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Abstract
Misinformation under the form of rumor, hoaxes, and conspiracy theories spreads on 
social media at alarming rates. One hypothesis is that, since social media are shaped 
by homophily, belief in misinformation may be more likely to thrive on those social 
circles that are segregated from the rest of the network. One possible antidote to 
misinformation is fact checking which, however, does not always stop rumors from 
spreading further, owing to selective exposure and our limited attention. What are 
the conditions under which factual verification are effective at containing the spread-
ing of misinformation? Here we take into account the combination of selective expo-
sure due to network segregation, forgetting (i.e., finite memory), and fact-checking. 
We consider a compartmental model of two interacting epidemic processes over a 
network that is segregated between gullible and skeptic users. Extensive simulation 
and mean-field analysis show that a more segregated network facilitates the spread 
of a hoax only at low forgetting rates, but has no effect when agents forget at faster 
rates. This finding may inform the development of mitigation techniques and raise 
awareness on the risks of uncontrolled misinformation online.
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Introduction

Social media are rife with inaccurate information of all sorts [6, 18, 21]. This is 
in part due to their egalitarian, bottom-up model of information consumption and 
production  [9], according to which users can broadcast to their peers informa-
tion vetted by neither experts nor journalists, and thus potentially inaccurate or 
misleading [28]. Examples of social media misinformation include rumors [21], 
hoaxes [35], and conspiracy theories [3, 24].

In journalism, corrections, verification, and fact-checking are simple yet pow-
erful antidotes to misinformation  [11], and several newsrooms employ these 
techniques to vet the information they publish. Moreover, in recent years, several 
independent fact-checking organizations have emerged with the goal of debunk-
ing widely circulating claims online. From now on, we refer to all these prac-
tices collectively as fact-checking. Among the leading US-based fact-checking 
organizations we can cite Snopes  [42], FactCheck.org  [20], and Politifact  [46]. 
Several more are joining their ranks worldwide [45]. In many cases these organi-
zations cannot cope with the sheer volume of misinformation circulating online, 
and some are exploring alternatives to scale their verification efforts, including 
automated techniques [16], and collaboration with technology platforms such as 
Facebook [37] and Google [19].

These trends thus beg a rather fundamental question—is the dissemination of 
fact-checking information effective at stopping misinformation from spreading on 
social media? In particular cases, timely corrections are enough to limit a rumor 
from spreading further  [4, 21, 34]. However, administering fact-checking infor-
mation may also have adverse effects. For example, in some instances it has been 
observed that correcting an inaccurate or misleading claim can have counterpro-
ductive effects, increasing—and not decreasing—belief in it. This is a phenom-
enon called the backfire effect [35]. Recent work has however failed to replicate 
this form of backfiring in independent trials, suggesting that it is a rather elusive 
phenomenon [48].

Fact-checking could also lead to a hypercorrection effect, meaning that pro-
viding accurate information to people who have been exposed to misinformation 
may cause them, on the long term, to forget the former, and remember the lat-
ter [12]. Thus, given the growing emphasis put into fact-checking, as well as its 
unintended side effects, it is clear that, for a better understanding of how to fight 
social media misinformation, it would be useful to explore the relation between 
fact-checking and the misinformation it is intended to quell.

Recent work has also revealed that, when it comes to misinformation, online 
conversations tend to be highly polarized [10, 18]. This suggests the importance 
of homophily and segregation in the spread of misinformation. Since social net-
works are shaped by homophily [29], one hypothesis is that misinformation may 
be more likely to thrive in those social circles that are segregated from the rest 
of the network. Social media may be particularly susceptible to this aspect due 
to the fact that exposure to information is mediated in part by algorithms, whose 
goal is to filter and recommend stories that have a high potential for engagement. 
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This may create filter bubbles and echo chambers, information spaces that favor 
confirmation bias and repetition [38, 43]. Recent work has started to measure the 
extent to which editorial decisions performed automatically by algorithms affect 
selective exposure, and thus segregation of the information space [8, 33]. There-
fore, in modeling the interplay between misinformation and fact-checking, our 
second goal is to shed light on the role of the underlying social network structure 
in the spreading process, in particular the presence of communities of users with 
different attitude toward unvetted and unconfirmed information—which could 
potentially constitute misinformation.

