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Social interactions present opportunities for both information and infection to spread 
through populations. Social learning is often proposed as a key benefit of sociality, 
while infectious disease spread are proposed as a major cost. Multiple empirical and 
theoretical studies have demonstrated the importance of social structure for the trans-
mission of either information or harmful pathogens and parasites, but rarely in com-
bination. We provide an overview of relevant empirical studies, discuss differences in 
the transmission processes of infection and information, and review how these pro-
cesses have been modelled. Finally, we highlight ways in which animal social network 
structure and dynamics might mediate the tradeoff between the sharing of informa-
tion and infection. We reveal how modular social network structures can promote the 
spread of information and mitigate against the spread of infection relative to other 
network structures. We discuss how the maintenance of long-term social bonds, clus-
tering of social contacts in time, and adaptive plasticity in behavioural interactions, 
all play important roles in influencing the transmission of information and infection. 
We provide novel hypotheses and suggest new directions for research that quantifies 
the transmission of information and infection simultaneously across different network 
structures to help tease apart their influence on the evolution of social behaviour.
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Forum

The elevated risk of infectious disease and benefits of information represent a clear tradeoff 
for animals engaging in social interactions with others, but this has rarely been considered 
in a systematic way. We review the latest developments in network modelling to evaluate 
how differences between information and parasite transmission, social structure and social 
dynamics can mediate this tradeoff. Our synthesis provides new predictions for this emerging 
area of ecological research and highlights how considering both information and infection 
together can transform our understanding of the evolutionary ecology of sociality in  
diverse systems. 
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Introduction

The diversity of social systems in animals is shaped by differ-
ences among populations in the costs and benefits of different 
types of social interaction (Krause et al. 2002). The sharing 
of information provides one key benefit that improves fitness 
of more sociable individuals (Danchin et al. 2004, Dall et al. 
2005), while the risk of acquiring pathogens or parasites 
(collectively referred to as ‘parasites’ from here onwards) rep-
resents an important cost of sociality (Krause  et  al. 2002, 
Ezenwa  et  al. 2016b, Ezenwa and Worsley-Tonks 2018). 
While extensive work has been carried out examining the 
role of social interactions in information spread and infec-
tious disease independently, the potential interactions and 
tradeoffs between them has only recently started to be con-
sidered (Romano  et  al. 2020). An important future chal-
lenge in evolutionary ecology will be to identify whether, and 
how, natural selection might favour social structures that can 
simultaneously optimise information-sharing and reduce the 
spread of infection in social species (Romano  et  al. 2020). 
The solution to this evolutionary problem will depend on the 
differences in transmission dynamics between information 
and infection.

Social network analyses and modelling are increasingly 
used to study animal social behaviour, and these approaches 
have greatly benefitted research into the spread of parasites 
(Godfrey 2013, VanderWaal and Ezenwa 2016) and infor-
mation (Firth 2020) in wild animals. Interactions with 
more individuals result in increased opportunities for para-
site transmission, while simultaneously making it possible 
for information to proliferate within a group or population. 
When an infection is present, the interplay between infec-
tion and information may lead to both long- and short-term 
changes in social structures, which can affect both individual 
fitness and entire populations (Pelletier et al. 2009, Shizuka 
and Johnson 2020). However, studying the tradeoff between 
efficient information transmission and rapid spread of para-
sites is challenging due to the difficulty of combining data 
that reveal infection status, and data that indicate informa-
tion transmission. Consequently, while network studies have 
examined how social relationships impact the transmission 
of either infection or information separately, there has, until 
recently, been little consideration of the interplay between 
information and infection spread within animal social net-
works (Romano et al. 2020). As technology and techniques 
are increasingly becoming available that facilitate empirical 
research and data-driven modelling on the co-dynamics of 
information spread, parasite transmission and social net-
work structure, it is important to synthesise existing knowl-
edge across disciplinary boundaries to identify key research 
questions and challenges. Theoretical models, not just in the 
field of behavioural ecology, but also in network science and 
epidemiology more broadly, can also be integrated to pro-
vide a rich source from which to generate predictions about 
the tradeoff between infection and information, and how 
this tradeoff may shape the evolutionary ecology of animal  
social systems.

Here we synthesise knowledge on the role of social net-
works in transmission of information and parasites and 
develop hypotheses regarding how animal social systems may 
be adapted to reconcile the tradeoff between acquiring infor-
mation and becoming infected by parasites. We briefly review 
studies examining the transmission of parasites and informa-
tion in animal social networks. We then highlight potential 
differences between the transmission processes of informa-
tion and infection that will mediate this tradeoff. Finally, we 
discuss how social relationships may be adapted to optimise 
both types of transmission, integrating insights from the 
network modelling literature and through empirical work in 
natural populations. Throughout we emphasise new avenues 
of study into the flow of parasites and information through 
animal social networks to promote a better understanding 
of how these two important ecological processes affect each 
other.

Parasite transmission in animal social 
networks

The transmission of parasites that cause infectious disease can 
happen directly via specific types of behavioural interaction 
or indirectly via the environment (e.g. an individual using 
a refuge that has been contaminated by an infectious indi-
vidual) (White  et  al. 2017). Many infections are endemic, 
persisting stably within a host population for a long period of 
time (Viana et al. 2014). Others are emergent, acquired either 
from a long-term environmental reservoir or spilling over 
from alternative host species (Daszak et al. 2000). Networks 
of spatial associations and behavioural interactions are now 
known to be closely associated with epidemiology in wild 
animal populations (Weber  et  al. 2013, VanderWaal  et  al. 
2014). Overall network structure is critical in determining 
how parasites spread through populations. For example, the 
presence of distinct social communities can limit the spread 
of infection in animal groups or populations (Griffin and 
Nunn 2012, Sah  et  al. 2017). Social network analysis can 
also help identify potential routes of transmission (Silk et al. 
2017a, White et al. 2017), determine individual variation in 
transmission potential (VanderWaal and Ezenwa 2016) and 
predict or explain how infection spreads through populations 
(Craft 2015, Silk et al. 2017b). Network analyses have also 
revealed associations between individual phenotypes, infec-
tion and network position. For example, European badgers 
Meles meles that test positive for bovine tuberculosis tend to 
have fewer connections to their own social group and more 
social connections with neighbouring groups (Weber  et  al. 
2013), and male-biased infection is associated with sex-dif-
ferences in social network position (Silk et al. 2018c).

