216 research outputs found
Cascades: A view from Audience
Cascades on online networks have been a popular subject of study in the past
decade, and there is a considerable literature on phenomena such as diffusion
mechanisms, virality, cascade prediction, and peer network effects. However, a
basic question has received comparatively little attention: how desirable are
cascades on a social media platform from the point of view of users? While
versions of this question have been considered from the perspective of the
producers of cascades, any answer to this question must also take into account
the effect of cascades on their audience. In this work, we seek to fill this
gap by providing a consumer perspective of cascade.
Users on online networks play the dual role of producers and consumers.
First, we perform an empirical study of the interaction of Twitter users with
retweet cascades. We measure how often users observe retweets in their home
timeline, and observe a phenomenon that we term the "Impressions Paradox": the
share of impressions for cascades of size k decays much slower than frequency
of cascades of size k. Thus, the audience for cascades can be quite large even
for rare large cascades. We also measure audience engagement with retweet
cascades in comparison to non-retweeted content. Our results show that cascades
often rival or exceed organic content in engagement received per impression.
This result is perhaps surprising in that consumers didn't opt in to see tweets
from these authors. Furthermore, although cascading content is widely popular,
one would expect it to eventually reach parts of the audience that may not be
interested in the content. Motivated by our findings, we posit a theoretical
model that focuses on the effect of cascades on the audience. Our results on
this model highlight the balance between retweeting as a high-quality content
selection mechanism and the role of network users in filtering irrelevant
content
Collective Decision Dynamics in the Presence of External Drivers
We develop a sequence of models describing information transmission and
decision dynamics for a network of individual agents subject to multiple
sources of influence. Our general framework is set in the context of an
impending natural disaster, where individuals, represented by nodes on the
network, must decide whether or not to evacuate. Sources of influence include a
one-to-many externally driven global broadcast as well as pairwise
interactions, across links in the network, in which agents transmit either
continuous opinions or binary actions. We consider both uniform and variable
threshold rules on the individual opinion as baseline models for
decision-making. Our results indicate that 1) social networks lead to
clustering and cohesive action among individuals, 2) binary information
introduces high temporal variability and stagnation, and 3) information
transmission over the network can either facilitate or hinder action adoption,
depending on the influence of the global broadcast relative to the social
network. Our framework highlights the essential role of local interactions
between agents in predicting collective behavior of the population as a whole.Comment: 14 pages, 7 figure
Competition and Selection Among Conventions
In many domains, a latent competition among different conventions determines
which one will come to dominate. One sees such effects in the success of
community jargon, of competing frames in political rhetoric, or of terminology
in technical contexts. These effects have become widespread in the online
domain, where the data offers the potential to study competition among
conventions at a fine-grained level.
In analyzing the dynamics of conventions over time, however, even with
detailed on-line data, one encounters two significant challenges. First, as
conventions evolve, the underlying substance of their meaning tends to change
as well; and such substantive changes confound investigations of social
effects. Second, the selection of a convention takes place through the complex
interactions of individuals within a community, and contention between the
users of competing conventions plays a key role in the convention's evolution.
Any analysis must take place in the presence of these two issues.
In this work we study a setting in which we can cleanly track the competition
among conventions. Our analysis is based on the spread of low-level authoring
conventions in the eprint arXiv over 24 years: by tracking the spread of macros
and other author-defined conventions, we are able to study conventions that
vary even as the underlying meaning remains constant. We find that the
interaction among co-authors over time plays a crucial role in the selection of
them; the distinction between more and less experienced members of the
community, and the distinction between conventions with visible versus
invisible effects, are both central to the underlying processes. Through our
analysis we make predictions at the population level about the ultimate success
of different synonymous conventions over time--and at the individual level
about the outcome of "fights" between people over convention choices.Comment: To appear in Proceedings of WWW 2017, data at
https://github.com/CornellNLP/Macro
Studying Paths of Participation in Viral Diffusion Process
Authors propose a conceptual model of participation in viral diffusion
process composed of four stages: awareness, infection, engagement and action.
To verify the model it has been applied and studied in the virtual social chat
environment settings. The study investigates the behavioral paths of actions
that reflect the stages of participation in the diffusion and presents
shortcuts, that lead to the final action, i.e. the attendance in a virtual
event. The results show that the participation in each stage of the process
increases the probability of reaching the final action. Nevertheless, the
majority of users involved in the virtual event did not go through each stage
of the process but followed the shortcuts. That suggests that the viral
diffusion process is not necessarily a linear sequence of human actions but
rather a dynamic system.Comment: In proceedings of the 4th International Conference on Social
Informatics, SocInfo 201
Network segregation in a model of misinformation and fact checking
Misinformation under the form of rumor, hoaxes, and conspiracy theories
spreads on social media at alarming rates. One hypothesis is that, since social
media are shaped by homophily, belief in misinformation may be more likely to
thrive on those social circles that are segregated from the rest of the
network. One possible antidote is fact checking which, in some cases, is known
to stop rumors from spreading further. However, fact checking may also backfire
and reinforce the belief in a hoax. Here we take into account the combination
of network segregation, finite memory and attention, and fact-checking efforts.