Besides segregation, in the literature there is also disagreement about whether 
weak ties—the links that connect different communities together—play a role in 
the diffusion of information. Some studies suggest that weak ties play an impor-
tant role [7]; others that they do not [36]. In their seminal work on complex social 
contagion, Centola and Macy argue that the spread of collective action benefits 
from bridges, i.e., ties that are “wide enough to transmit strong social reinforce-
ment” [13]. It is well known that misinformation can be propagated thanks to repeti-
tion [2, 27], which in some ways can be obtained through social reinforcement, and 
thus, it would be useful to investigate this additional aspect as well.

In terms of modeling, there has hitherto been little work on characterizing the 
epidemic spreading of different types of information, with most efforts devoted to 
describing mutually independent processes  [23, 32]. Instead, the presence of the 
rich cognitive effects just described suggests that misinformation and fact-checking 
interact and compete for the attention of individuals on social media, and this could 
lead to non-trivial diffusion dynamics. Among the work specifically devoted to com-
petition in the diffusion of information, or memes, the literature has focused on the 
role of limited attention [25, 47], as well as that of information quality [31, 40].

Several models have been proposed in prior work to describe the propagation of 
rumors in a complex social networks   [1, 14, 17, 30]. Most are based on the epi-
demic compartmental models like the SIR (susceptible–infected–recovered) or 
the SIS (susceptible–infected–susceptible)  [39]. In these models, the population is 
divided into compartments that indicate the stage of the disease, and the evolution 
of the spreading process is ruled by transition rates in differential equations. Usually, 
in SIS-like models, � represents the ‘infection’ rate, that is, the rate of the transi-
tion S → I, and � the ‘recovery’ rate, that is, the rate of the transition I → S. In the 
adaptations of the models to rumors and news, an analogy between the latter and 
infective pathogens is considered. Fact-checking, on the other hand, is contemplated 
only as a remedy after the hoax infection. Another class of models uses branching 
processes on signed networks to take into account user polarization  [18]. Neither 
type, however, takes into account in the same model the three aforementioned mech-
anisms—competition between hoax and fact-checking, forgetting mechanisms and 
segregation.

To consider all these features, here we introduce a simple agent-based model in 
which individuals are endowed with finite memory and a fixed predisposition toward 
factual verification. In this model, hoaxes and fact-checks compete on a network 
formed by two groups, the gullible and the skeptic, marked by a different tendency 
to believe in the hoax. Varying the level of segregation in the network, as well as the 
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relative credibility of the hoax among the two groups, we look at whether the hoax 
becomes endemic or instead is eradicated from the whole population.

Model

Here we describe a model of the spread of the belief in a hoax and the related fact-
checking within a social network of agents with finite memory. An agent can be 
in any of the following three states: ‘Susceptible’ (denoted by S), if they have not 
heard about neither the hoax nor the fact checking, or if they have forgotten about it; 
‘Believer’ (B), if they believe in the hoax and choose to spread it; and ‘Fact-checker’ 
(F) if they know the hoax is false—for example after having consulted an accurate 
news source—and choose to spread the fact-checking.

Let us consider the i-th agent at time step t and let us denote with nX
i
(t) the num-

ber of its neighbors in state X ∈ {S,B,F} . We assume that an agent ‘decides’ to 
believe in either the hoax or the fact checking as a result of interaction over inter-
personal ties. This could be due to social conformity [5] or because agents accept 
information from their neighbors [41]. Second, we assume that the hoax displays an 
intrinsic credibility � ∈ [0, 1] , which, all else being equal, makes it more believable 
than the fact-checking. We will discuss later how this parameter can be also related 
to the users: by now, we consider it as a feature of the hoax. Thus, the probability of 
transitioning from S to either B or F are given by functions fi , and gi , respectively:

where � ∈ [0, 1] is the overall spreading rate. Furthermore, agents who have been 
infected by the news, either as believer or fact-checker, can ‘forget’ and become sus-
ceptible again with a fixed probability pf . This probability can also represent the 
strength of a belief: indeed, psychologists observed that people can assume different 
propensities in remembering facts or changing opinion towards a false news, even if 
they have been exposed to the fact-checking [34, 35].