Fine-scale social networks can be used to identify if and 
how different types of social interaction generate transmis-
sion opportunities. The most important type of contact for 
transmission may vary among systems: in some species direct 
social contacts may be more important than shared space use 
(Blyton et al. 2014, VanderWaal et al. 2014). More recently, 
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the importance of cryptic contacts has been revealed in a 
mixed-species community of bats, with social networks based 
solely on the sharing of, or physical contact at, roosts not 
sufficient to capture fungal pathogen transmission dynamics 
(Hoyt et al. 2018). Together these studies reveal that using 
social networks in disease ecology might help to identify 
potential transmission routes, but might be uninformative 
and potentially misleading if the types of social interactions 
modelled are not those that facilitate parasite spread.

Infection may lead to temporal changes to network struc-
ture by changing patterns of social behaviour (Ezenwa et al. 
2016a). Parasites often manipulate the host’s social behav-
iour to facilitate further transmission (Berdoy  et  al. 2000, 
Loot  et  al. 2001, Randall  et  al. 2006), while the social 
behaviour of the infected host and/or the individuals that 
interact with it might change to prevent spread, resulting in 
co-dynamics between parasite spread and network structure 
(Silk et al. 2017a). In guppies Poecilia reticulata for example, 
infected individual are avoided by uninfected fish, making 
sick individuals less well connected and causing the net-
works to become less clustered overall (Croft et al. 2011). At 
a network-level these behaviour–infection co-dynamics can 
have a protective effect. In ants, for example, social networks 
of infected colonies become more modular and assortative, 
resulting in them becoming less efficient in terms of infor-
mation transmission capacity but more effective at limiting 
the spread of infection (Stroeymeyt  et  al. 2018). It is clear 
then that variation in connectivity among individuals, the 
resultant network structure and changes in network dynam-
ics following infection, all have important implications for 
the emergence, spread and persistence of parasites in wildlife 
populations.

Information transmission in animal social 
networks

Information can be acquired by sampling the environ-
ment (personal information; Dall et al. 2005) or by observ-
ing or interacting with other individuals or their products 
(social information; Danchin et al. 2004, Dall et al. 2005). 
Individuals can spread social information inadvertently or 
can choose to deliberately transmit information via signals. A 
receiver must then decide whether to act on this information 
or not (Dall et al. 2005, Schmidt et al. 2010). The transfer of 
social information usually requires sensory contact between 
individuals and is therefore linked directly to spatial associa-
tion and/or behavioural interactions. Consequently, as with 
parasite transmission, an individual’s social network posi-
tion causes variation in the probability and rate of receipt of 
information, and their contribution to the speed and quality 
of information transmission through a population (Lusseau 
2003, Lusseau and Newman 2004, Modlmeier et al. 2014, 
Firth 2020). Depending on the duration information is useful 
for, an individual’s network position will strongly influence 
how they can utilise this information. For example, informa-
tion such as the discovery of a resource location (Blonder and 

Dornhaus 2011, Aplin et al. 2012, Webster et al. 2013) may 
only be accurate for a short time if a resource is ephemeral or 
is rapidly depleted. A central network position or high level 
of connectivity to the individual who initially discovers such 
resources will be highly beneficial to potential recipients, 
as demonstrated in several studies of the influence of net-
work position on food patch discovery in flocks of songbirds 
(Aplin et al. 2012, 2015, Jones et al. 2017, Tóth et al. 2017). 
Therefore, when information-gathering is beneficial, group 
members may be attracted to individuals who regularly pro-
vide information, changing their position in the social net-
work. In ring tailed lemurs Lemur catta, for example, this 
led to informed individuals occupying more central network 
positions (Kulahci et al. 2018).

Social associations are also linked to the spread, through 
social learning, of behavioural innovations which can arise via 
trial and error learning (Allen et al. 2013, Aplin et al. 2014). 
Such innovations range from simply adopting a new foraging 
ground (Schakner et al. 2017) to tool use (Mann et al. 2012, 
Hobaiter et al. 2014, Coelho et al. 2015, St Clair et al. 2015) 
or novel foraging techniques (Kendal et al. 2010, Aplin et al. 
2014, Boogert et al. 2014). Innovations of long-term value 
can be transmitted to subsequent generations (Cantor and 
Whitehead 2013, Aplin et al. 2014) and impact long-term 
social structure, provided individuals alter their social inter-
actions to maximise their chances of acquiring information 
(Coelho et al. 2015, Kulahci et al. 2018). One possible out-
come is that long-term, preferential associations with indi-
viduals who adopt the same behaviours (Mann et al. 2012) 
will homogenise behavioural repertoires in any given group 
and can establish ‘animal cultures’ (Krützen  et  al. 2005, 
Allen  et  al. 2013, Aplin  et  al. 2014). For example, bottle-
nose dolphins Tursiops spp. using marine sponges as tools 
during foraging have been shown to preferentially associ-
ate with other tool users (Krützen et al. 2005, Mann et al. 
2012). This behavioural homogenisation may, depending on 
initial network structure, increase connectedness which can 
lead to the structure of networks becoming more random. 
Alternatively, if networks are already divided into distinct 
social communities, these groups might become increasingly 
isolated from each other (Morgan and Laland 2012, Cantor 
and Whitehead 2013).

