA.; Ahlers, M.; Ahrens, M.; Alispach, C.... (2020). Velocity independent constraints on spin-dependent DM-nucleon interactions from IceCube and PICO. The European Physical Journal C. 80(9):1-8. https://doi.org/10.1140/epjc/s10052-020-8069-5S18809F. Ferrer, A. Ibarra, S. Wild, JCAP 1509(09), 052 (2015). arXiv:1506.03386 [hep-ph]S. van den Bergh, Publ. Astron. Soc. Pac. 111, 657 (1999). arXiv:astro-ph/9904251G. Bertone, D. Hooper, J. Silk, Phys. Rept. 405, 279 (2005). arXiv:hep-ph/0404175A.K. Drukier, K. Freese, D.N. Spergel, Phys. Rev. D 33, 3495 (1986)M. Kuhlen, N. Weiner, J. Diemand, P. Madau, B. Moore, D. Potter, J. Stadel, M. Zemp, JCAP 1002, 030 (2010). arXiv:0912.2358 [astro-ph.GA]M. Lisanti, L.E. Strigari, J.G. Wacker, R.H. Wechsler, Phys. Rev. D 83, 023519 (2011). arXiv:1010.4300 [astro-ph.CO]Y.Y. Mao, L.E. Strigari, R.H. Wechsler, H.Y. Wu, O. Hahn, Astrophys. J. 764, 35 (2013). arXiv:1210.2721 [astro-ph.CO]L. Necib, M. Lisanti, V. Belokurov, arXiv:1807.02519 [astro-ph.GA]N.W. Evans, C.A.J. O’Hare, C. McCabe, Phys. Rev. D 99(2), 023012 (2019). arXiv:1810.11468 [astro-ph.GA]M.G. Aartsen et al. [IceCube Collaboration], Eur. Phys. J. C 77, no. 3, 146 (2017) arXiv:1612.05949 [astro-ph.HE]C. Amole et al., [PICO Collaboration]. Phys. Rev. Lett. 118(25), 251301 (2017). arXiv:1702.07666 [astro-ph.CO]M.T. Frandsen, F. Kahlhoefer, C. McCabe, S. Sarkar, K. Schmidt-Hoberg, JCAP 1201, 024 (2012). arXiv:1111.0292 [hep-ph]K. Choi, C. Rott, Y. Itow, JCAP 1405, 049 (2014). arXiv:1312.0273 [astro-ph.HE]A. Achterberg et al., [IceCube Collaboration]. Astropart. Phys. 26, 155 (2006). arXiv:astro-ph/0604450R. Abbasi et al. [IceCube Collaboration], Nucl. Instrum. Meth. A 601, 294 (2009) arXiv:0810.4930 [physics.ins-det]M.G. Aartsen et al. [IceCube Collaboration], JINST 12, no. 03, P03012 (2017) arXiv:1612.05093 [astro-ph.IM]R. Abbasi et al., [IceCube Collaboration]. Astropart. Phys. 35, 615 (2012). arXiv:1109.6096 [astro-ph.IM]G.J. Feldman, R.D. Cousins, Phys. Rev. D 57, 3873 (1998). https://doi.org/10.1103/PhysRevD.57.3873. arXiv:physics/9711021 [physics.data-an]M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, no. 3, 030001 (2018)C. Amole et al. [PICO Collaboration], arXiv:1905.12522 [physics.ins-det]C. Amole et al. [PICO Collaboration], Phys. Rev. D 93, no. 5, 052014 (2016) arXiv:1510.07754 [hep-ex]E. Tollerud et al. [ERFA] Computational Science and Discovery, no 8, 1 (2015) https://doi.org/10.5281/zenodo.1021149J.N. Bahcall, R.K. Ulrich, Rev. Mod. Phys. 60, 297 (1988)T. Mumford et al. [SunPy Community] Computational Science and Discovery, no 8, 1 (2015) arXiv:1505.02563 [astro-ph]V. Gluscevic, M.I. Gresham, S.D. McDermott, A.H.G. Peter, K.M. Zurek, JCAP 1512(12), 057 (2015). arXiv:1506.04454 [hep-ph]A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers, Y. Xu, ‘, JCAP 1302, 004 (2013). https://doi.org/10.1088/1475-7516/2013/02/004. arXiv:1203.3542 [hep-ph]A. Ibarra, A. Rappelt, JCAP 1708(08), 039 (2017). arXiv:1703.09168 [hep-ph
    • 

    corecore