Finally, any believer who has not forgotten the hoax yet can decide to check the 
news and stop believing in the hoax, becoming a fact-checker. This happens with 
probability pv . In any other case, an agent remains in its current state. The full 
model with the transition states are shown in Fig. 1.

Observe that fi(t) + gi(t) = � , which is equivalent to the infection rate of the SIS 
model. Indeed, if one considers the two states B and F as single ‘Infected’ state (I), 
then our model is reduced to an SIS model, with the only difference that the prob-
ability of recovery � is denoted by pf.

(1)fi(t) = �
nB
i
(1 + �)

nB
i
(1 + �) + nF

i
(1 − �)

(2)gi(t) = �
nF
i
(1 − �)

nB
i
(1 + �) + nF

i
(1 − �)
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Let us denote by si(t) the state of the ith agent at time t, and let us define, 
for X ∈ {B,F, S} , the state indicator function sX

i
(t) = �(si(t),X) . The triple 

pi(t) =
[
pB
i
(t), pF

i
(t), pS

i
(t)
]
 describes the probability that a node i is in any of the 

three states at time t. The dynamics of the system at time t + 1 will be then given by 
a random realization of pi at t + 1 . Thus, pi(t + 1) can be described as:

In previous work [44] we analyzed the behavior of the model at equilibrium. Start-
ing from a well-mixed topology of N agents, in which a few agents have been ini-
tially seeded as believers, we derived the expressions for the density of believers, 
fact-checkers, and susceptible agents in the infinite-time limit denoted by B∞ , F∞ , 
and S∞ , respectively. We found that, independent of the network topology (Barabási-
Albert and Erdős-Rényi), the value of pv , and of � , S∞ stabilizes around the same 
values in all simulations. We confirmed such a result using both mean-field equa-
tions and simulations.

Once the system reaches equilibrium, the relative ratio between believers and fact 
checkers is determined by � and pv : such as the higher � , the more believers, and 
conversely for pv . In particular, we showed that there always exists a critical value of 
pv above which the hoax is completely eradicated from the network (i.e., B∞ = 0 ). 
This value depends on � and pf , but not on the spreading rate �.

As one can see, the model has several parameters, namely, spreading rate � , cred-
ibility of the hoax � , probability of verification pv and probability of forgetting pf . 
Since, in the present work, we want to consider the role of communities of people 
with different attitudes to believe to an hoax, the number ofparameters is going to 
increase.

As an attempt to reduce the number of parameters, we set

This simplification can be motivated by assuming that the more credible a piece 
of news is, the lower are the chances anybody will try to check its veracity. This 
means that we restrict the parameters space pv × � to a line. This constrain can be 

(3)pB
i
(t + 1) = fi(t)s

S
i
(t) + (1 − pf)(1 − pv)s

B
i
(t)

(4)pF
i
(t + 1) = gi(t)s

S
i
(t) + pv(1 − pf)s

B
i
(t) + (1 − pf)s

F
i
(t)

(5)pS
i
(t + 1) = pf

[
sB
i
(t) + sF

i
(t)
]
+
[
1 − fi(t) − gi(t)

]
sS
i
(t)

(6)pv = 1 − �.

Fig. 1  The transitions states for 
the generic ith agent of our hoax 
epidemic model. To simplify the 
model, here we set pv = 1 − � S

B F

fi(t) gi(t)

1 − fi(t) − g(t)

pv (1 − pf )

pf

(1 − pv) (1− pf )

pf

(1 − pf )
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easily observed in Fig. 2 (left), where the curve represents the analytic threshold on 
the verifying probability. Above it the hoax becomes endemic, over it the hoax is 
completely removed. We note that even with this additional constrain, this new, sim-
plified model exhibits the same behaviors that our original model can produce (i.e., 
believers survive or not).