Generally, the transmission of social information is con-
sidered to benefit the recipient individuals. However, there is 
potential for information transmitted to be outdated, poor, 
corrupted or misleading (Koops 2004, Ward  et  al. 2008, 
Schmidt et al. 2010, Preece and Beekman 2014, Klein et al. 
2018). While such information might simply result in wasted 
time and energy (Giraldeau  et  al. 2002, Dall  et  al. 2005, 
Preece and Beekman 2014), more severe costs are possible 
depending on the value of accurate information (Koops 
2004, Nocera  et  al. 2005, Rieucau and Giraldeau 2011). 
For example, inexperienced bobolinks Dolichonyx oryzivorus 
relying on social information to make breeding habitat 
choices were found to settle in and defend sub-optimal ter-
ritories in response to misleading information (Nocera et al. 
2005). The spread of misinformation through a network 
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could have impacts on fitness that resemble the spread of 
parasites (Laland and Williams 1998, Ward  et  al. 2008). 
When learning how to solve problems, individuals com-
monly show strong preference for the first solution to which 
they are exposed (e.g. birds: Aplin et al. 2014, fish: Laland 
and Williams 1998). In competitive situations, recipients of 
suboptimal information might lose out to better informed 
individuals or successful innovators. While the spread of mis-
information has not yet been the subject of empirical study 
using network techniques, there is strong potential for it to 
be important in nature. Similar to parasites, misinformation 
may be more likely to spread through a population if an indi-
vidual transmitting misinformation is highly central to the 
social network, as information from these individuals may be 
more likely to be utilised by others, and their central position 
provides more transmission opportunities (Giraldeau  et  al. 
2002, Ward et al. 2008, Firth 2020).

Differences between information and 
parasite transmission

We have illustrated the importance of an individual’s social 
connections both in their access to and sharing of informa-
tion, and in their exposure to and onward transmission of 
parasites. This suggests that animal societies might suffer a 
direct tradeoff between the transmission of information and 
parasites. However, there are important general (though not 
universal) distinctions between the two transmission pro-
cesses (Table 1).

Most importantly, information transmission will typi-
cally involve choice, sometimes for a transmitter, who can 
choose when to transmit information and to whom, and 
always for the receiver, who chooses whether to alter their 
behaviour based on the information. Choice by the receiver 
means that the social transmission of information does not 
necessarily depend on a simple probability of transmission 
associated with each interaction (Bakshy et al. 2009, Jackson 
and López-Pintado 2013). Individuals may require multiple 
exposures to a transmitter, or require a certain proportion of 
social connections to be transmitting before choosing to uti-
lise a piece of information (Bakshy et al. 2009, Jackson and 
López-Pintado 2013). For example, chimpanzees were more 
likely to acquire a behaviour if it was demonstrated by three 
different individuals than when it was demonstrated three 
times by a single individual (Haun et al. 2012). Evidence for 
such social conformity, where naïve individuals dispropor-
tionally copy the behaviour demonstrated by the majority of 
conspecifics, has also been reported for mate-choice copying 
in fruit flies (Nöbel et al. 2018) and great tits solving puzzle 
boxes in the wild (Aplin et al. 2015). This information trans-
mission process differs from parasite transmission where 1) 
the risk of acquiring infection rises monotonically with the 
duration and/or number of contacts with infected individu-
als, and 2) having multiple infected social connections pres-
ents more opportunities for contact with infected individuals, 
but does not alter the per-interaction probability of infection. 
Therefore, in species showing conformist social learning strat-
egies, the acceptance of information depends on the relative 
magnitude of exposure to transmitters and non-transmitters 

Table 1. Summary of the general key differences in mechanisms and consequences of information and parasite transmission.

Infection Information

Transmitter decisions Individuals inadvertently infect others (though 
parasites might change host behaviour to 
facilitate infection).

Individuals can inadvertently inform others (e.g. through 
cues/eavesdropping) or choose to deliberately inform 
others (e.g. signals). 

Receiver decisions Recipients of parasites cannot choose whether 
they become infected or not.

Individuals decide whether to alter their behaviour based 
on the information received.

Number of transmitters The probability of infection depends directly on 
the absolute magnitude of exposure. The 
number of simultaneously infected associates 
does not affect per-contact likelihood of 
infection.

The probability of accepting information can depend on 
the relative magnitude of exposure to transmitters and 
non-transmitters. The proportion and phenotypic traits of 
associates transmitting information can influence 
whether an individual uses information received (i.e. 
social learning strategies).

Social relationships Prior social relationships have no effect on the 
per-contact likelihood of infection.

Prior social relationships can influence whether an 
individual adopts information received.

Transmission vectors Parasites spread mainly through direct physical 
contact or close proximity, or via shared use of 
environmental reservoirs.

Information spread does not tend to require physical 
contact and can potentially occur via long-range sensory 
interactions.

Heterospecific 
transmission

Parasites can spread between species,  
though this may require adaptation  
by the parasite. 

Information can spread between species. Receiver may 
require adaptation or learning to utilise information from 
heterospecifics.

Selection Selection acts on both the host and  
the parasites they transmit.

Selection acts on the information transmitter and receiver, 
but only indirectly on the information being transmitted.

Behavioural changes Infected individuals are often avoided by group 
members, and become less well-connected 
in the social network. Infections might 
manipulate host behaviour to increase 
probabilities of onward transmission.

Informed individuals can be desirable to associate with, 
and become better connected in the social network.
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of information in a frequency-dependent manner, and simi-
lar non-linear changes in the likelihood of transmission can 
also occur for other social learning strategies.