We consider a compartmental model of two interacting epidemic processes over a
network that is segregated between gullible and skeptic users. Extensive
simulation and mean-field analysis show that a more segregated network
facilitates the spread of a hoax only at low forgetting rates, but has no
effect when agents forget at faster rates. This finding may inform the
development of mitigation techniques and overall inform on the risks of
uncontrolled misinformation online
Dynamics in online social networks
An increasing number of today's social interactions occurs using online
social media as communication channels. Some online social networks have become
extremely popular in the last decade. They differ among themselves in the
character of the service they provide to online users. For instance, Facebook
can be seen mainly as a platform for keeping in touch with close friends and
relatives, Twitter is used to propagate and receive news, LinkedIn facilitates
the maintenance of professional contacts, Flickr gathers amateurs and
professionals of photography, etc. Albeit different, all these online platforms
share an ingredient that pervades all their applications. There exists an
underlying social network that allows their users to keep in touch with each
other and helps to engage them in common activities or interactions leading to
a better fulfillment of the service's purposes. This is the reason why these
platforms share a good number of functionalities, e.g., personal communication
channels, broadcasted status updates, easy one-step information sharing, news
feeds exposing broadcasted content, etc. As a result, online social networks
are an interesting field to study an online social behavior that seems to be
generic among the different online services. Since at the bottom of these
services lays a network of declared relations and the basic interactions in
these platforms tend to be pairwise, a natural methodology for studying these
systems is provided by network science. In this chapter we describe some of the
results of research studies on the structure, dynamics and social activity in
online social networks. We present them in the interdisciplinary context of
network science, sociological studies and computer science.Comment: 17 pages, 4 figures, book chapte
The Dimension Six Triple Gluon Operator in Higgs+Jet Observables
Recently a lot of progress has been made towards a full classification of new
physics effects in Higgs observables by means of effective dimension six
operators. Specifically, Higgs production in association with a high transverse
momentum jet has been suggested as a way to discriminate between operators that
modify the Higgs-top coupling and operators that induce an effective
Higgs-gluon coupling---a distinction that is hard to achieve with signal
strength measurements alone. With this article we would like to draw attention
to another source of new physics in Higgs+jet observables: the triple gluon
operator (consisting of three factors of the gluon field strength
tensor). We compute the distortions of kinematic distributions in Higgs+jet
production at a 14 TeV LHC due to and compare them with the
distortions due to dimension six operators involving the Higgs doublet. We find
that the transverse momentum, the jet rapidity and the difference between the
Higgs and jet rapidity are well suited to distinguish between the contributions
from and those from other operators, and that the size of the
distortions are similar if the Wilson coefficients are of the same order as the
expected bounds from other observables. We conclude that a full analysis of new
physics in Higgs+jet observables must take the contributions from into
account.Comment: To appear as a Rapid Communication in Physical Review
Trust and distrust in contradictory information transmission
We analyse the problem of contradictory information distribution in networks of agents with positive and negative trust. The networks of interest are built by ranked agents with different epistemic attitudes. In this context, positive trust is a property of the communication between agents required when message passing is executed bottom-up in the hierarchy, or as a result of a sceptic agent checking information. These two situations are associated with a confirmation procedure that has an epistemic cost. Negative trust results from refusing verification, either of contradictory information or because of a lazy attitude. We offer first a natural deduction system called SecureNDsim to model these interactions and consider some meta-theoretical properties of its derivations. We then implement it in a NetLogo simulation to test experimentally its formal properties. Our analysis concerns in particular: conditions for consensus-reaching transmissions; epistemic costs induced by confirmation and rejection operations; the influence of ranking of the initially labelled nodes on consensus and costs; complexity results
Do tabloids poison the well of social media? Explaining democratically dysfunctional news sharing
This paper was accepted for publication in the journal New Media and Society and the definitive published version is available at https://doi.org/10.1177/1461444818769689The use of social media for sharing political information and the status of news as an essential raw material for good citizenship are both generating increasing public concern. We add to the debates about misinformation, disinformation, and “fake news” using a new theoretical framework and a unique research design integrating survey data and analysis of observed news sharing behaviors on social media. Using a media-as-resources perspective, we theorize that there are elective affinities between tabloid news and misinformation and disinformation behaviors on social media. Integrating four data sets we constructed during the 2017 UK election campaign—individual-level data on news sharing (N = 1,525,748 tweets), website data (N = 17,989 web domains), news article data (N = 641 articles), and data from a custom survey of Twitter users (N = 1313 respondents)—we find that sharing tabloid news on social media is a significant predictor of democratically dysfunctional misinformation and disinformation behaviors. We explain the consequences of this finding for the civic culture of social media and the direction of future scholarship on fake news
- …