Recomputing the mean-field equations with Eq. 6, we obtain now a critical value 
for pf , a sufficient condition that guarantees the removal of the hoax from the network:

(7)pf ≤
(1 − �)2

1 + �2
⟹ pB(∞) = 0.

Fig. 2  Simplification of the model setting pv = 1 − � , here fixing pf = 0.1 on scale-free networks of 
1000 nodes. On the left we can observe the phase diagram of the entire parameter space considered for 
the model. In the present work we are restricting it to the dashed line, but we preserve all the possible 
configurations of the model. The right panel shows two random realizations of the number of believers 
over time, for two different sets of parameters ( � = 0.4 and � = 0.9 ) whose respective locations in the 
� × pv space are shown in the left panel. Believers can survive (dark line) or not (pale line)

Fig. 3  Epidemic threshold for 
the simplified version of the 
model given by Eq. 6. The grey 
area indicates the region of 
the parameter space where the 
hoax is completely removed 
from the network. The white 
part indicates the region of the 
parameter space where the hoax 
can become endemic



267

1 3

Journal of Computational Social Science (2018) 1:261–275 

The behaviour of pf versus � is shown in Fig. 3. For any combination of pf and � 
below the curve, the hoax is completely removed from the network. For combina-
tions above the curve, the infection is instead endemic. The forgetting probability 
can be considered as a measure of the attention toward a specific topic, meaning that 
if there is a large discussion around the subject, then exposed people tend to have a 
stable opinion about it, otherwise the probability to forget the belief and the news 
will be higher. The presence of this threshold in Eq. 7 could suggest that the level of 
attention plays an important role in fake news global spread and persistence.

Results

Two parameters govern the spreading dynamics in our model. These are the cred-
ibility � and forgetting probability pf . To address our research question about the 
role of network structure and communities, we consider a simple generative model 
of a segregated network. Let us consider N agents divided into two groups, one com-
prised by t < N agents whose beliefs conform more to the hoax than the other one, 
which is comprised by the rest of the population. We call the former the gullible 
group, while the latter the skeptic group. To represent this in our framework, we set 
different values of � for each agent group (either �gu or �sk , 𝛼gu > 𝛼sk ). This is not a 
contradiction with what we said before: the credibility is a parameter describing the 
hoax, but of course is also related to the user attitude and personal worldviews, then 
it is reasonable to think different groups having different values of it.

To generate the network, we assign M edges at random. Let s ∈
[
1

2
, 1
)
 denote the 

fraction of intra-group edges, regardless of the group. For each edge we first decide, 
with probability s, whether two individuals from the same group (intra-group tie) or 
different groups (inter-group tie) should be connected. In the case of an intra-group 
tie, we select a group with probability proportional to the relative ratio of the total 
number of possible inter-group ties (of that group) to that of the whole network; 
then, we pick uniformly at random two agents from that group and connect them. In 
the second case, two agents are chosen at random, one per group, and connected. 
Figure 4 shows three examples of networks with different values of s.

To understand the behavior of the model in this segregated network, we per-
formed extensive numerical simulations with networks of 1000 nodes. We set fixed 
values for �sk and we considered a wide range of values of �gu , pf , s, and t. Fig-
ure 5 reports the results of the first of these exercises, showing the overall number of 
believers B∞ in the whole population at equilibrium.

Increasing either s or �gu we see an increase of B∞ , all else being equal. However, 
when we change the forgetting probability pf we observe two different situations: for 
small pf , an increase of s results in an increase of B∞ . Conversely—and perhaps a 
bit surprisingly—under high values of pf increasing s does not change B∞.

Trying to better understand the role of pf , we further explore the behavior of the 
model by varying the size of the gullible group � and its level of segregation s. In 
Fig. 6 we report the relevant phase diagrams, breaking down the number of believers 
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at equilibrium by group, i.e., B∞ = B
gu
∞ + Bsk

∞
 . If pf is low (Fig 6, left column), the 

overall number of believers depends heavily on Bgu
∞ , whereas Bsk

∞
≈ 0 , and the segre-

gation is unimportant, see Fig. 6a, c, e.