Another key difference between information and infection 
is the effect that prior social associations can have on the likeli-
hood of transmission. The current and previous social relation-
ships of an individual can directly impact the probability of 
using information acquired through a particular social interac-
tion. This phenomenon was first coined ‘directed social learn-
ing’ (Coussi-Korbel and Fragaszy 1995) and later described as 
one of many potential ‘social learning strategies’ (Laland 2004). 
Some of the clearest evidence of such a ‘Whom to learn from’ 
social learning strategy comes from the importance of familiar-
ity for the rate of social learning in many species (Swaney et al. 
2001, Kavaliers  et  al. 2005). Information from a familiar 
individual may result in an immediate change in behaviour, 
whereas an animal may require more exposures to a piece of 
information if the source is unfamiliar. Transmitter familiar-
ity is one of several relationship traits that might influence the 
decision to use a piece of information, with traits such as relat-
edness or social rank also potentially important (Valsecchi et al. 
1996, Radford 2004, Kavaliers et al. 2005, Boogert et al. 2018, 
Evans  et  al. 2018). Relationship traits can also interact with 
the ambiguity of transmitted information (Ward et al. 2008) 
and the phenotype of the transmitter, such as their experi-
ence (McComb et al. 2001) or obvious fitness cues (Toth and 
Griggio 2011), to shape the likelihood of information being 
used. Similarly, it is possible for prior social relationships with 
other group members to have a profound effect on the health 
of individuals in social species (Sapolsky 2005), and the social 
buffering hypothesis (Ezenwa et al. 2016b) proposes that posi-
tive social relationships can increase resistance to, and tolerance 
of, infection in group-living species (Walker and Hughes 2009, 
Scharf et al. 2012, Almberg et al. 2015, Balasubramaniam et al. 
2016, Ezenwa and Worsley-Tonks 2018). However, unlike the 
spread of information, this is a general effect and specific prior 
relationships with infected individuals do not influence the 
transmission process in the same way that prior relationships 
with informed individuals do.

Another important consideration is how information and 
infection are transmitted. Social information can be trans-
mitted in multiple ways (Danchin et al. 2004, Blanchet et al. 
2010), which may require prolonged or close interactions 
(e.g. the waggle dance in bees; Von Frisch 1967, Ward et al. 
2008), may be possible with much looser associations (e.g. 
auditory cues; Hollen and Radford 2009), or may be trans-
mitted indirectly via environmental signals or cues (e.g. scent 
marking: Gosling and Roberts 2001). Conversely, parasites 
are likely to be transmitted through a different set of interac-
tions, such as prolonged close contact that facilitates aerosol 
transmission (Delahay  et  al. 2001); shared use of environ-
mental reservoirs of parasites (Godfrey et al. 2009); aggressive 
interactions or mating (Hamilton et al. 2019). The extent of 
the overlap in the types of social interaction that expose indi-
viduals to either information or infection will be important 

in determining the costs and benefits of being central in dif-
ferent types of social network.

Both parasites and information can be transmitted 
between as well as within species. The spillover of parasites 
will typically depend on ecological opportunity provided 
by the frequency of direct and/or indirect (epidemiologi-
cally relevant) contacts between members of the differ-
ent species (Woolhouse et al. 2001, Plowright et al. 2017, 
Faust  et  al. 2018), the phylogenetic similarity of potential 
hosts (Longdon et  al. 2011, Kreuder Johnson et  al. 2015) 
and the evolvability of the parasite; parasites with higher 
mutation rates (e.g. some viruses) can infect a larger range 
of different host species (Woolhouse  et  al. 2001, Kreuder 
Johnson et al. 2015). As with parasite transmission, infor-
mation transmission is also more likely to occur between 
closely related species (Coolen et al. 2003, Seppänen et al. 
2007, Goodale and Kotagama 2008, Goodale  et  al. 2010, 
Dawson and Chittka 2012, Farine  et  al. 2015a), often an 
outcome of them having similar information requirements 
due to sharing ecological challenges (though see: Anne and 
Rasa 1983, Whiting and Greeff 1999, Lilly et al. 2019, for 
transfer between less related species). An animal’s ability to 
utilise information from heterospecifics will also depend on 
the type of information. For example, seeing a heterospecific 
fleeing from a predator and using this as information about 
a potential threat is relatively simple, requiring no advanced 
learning processes or adaptation. However, using a hetero-
specific alarm call to assess threat may require prior experi-
ence with the calling species, so as to learn the association 
between the alarm call and threat (Templeton and Greene 
2007, Ferrari and Chivers 2008, Magrath et al. 2015). As a 
result, the type and quality of information passed between 
species can be highly variable across contexts and species, 
and rates of social learning can differ between conspecific 
and heterospecific relationships (Goodale and Kotagama 
2008, Farine et al. 2015a).

A final important distinction between information and 
parasite transmission is that the former is the subject of selec-
tion only on the host population, while the latter depends 
on selection on both the host and the parasite being trans-
mitted. For example, individuals that acquire novel social 
information may develop new social associations and become 
more central within a social network (Kulahci et al. 2018), 
which may benefit both themselves and other group mem-
bers, especially in highly related groups. This is in direct 
contrast to transmission of infection, where group members 
would be expected to avoid contact with infected individuals 
(Croft et al. 2011, Stephenson et al. 2018), which can lead 
uninfected individuals to become more central as a result of 
parasite spread (Shaw and Schwartz 2008). A key compo-
nent of this difference between infection and information is 
that there is often antagonistic selection on sickness behav-
iours between hosts and their parasites, whereby hosts will be 
selected to behave to avoid infecting (related) group members 
(Croft et al. 2011, Lopes et al. 2016), while parasites will be 
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selected to cause host behaviours that maximise transmission 
(e.g. furious behaviour in rabid canines; Randall et al. 2006).

The outcome of these differences between the transmis-
sion of infection and information is that while infection 
can be considered a simple contagion process, the spread of 
information is increasingly considered a complex contagion 
(Macy 1991, Centola 2010) affected by many of the social 
learning rules described above. Consequently, the spread of 
parasites has normally been modelled as a simple contagion 
using cascade models (Moore and Newman 2000), in which 
the probability of infection increases with increasing absolute 
exposure to infected individuals. In contrast, the transmission 
of information could be either a simple or complex contagion 
depending on the social learning rules used by individuals. As 
a result, the spread of information has been modelled using a 

variety of dose–response models, including simple cascades, 
threshold models (Kempe et al. 2003), and hybrid cascade–
threshold models (de Kerchove et al. 2009) models (Fig. 1). 
The precise nature of the threshold, and whether it is a true 
threshold (deterministic), a stochastic transmission process 
with a threshold or a continuous dose–response curve, will 
depend on the social learning rules used. The measure of 
exposure used in these models might be relative exposure 
(conformist social learning in response to the prevalence of 
information among social contacts), absolute exposure (social 
learning in response to a minimum number of neighbours 
behaving in a particular way) or based on temporal rules (e.g. 
learning in response to a threshold number of interactions 
with informed individuals in a given time period). Variation 
in the status of informed individuals or their relationships to 

