854 research outputs found

    Non-Pauli Effects from Noncommutative Spacetimes

    Full text link
    Noncommutative spacetimes lead to nonlocal quantum field theories (qft's) where spin-statistics theorems cannot be proved. For this reason, and also backed by detailed arguments, it has been suggested that they get corrected on such spacetimes leading to small violations of the Pauli principle. In a recent paper \cite{Pauli}, Pauli-forbidden transitions from spacetime noncommutativity were calculated and confronted with experiments. Here we give details of the computation missing from this paper. The latter was based on a spacetime Bχn\mathcal{B}_{\chi\vec{n}} different from the Moyal plane. We argue that it quantizes time in units of χ\chi. Energy is then conserved only mod 2πχ\frac{2\pi}{\chi}. Issues related to superselection rules raised by non-Pauli effects are also discussed in a preliminary manner.Comment: 15 Pages, 1 Table, Full details and further developments of arXiv:1003.2250. This version is close to the one accepted by JHE

    Continuous Time-Dependent Measurements: Quantum Anti-Zeno Paradox with Applications

    Get PDF
    We derive differential equations for the modified Feynman propagator and for the density operator describing time-dependent measurements or histories continuous in time. We obtain an exact series solution and discuss its applications. Suppose the system is initially in a state with density operator ρ(0)\rho(0) and the projection operator E(t)=U(t)EU(t)E(t) = U(t) E U^\dagger(t) is measured continuously from t=0t = 0 to TT, where EE is a projector obeying Eρ(0)E=ρ(0)E\rho(0) E = \rho(0) and U(t)U(t) a unitary operator obeying U(0)=1U(0) = 1 and some smoothness conditions in tt. Then the probability of always finding E(t)=1E(t) = 1 from t=0t = 0 to TT is unity. Generically E(T)EE(T) \neq E and the watched system is sure to change its state, which is the anti-Zeno paradox noted by us recently. Our results valid for projectors of arbitrary rank generalize those obtained by Anandan and Aharonov for projectors of unit rank.Comment: 16 pages, latex; new material and references adde

    Phase Space Reduction and Vortex Statistics: An Anyon Quantization Ambiguity

    Full text link
    We examine the quantization of the motion of two charged vortices in a Ginzburg--Landau theory for the fractional quantum Hall effect recently proposed by the first two authors. The system has two second-class constraints which can be implemented either in the reduced phase space or Dirac-Gupta-Bleuler formalism. Using the intrinsic formulation of statistics, we show that these two ways of implementing the constraints are inequivalent unless the vortices are quantized with conventional statistics; either fermionic or bosonic.Comment: 14 pages, PHYZZ

    Field theory on evolving fuzzy two-sphere

    Full text link
    I construct field theory on an evolving fuzzy two-sphere, which is based on the idea of evolving non-commutative worlds of the previous paper. The equations of motion are similar to the one that can be obtained by dropping the time-derivative term of the equation derived some time ago by Banks, Peskin and Susskind for pure-into-mixed-state evolutions. The equations do not contain an explicit time, and therefore follow the spirit of the Wheeler-de Witt equation. The basic properties of field theory such as action, gauge invariance and charge and momentum conservation are studied. The continuum limit of the scalar field theory shows that the background geometry of the corresponding continuum theory is given by ds^2 = -dt^2+ t d Omega^2, which saturates locally the cosmic holographic principle.Comment: Typos corrected, minor changes, 23 pages, no figures, LaTe

    Screening in Anyon Gas

    Get PDF
    Anyon gas with interparticle (retarded) Coulomb interaction has been studied. The resulting system is shown to be a collection of dressed anyons, with a screening factor introduced in their spin. Close structural similarity with the Chern-Simons construction of anyons has helped considerably in computing the screening effect. Finally the present model is compared with the conventional Chern-Simons construction.Comment: 10 pages Late

    Dual Response Models for the Fractional Quantum Hall Effect

    Full text link
    It is shown that the Jain mapping between states of integer and fractional quantum Hall systems can be described dynamically as a perturbative renormalization of an effective Chern-Simons field theory. The effects of mirror duality symmetries of toroidally compactified string theory on this system are studied and it is shown that, when the gauge group is compact, the mirror map has the same effect as the Jain map. The extrinsic ingredients of the Jain construction appear naturally as topologically non-trivial field configurations of the compact gauge theory giving a dynamical origin for the Jain hierarchy of fractional quantum Hall states.Comment: 8 pages LaTe

    Boundary degrees of freedom in fractional quantum Hall effect: Excitations on common boundary of two samples

    Full text link
    Using the Carlip's method we have derived the boundary action for the fermion Chern-Simons theory of quantum Hall effects on a planar region with a boundary. We have computed both the bulk and edge responses of currents to the external electric field. From this we obtain the well-known anomaly relation and the boundary Hall current without introducing any ad hoc assumptions such as the chirality condition. In addition, the edge current on the common boundary of two samples is found to be proportional to the difference between Chern-Simons coupling strengths.Comment: 20 pages, uses revte

    Mixing at young ages: Beryllium abundances in cool main-sequence stars of the open clusters IC 2391 and IC 2602

    Full text link
    The determination of lithium abundances in stars of young clusters have shown that they deplete Li by different degrees during their pre-main sequence phase. Beryllium abundances are complementary to the lithium ones, and can help tracing the mixing processes in the stellar interiors. Our aim is to derive beryllium abundances in a sample of G- and K-type stars of two young pre-main sequence open clusters, IC 2391 and IC 2602. The Be abundances are used to investigate the mixing of internal material in these stars. The reliability of the Be lines as abundance indicators in low-temperatures is also investigated in detail. We derived Be abundances from high-resolution, high signal-to-noise UVES/VLT spectra using spectrum synthesis and model atmospheres. Atmospheric parameters and other elemental abundances are adopted from a previous work. The sample stars have masses in the range between 0.80 < M/Msun < 1.20. They have been shown to differ in lithium abundance by about 0.60 dex, with lower A(Li) in cooler and lower mass stars. Here, we find that all the stars have the same Be abundance within the uncertainties. These observations show that the Be abundance is not affected by the mixing events in the pre-main sequence, in this mass range, in agreement with the expectation of evolutionary models. A comparison with Be abundances in older clusters shows that, contrary to the models, cool stars deplete Be during their main-sequence lifetime, confirming what has been previously suggested in the literature.Comment: To appear in A&A, 12 pages, 12 figure

    Fuzzy Torus via q-Parafermion

    Full text link
    We note that the recently introduced fuzzy torus can be regarded as a q-deformed parafermion. Based on this picture, classification of the Hermitian representations of the fuzzy torus is carried out. The result involves Fock-type representations and new finite dimensional representations for q being a root of unity as well as already known finite dimensional ones.Comment: 12pages, no figur
    corecore