(a) (b)

(c)

Fig. 4  Network structure under different segregation regimes between two groups (in this case of equal 
size). In the figure, three different values of s were used to generate an example network of 1000 nodes a 
s = 0.6 , b s = 0.8 , and c s = 0.95 . Node layout was computed using a force-directed algorithm [22]

(a) (b)

Fig. 5  Believers at equilibrium in the phase space of s × �gu . We considered two forgetting regimes: a 
low forgetting, pf = 0.1 , and b high forgetting, pf = 0.8 . Other parameters: �sk = 0.4 , N = 1000 . Each 
point was averaged over 50 simulations
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Instead, with an high rate of forgetting (right column), B∞ (Fig. 6f) depends on 
both Bsk

∞
 and Bgu

∞ . But in this case we have a different role of the segregation: while 
in the skeptic group Bsk

∞
 decreases when s increases, see Fig. 6d, in the gullible group 

s has fewer influence, see Fig. 6b.
To give an analytical support to our findings, we obtain mean-field approximation 

for the model (details in the “Appendix”) and we perform both numerical integration 
of the mean field equations and agent-based simulations, which give very similar 

(a) (b)

(c) (d)

(e) (f)

Fig. 6  Believers at equilibrium under low ( pf = 0.1 ) and high forgetting ( pf = 0.8 ) rate. The number of 
believers at equilibrium is broken down as B∞ = B

gu
∞ + Bsk

∞
 . Phase diagrams in the space s × � for a Bgu

∞ , 
low forgetting, b Bgu

∞ , high forgetting, c Bsk
∞

 , low forgetting, d Bsk
∞

 , high forgetting, e B∞ , low forgetting, 
and f B∞ , high forgetting. We fixed N = 1000 , �gu = 0.9 and �sk = 0.05



270 Journal of Computational Social Science (2018) 1:261–275

1 3

results. Figure 7 shows the phase diagrams obtained by numerical simulations of the 
mean-field equations.

Summarizing, segregation can have a very different role on the final configura-
tion of the hoax spreading and this depends on the forgetting rate. Why the number 
of links among communities with different behaviors is so important? It should be 
noted that any ‘network effect’ present in our model will only appear in the infec-
tion phase, that is for transitions S → B and S → F . To better understand what hap-
pens in both groups, we computed the rate at which these transitions happen, that 
is, the conditional probability of, being susceptible, becoming either believer or fact 
checker.

Let us consider a susceptible agent in the gullible group. At low forgetting rates, 
in the gullible group more intra-group ties (i.e., an higher s) increase the chances of 
becoming a believer and reduce those of becoming fact-checker; see Fig. 8 (top left). 
In the skeptic group, the segregation effect is almost negligible (top right). This hap-
pens because inter-group ties expose the susceptible agents, among the gullible, to 
more members of the skeptic group, who are largely fact-checkers.

G
ullible B

elievers
S

keptic B
elievers

Total B
elievers

0.5 0.6 0.7 0.8 0.9 1.0
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1.00
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1.00
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G
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S

keptic B
elievers
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0.50

0.75
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1.00
density
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Fig. 7  Mean-field approximation for different values of pv : these phase diagrams represent the density of 
Believers at equilibrium varying � and s, exactly as in Fig. 6
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At high forgetting rates, instead, we observe the opposite behavior: more inter-
group ties translate into more exposure, for susceptible users in the skeptic group, to 
gullible agents who are, by and large, believers. In the gullible group (bottom left of 
Fig. 8), segregation is not very important while, in the skeptic group, more connec-
tions with the gullible means more believers (bottom right of Fig. 8).

In other words, the role of segregation, being related to the abundance of inter-
group ties, can have both a positive and negative role in stopping the spread of mis-
information: for low forgetting rates, these links can help the spread of the debunk-
ing in the gullible group, while for high forgetting rates, they have the opposite 
effect, helping the hoax spread in the skeptic group.