Figure 1. Illustration of cascade and threshold transmission models. (a) Example of a cascade model of simple contagion acting on an 
unweighted network (all individuals have an association strength of either 1 or 0) of 16 individuals over four time steps. Grey lines represent 
social associations, red nodes represent infected/informed individuals while yellow nodes represent individuals who will become infected/
informed in the next time step. In this cascade model an infected/informed individual infects/informs each uninfected neighbour with a 
probability of 0.5 per time step. Solid red lines indicate an infected/informed node successfully infecting/informing a neighbour, while a 
dashed line represents a failure. If successful, the neighbour will become infected/informed in the next time step. (b) A conformist transmis-
sion model (here a true threshold model, but a stochastic implementation would produce similar results) acting on the same network as (a). 
Individuals become infected/informed when 50% of their neighbours are infected/informed. In this simulation, spread stalls at timestep 4 
as there are not enough infected/informed individuals to result in transmission. (c) Comparison between simple and conformist contagion 
models in a random network of 100 individuals, showing the percentage of the population infected over 200 arbitrary time-steps. For the 
simple contagion model there is a probability of 0.8% chance per time-step that infection is transmitted through an edge between an 
infected and susceptible individual. In the conformist model a sigmoid curve is fitted to the likelihood of an individual exploiting informa-
tion with a baseline (asocial) individual learning rate of 0.2% per time-step, a maximum probability of learning of 30% per time-step and 
the threshold (pivot point of the sigmoid function) occurring at 50% of connected individuals providing information. Full R code for the 
model is provided in the Supplementary material Appendix 1.
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the focal individual could be key mechanisms which push 
the transmission process even further away from simple 
contagion.

Using models to capture the differences 
between information and parasite 
transmission

The similarities and differences between information and 
parasite transmission can be captured using dynamic com-
putational modelling tools (Fig. 1), such as compartmen-
tal models. Compartmental models consider the transition 
of individuals between states, with individuals in each state 
assumed to have the same characteristics (Stattner and Vidot 
2011). For example, a susceptible–infected–recovered (SIR) 
model (used commonly in epidemiology) contains three 
states: susceptible (or naïve) individuals; infected with a 
parasite (or exposed to and exploiting the information); and 
recovered individuals who are now immune to that infection 
(or who no longer use the information to inform their behav-
iour, Ssupplementary material Appendix 1 Table A1). When 
applied to transmission through networks, compartmental 
models are typically applied as stochastic individual-based 
models, in which the transition of each individual between 
compartments is modelled separately and depends on the 
properties of their network connections. Such models are 
usually impossible to solve analytically (Craft 2015). These 
models avoid the assumption that populations mix freely, so 
that any individual will be able to infect any other individual 
in a population. General compartmental models applied to 
networks can be used to study parasite transmission (Volz 
2008, Tunc and Shaw 2014), information flow (Wang and 
Wood 2011, Gurley and Johnson 2016), or both simultane-
ously (Wu et al. 2012, Juher et al. 2015). See Supplementary 
material Appendix 1 Table A1 for many examples of simple 
compartmental models that can be applied to both informa-
tion and parasite transmission, and those more suitable for 
detailed models of particular transmission types.

Cascade, threshold and hybrid compartmental models 
can all be adapted to capture system-specific nuances regard-
ing the importance of transmitter identity, social history 
and behaviours that change in response to exposure (Fig. 1). 
Cascade models are typically implemented as stochastic mod-
els, with each additional unit of social interaction associated 
with a linear increase in the risk of infection (Fig. 1a). True 
threshold models are deterministic with individuals mov-
ing between states following fixed rules that are determined 
by the states of their neighbours, and can be used to model 
strictly conformist social learning, for example. Hybrid mod-
els can be used to mix properties of either model, for example 
by introducing stochasticity to the threshold model or incor-
porating continuous dose–response curves. For example, the 
latter might be applicable to studying imperfect conformist 
social learning where changes in state are governed by the 
states of neighbouring individuals according to a sigmoidal 
function rather than a strict threshold (Fig. 1c).

Social structure and the  
infection–information tradeoff

In the following sections, we highlight ways in which ani-
mal social networks might reflect the outcome of selection 
acting on individuals to maximise their acquisition of ben-
eficial information and minimise their risk of being infected 
by parasites. Specifically, we focus on the role of structural 
heterogeneity in social networks, temporal heterogeneity in 
interactions and responsive changes in social interactions. We 
integrate the extent of our current knowledge of animal social 
systems with insights from compartmental network mod-
els (Supplementary material Appendix 1 Table A1) applied 
to theoretical and data-driven network structures in other 
disciplines.

Structural heterogeneity and transmission in animals

The structure of contact networks is integral to transmis-
sion dynamics for cascade models (Moore and Newman 
2000, Newman 2002) and threshold models (Alkemade and 
Castaldi 2005, Hodas and Lerman 2014). We focus on three 
aspects of social network structure that have received con-
siderable research interest and have clear applications to the 
study of animal societies: 1) variation in connectivity among 
individuals causing networks to possess heterogeneous degree 
distributions (the extreme case being networks with scale-free 
properties), 2) small-world structure, which is best envis-
aged as individuals (or ‘nodes’) being connected mostly with 
(spatial) neighbours, but possessing occasional contacts with 
much more distant nodes, resulting in transmission path-
ways through the network that are typically short compared 
to random or modular networks, and 3) modular structure 
that is characterised by densely connected regions (called 
communities) with rather few connections between these 
communities. We depict these different aspects of network 
structure in Fig. 2. Animal social structure is highly variable 
and can display one or multiple of varying connectedness,  
small-world properties or modular properties introduced 
here (Wey et al. 2008).