Discussion

Using agent-based simulations, here we have analyzed the role of the underly-
ing structure of the network on which the diffusion of a piece of misinformation 
takes place. In particular we consider a network formed by two groups—gul-
lible and skeptic—characterized by different values of the credibility parameter 
� . To study how the social structure shapes information exposure, we introduce 
a parameter s that regulates the abundance of ties between these two groups. We 
observe that s has an important role in the diffusion of misinformation. If the 
probability of forgetting pf is small then the fraction of the population affected 

Fig. 8  Rate of transitions of type S → B and S → F at equilibrium. We run the simulation until the sys-
tem has reached the steady state and then compute the average number of transitions per susceptible. The 
plot shows averages over 50 simulations on networks of 1000 nodes
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by the hoax will be large or small depending on whether the network is, respec-
tively, segregated or not. However, if the rate of forgetting is large, segrega-
tion has a somewhat different effect on the spread of the hoax, and the presence 
of links among communities can promote the diffusion of the misinformation 
within the skeptic communities.

The probability of forgetting could be also interpreted as a measure of how 
much a given topic is discussed. A low value of pf could perhaps fit well with 
the scenario of  ideas whose belief tends to be more persistent over time, for 
example conspiracy theories. A high value of pf could fit better with situations 
where beliefs are short lived, either because the claims are easy to debunk or 
are no more interesting than mere gossip, whose information value is transient. 
Hoaxes about the alleged death of celebrities, for instance, could fall within this 
latter category.

On the basis of the findings presented in this paper, further research should be 
devoted to understanding the role of network segregation in the spread of misin-
formation on social media. In the case of conspiracy theories, it could be useful 
to analyze what happens if the communication among different groups increases. 
Moreover, it could be also interesting to consider more realistic situations in 
which rumors or hoaxes have different level of credibility for different agents—
for example, based on socio-economic features and other individual-level attrib-
utes—or where the likelihood of verifying ( B → F ) depends on the state of the 
network, as opposed to having a constant rate of occurrence pv , as we do here.

Our results are also important from a purely theoretical point of view. Indeed, 
the model we had introduced in prior work, and on which we build upon here, 
was an example of an epidemic process that is not affected by the network topol-
ogy, meaning that the structure does not influence the final configuration of the 
network—indeed, it could be proved that there are no significant differences in 
the behavior of the spreading dynamics in random or scale-free networks [44]. In 
the present work, however, we show that network structure can actually become 
very important if we add an extra element of complexity, characterizing groups 
of nodes with slightly different behaviors (here different values of the credibility 
parameter). This points to the need for more research, experiments, and simu-
lations to understand which parameters are sensitive to the segregation level, 
or some other topological measure, even in models that have usually topology-
independent dynamics.

In conclusion, understanding the production and consumption of misinforma-
tion is a critical issue  [15]. As several episodes are showing, there are obvi-
ous consequences connected to the uncontrolled production and consumption of 
inaccurate information [26]. A more thorough understanding of rumor propaga-
tion and the structural properties of the information exchange networks on which 
this happens may help mitigate these risks.
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Appendix: Mean‑field computations

In previous work we showed mean-field analysis for our model on a homogene-
ous network [44]. Similarly, here we perform a similar analysis for our model on 
a network segregated in two groups, skeptic and gullible: for each group we have 
three equations (see Eq. 5) representing the spreading process.

In these equations we can substitute si(t) with pi(t) and when t → ∞ we can assume 
pi(t) = pi(t + 1) = pi(∞) for all i ∈ N . Hereafter we simplify the notation using 
pB
g
(∞) = pB

g
 (and analogously for the other cases). Now, let us consider the spread-

ing functions for the gullible agents. Similar equations can be written for the case of 
skeptic agents. The spreading functions are:

Assuming that all vertices have the same number of neighbors ⟨k⟩ , and that these 
neighbors are chosen randomly, we can write nB

i
= s ⋅ nBig + (1 − s) ⋅ nB

isk
 , where 

nB
ig
= � ⋅ ⟨k⟩pB

g
 and nB

isk
= (1 − �) ⋅ ⟨k⟩pB
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 . Similarly, for nF

i
 , we can obtain an expres-

sion that is not dependent on i. This simplifies the equations and lets us to simulate 
the process iterating the application of them until the values of pS

sk
, pB

sk
, pF

sk
, pS

g
, pB

g
, pF

g
 

have reached stability.
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