Heterogeneous degree distributions
Many animal social networks have highly heterogeneous 
degree distributions, with certain highly connected indi-
viduals acting as ‘hubs’. Taking these differences in connec-
tivity into account is important to understand transmission 
dynamics. For parasite spread, models show that more hetero-
geneous degree distributions increase the speed of epidemic 
spread and result in a higher prevalence of epidemic peaks 
due to the presence of highly connected superspreader indi-
viduals (Barthélemy et al. 2004, Lloyd-Smith et al. 2005), but 
reduce the frequency of epidemics (Lloyd-Smith et al. 2005). 
In more extreme situations where networks are truly scale-
free, epidemics can spread almost instantaneously through 
populations (Barthélemy  et  al. 2004), making them espe-
cially vulnerable to parasite spread. For information trans-
mission, the role of degree heterogeneity is more complex. In 
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Figure 2. Demonstration of three key types of network structure with important implications for transmission. The network structure (a–c), 
degree distribution (d–f ) and transmission dynamics (g–i) of a simple contagion model for infection (red) and conformist contagion model 
for information (blue) are illustrated. All networks plotted here have the same edge densities (proportion of potential edges that are con-
nected). Scale-free (or approximately scale-free) networks (a, d, g) have highly heterogeneous degree distributions (i.e. high variation in 
connectivity) with some high-degree (very well connected) individuals acting as ‘hubs’, causing average path lengths to be short and result-
ing in very rapid spread of parasites but slower spread of information. In small-world networks (b, e, h) most connections are to neighbours, 
but occasional long-range contacts act as ‘bridges’, maintaining short average path lengths and enabling more rapid diffusion than random 
networks, and permitting faster spread via the cascade than the threshold model. In modular networks (c, f, i) most connections are to 
individuals in the same social community or module, resulting in high transitivity (or clustering of connections to ‘friends of friends’) and 
high average path lengths. Modular networks can have mixed effects on transmission speed that can depend on whether transmission fol-
lows a simple or conformist contagion dynamics. In this example, infection and information are able to spread at similar speeds through the 
modular network (i) but infection spreads more rapidly through scale-free (g) and small-world (h) network structures. Code for generating 
and plotting the networks and running the stochastic models is provided in the Supplementary material Appendix 1.
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some contexts, individuals occupying globally central roles in 
a network are more likely to acquire information (Aplin et al. 
2012, Jones et al. 2017). However, when considering infor-
mation transmission as a complex contagion (as might be 
appropriate when individuals have conformity biases and 
accept information based on relative exposure), it is pos-
sible that individuals with many social connections might 
require stronger signals to distinguish a piece of information 
from the general ‘noise’ received from their many associates 
(Hodas and Lerman 2012, 2014). Conversely, lower-degree 
individuals may be more likely to utilise information sooner, 
as having a smaller number of ties means that fewer transmit-
ting associates are required to achieve conformist transmis-
sion (González-Avella et al. 2011). Differences in the nature 
of transmission between information (when considered to 
spread through complex contagion) and infection may gen-
erate differences in the ‘most susceptible’ network position 
between the two types of transmission that will reduce the 
intensity of any tradeoff between the acquisition of informa-
tion and parasites.

Networks with highly heterogeneous degree distribu-
tions will allow the rapid spread of infection and (often) 
information through populations. However, we hypothesise 
that information will spread more slowly than infection 
through these types of network when conformist social learn-
ing strategies are used. Individuals with a larger number of 
connections will require a larger proportion number of their 
associates to transmit the information in order to achieve the 
same relative magnitude of exposure, compared to less cen-
trally positioned individuals. Hubs may therefore be slower 
to respond to information than less well-connected individu-
als. This will drive differences in which network positions are 
most likely to acquire information and those which are most 
likely to become infected. Being highly connected may be 
disproportionately risky in terms of the risk of infection per 
unit of social information acquired (and used), while being 
embedded within a network region (i.e. sharing contacts with 
your associates) will minimise the risk of becoming infected 
per unit of social information gathered.

Small-world networks
Small-world networks can arise as a result of the majority of 
social associations or interactions occurring mainly with close 
neighbours within groups, but with infrequent longer-range 
connections acting as ‘bridges’ between regions of the net-
work. It is easy to see how small-world properties might arise 
in animal networks through behaviours such as territorial-
ity with occasional extra-territorial forays. For example, in 
African lions Panthera leo contacts between prides are nor-
mally driven by space use, with prides from neighbouring ter-
ritories coming into contact much more frequently. However, 
occasional contacts between prides that are normally spatially 
well-separated do occur, resulting in a network with small-
world properties (Craft et al. 2009). In small-world networks 
the epidemic threshold (i.e. the transmission probability at 
which epidemics become possible) decreases considerably 

as the likelihood of long-range connections in the network 
increases (Moore and Newman 2000). For example, in a ter-
ritorial, monogamous animal this would equate to epidemics 
of a sexually-transmitted infection becoming more likely as 
extra-pair copulations occurred over greater distances rather 
than happening only among neighbouring territories.

As with models of parasite transmission, theoretical models 
predict that information flow will be faster in small-world net-
works than random networks (Alkemade and Castaldi 2005, 
Delre  et  al. 2007, Nekovee  et  al. 2007, de Kerchove  et  al. 
2009) and the importance of multiple social contacts in 
enabling transmission will be increased (de Kerchove  et  al. 
2009). The findings of de Kerchove et al. (2009) suggest that 
to spread information effectively, an individual with long-
range connections must have somewhat stable associations 
to ‘seed’ individuals within the region of the network it is 
connected to, as a single interaction may be insufficient to 
enable transmission. If relative exposure to new information 
is important (i.e. it is necessary for a threshold proportion of 
contacts to be informed before an individual accepts infor-
mation) then we can speculate that these ‘seed’ individuals 
are more likely to be low-degree individuals who adopt infor-
mation more rapidly due to their small number of other con-
nections. The exception to this will occur if highly central 
individuals in the naïve group have a low information-use 
threshold (i.e. they require few demonstrators to transmit the 
information before adopting it themselves), which may be 
the case if individuals that acquire useful information tend 
to become more central in networks or if the bridging indi-
viduals are extremely influential due to their social status (or 
another trait).

Small-world networks are characterised by the impor-
tance of occasional long-range social connections involving 
small number of individuals. We suggest that the importance 
of these ‘bridge’ individuals is easier to predict for parasite 
transmission, while for threshold models of information 
transmission their role will depend to a greater extent on the 
social learning rules of the individuals they are connected to, 
and therefore be more variable. We also predict that social 
dynamics will play a greater role in these small-world net-
works as the death of these ‘bridge’ individuals or changes to 
their interactions will reduce the rate of global transmission 
of infection and information.

Modular network structure
Social networks with distinct social community structure 
are widespread in animals, especially in species living in 
stable social groups (Weinrich 1991, Drewe  et  al. 2009, 
Weber  et  al. 2013). Both community structure and transi-
tivity (the tendency to be connected to ‘friends of friends’) 
reduce the size of parasite outbreaks but can lower the epi-
demic threshold. This makes it easier for less transmissible 
infections to spread, as the presence of many connections 
among the same set of individuals increases the probability 
of local spread, but these local connections reduce the prob-
ability of large-scale epidemics (Newman 2003, Salathé and 
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Jones 2010, Sah et al. 2017). The effect of modular structure 
is greater when interactions between individuals in different 
social communities are more infrequent so that sub-divisions 
between them are stronger (Salathé and Jones 2010, Sah et al. 
2017). A meta-analysis of animal social networks has shown 
that the impact of modularity on the spread of parasites is 
limited except when there are very few connections between 
communities (Sah  et  al. 2017). The impact of modularity 
will also depend on the transmissibility of the parasite. For 
example, Rozins et al. (2018) demonstrated that the effect of 
the modular structure of empirically-derived European bad-
ger contact networks was greatest for simulated parasites with 
intermediate transmissibility (i.e. infectious enough to cause 
an outbreak but not so infectious that it can spread easily 
between social groups).

In contrast, models suggest that modularity may not inter-
fere with information diffusion in the same way. In some 
scenarios a modular network structure may actually increase 
global diffusion by enhancing within-community spread-
ing. For example, Nematzadeh et  al. (2014) used a thresh-
old model to show that conformist social learning strategies 
could lead to information being transmitted most quickly in 
networks of intermediate modularity. The networks of species 
living in stable groups would therefore be expected to have 
reduced epidemic spreading, and potentially enhanced (or 
unchanged) information diffusion, as an outcome of being 
highly modular (Fig. 2). In this way, structural heterogeneity 
in animal social networks may mediate the tradeoff between 
the transmission of information and infection, especially for 
group-living or fission–fusion social systems with more mod-
ular social networks.

We therefore suggest that a modular network structure 
may be critical in mediating the tradeoff between minimising 
the spread of parasites and maximising the spread of infor-
mation. Community structure can promote the spread of 
social information when individuals follow conformist social 
learning strategies, while trapping infection within particular 
regions of the network. We predict that the dual selection 
pressures imposed by the access to information and the risk 
of acquiring parasites will lead to natural selection generat-
ing modular network structures. The modularity of these 
structures will depend on the relative benefits information 
and costs of infection to individuals, and the social learning 
strategies that they use.

Different types of associations–multilayer 
relationships

As outlined in the previous section, different types of inter-
action will not all be equivalent for the transmission of 
infection or information. Considering how transmission 
dynamics vary for different types of interactions is there-
fore critical in understanding how animal societies might be 
adapted for efficient information transmission and minimal 
parasite spread. Multilayer networks allow multiple inter-
action types to be incorporated within a single conceptual 

framework (Kivelä  et  al. 2014). A layer can denote differ-
ent types of behavioural interaction between the same (or 
similar) set(s) of individuals, such as one layer for affiliative 
interactions and another for agonistic interactions (Silk et al. 
2018b, Finn et al. 2019). Layers can also consist of interac-
tions between different types of individuals, such as different 
sexes (Silk et al. 2018c) or species (Silk et al. 2018a), with 
edges between layers representing interactions between those 
types of individuals.

Theoretical models using multilayer networks have been 
valuable in understanding the spread of a single parasite 
species or piece of information through multiple types of 
interaction, and the consequences of multiple spreading 
processes occurring across the same set of individuals (for 
example, multiple information types: Liu et al. 2018, mul-
tiple parasites: Azimi-Tafreshi 2016 or infection and infor-
mation together: Funk et al. 2009, Funk and Jansen 2010, 
Marceau et al. 2011, Granell et al. 2013, 2014, Zhao et al. 
2014, Guo et al. 2016). Applying these approaches to ani-
mal behaviour research (Silk et al. 2018b, Finn et al. 2019) 
requires data on multiple types of social connections simulta-
neously (Franz et al. 2015, Gazda et al. 2015), and quantifi-
cation of the importance of these different social connections 
for transmission (Aplin et al. 2015).

Taking a multilayer approach also enables the integration 
of the indirect effect of positive and negative social relation-
ships on transmission processes. Theoretical models on mul-
tilayer networks consider the effects of these different types of 
social relationships by modelling them as a type of transmis-
sion through the network, alongside infection and/or infor-
mation. For example, one type of model considers the flow 
of social support that improves recovery rate from infection 
(which could, for example, represent the strength of affiliative 
relationships) on a second layer and has been used to show 
that social support can supress parasite outbreaks, but that 
the effect is dependent on network structure and the correla-
tion between the layers (Chen et al. 2018a, b). Using models 
such as these enables the impact of social buffering to be inte-
grated into network models, to determine how it may shape 
the tradeoff between encountering useful information and 
risking infection. At its simplest, if well-connected individu-
als are healthy and capable of resisting infection, then they do 
not face a tradeoff at all.

Multiple spreading processes can also interact to promote 
or interfere with each other. For example, Liu et al. (2018), 
when modelling the synergistic spread of multiple pieces 
of information transmitted simultaneously, showed that 
individuals having adopted one piece of information were 
subsequently more likely to adopt the other piece of informa-
tion, one enhancing the other. A similar scenario in animal 
societies may be choosing to follow a particular individual’s 
migratory route leading to an increased likelihood of socially 
learning a more efficient version of that route (Berdahl et al. 
2018). Alternatively, different types of information might 
compete, with one piece of information overriding/displac-
ing the other (Kostka  et  al. 2008, Trpevski  et  al. 2010).  
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This could be important if the two pieces of information differ 
in their accuracy, or represent alternative strategies. Similarly, 
models suggest that multiple parasites spreading on a multi-
layer network can promote (Azimi-Tafreshi 2016) or inhibit 
(Funk and Jansen 2010) each other’s spread, and so are likely 
to be beneficial in understanding patterns of co-infection. 
When considering infection and information spread together, 
transmission models that integrate different transmission 
processes can provide fascinating insights (Funk et al. 2009, 
Granell  et  al. 2013, 2014, Guo  et  al. 2016). For example, 
Funk et al. (2009) showed that information diffusing across 
a second network layer could slow epidemics, or even pre-
vent the spread of infection across the first network layer, and 
that the impact of the information layer was amplified if it 
overlapped with the infection layer (i.e. had more similar pat-
terns of interactions), or if the networks on each layer were 
highly clustered. These findings would suggest that if infor-
mation about an infection can be spread through an animal 
social network via similar types of interaction as the infection 
itself, then infection avoidance behaviour can be much more 
effective in preventing the spread of parasites. Social insect 
colonies offer a perfect candidate system through combin-
ing the feasibility of experimental approaches, well docu-
mented roles for networks in information sharing (Preece 
and Beekman et al. 2014), and evidence for adaptive changes  
to network structure in response to infection (Stroeymeyt   
et al. 2018).

We predict that animal social systems will have evolved 
such that different network structures for different types of 
interactions can help facilitate rapid acquisition of infor-
mation while minimising the risk of infection. Multilayer 
network analysis may provide a valuable tool in modelling 
the combined spread of different parasites and/or different 
types of information. We expect that taking into account the 
full complexity of animal social systems using this approach 
will 1) provide important new insights into transmission 
dynamics of both infection and parasites and 2) reveal cru-
cial information as to when tradeoffs between the gathering 
of information and avoidance of infection actually arise (and 
when they do not) and 3) be critical in revealing how this 
balance can be mediated.

Social dynamics and the infection–information 
tradeoff

Temporal heterogeneity and transmission in animals
Most animal social networks are dynamic, varying predict-
ably over time (Hirsch et al. 2016) or across different con-
texts (Smith  et  al. 2018). Accounting for these temporal 
changes can change how we understand transmission in ani-
mal social systems (Hirsch et al. 2016, Springer et al. 2017). 
If social associations change faster than transmission occurs, 
then considering contacts as dynamic is important when 
using models to understand transmission through a network 
(Volz and Meyers 2007, Taylor et al. 2012). While the pres-
ence of temporal changes to network structure in animals is 
well-established, very few empirical studies have considered 
temporal heterogeneity, or burstiness, in contact dynamics. 
‘Bursty’ contact dynamics consist of many contact events 
with a short gap between them, and occasional much lon-
ger gaps between contacts (Fig. 3), such as the clustering of 
heterospecific associations around a watering hole in an arid 
environment. ‘Bursty’ contact dynamics cause temporal clus-
tering of interactions, which can impede the transmission of 
infection as compared to a scenario where contacts are distrib-
uted more uniformly through time, because such clustered 
repeated exposure can result in connections that redundant 
from a transmission perspective. In contrast, bursty contact 
dynamics may enhance the spread of information for some 
social learning strategies, as repeated exposures to novel infor-
mation in quick succession might enhance learning oppor-
tunities by passing the information ‘acceptance threshold’ 
(Karsai et al. 2011, Min et al. 2013; c.f. Rocha et al. 2011, 
Rocha and Blondel 2013). Consequently, varied temporal 
patterns of interactions could mitigate the potential trade-
off between acquiring information and avoiding infection, 
especially for more ‘risky’ interactions, such as between-
group interactions in group-living species, which are more 
likely to be ‘bursty’. Temporally clustered interactions with 
new individuals will disproportionately increase the likeli-
hood of acquiring information relative to becoming infected. 
Recent theoretical models have incorporated both temporal 
heterogeneity and structural heterogeneity (e.g. community 

Figure 3. An illustration of differences in the burstiness of contact dynamics. When contact dynamics are ‘bursty’, there is a high variance 
in the gaps between contact events, resulting in clusters of contacts with occasional longer gaps. Bursty dynamics may promote the transmis-
sion of some types of information whilst reducing the risk of infection.
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structure), demonstrating that regulation of spread is typi-
cally dominated by one or the other (Delvenne et al. 2015). 
This suggests that the importance of heterogeneous contact 
dynamics for transmission in animal societies may vary sys-
tematically with other aspects of the social system, such as the 
stability of social groups.

We recommend research that focuses on the implications 
of temporal clustering of interactions and/or contacts for 
the spread of information and parasites, providing valuable 
insights into how individuals balance the costs and benefits 
of their social interactions. We predict that ‘bursty’ contact 
dynamics could enhance the transmission of some types of 
information (depending on the social learning strategies of 
individuals), while having no effect or even reducing the risk 
of parasite transmission – a good example may be lek mat-
ing systems. It would be possible to test these predictions in 
established experimental systems and then scale the findings 
to a population or network level using stochastic models. We 
also expect that accounting for the effects of heterogeneous 
contact dynamics will be most important for species living 
in highly fluid societies rather than more stable social groups.

Responsive network dynamics and transmission in animals
Animal social networks can change in response to the spread 
of infection (Croft et al. 2011, Stroeymeyt et al. 2018) and 
information (Kulahci  et  al. 2018) with a key difference 
between infection and information being that changes to net-
work structure during the spread of infection may be deter-
mined by the phenotype of both the hosts and their parasites 
(Franz et al. 2018), while any changes to network structure 
in response to the acquisition of information are solely an 
outcome of selection on the ‘host’, or ‘hosts’ in the case of 
heterospecific transmission (Table 1). Theoretical models can 
provide some useful predictions as to how this affects trans-
mission dynamics. Models where network connections can 
be altered in response to infection or information are referred 
to as adaptive network models (Bansal et al. 2010, Funk et al. 
2015). The most common assumptions in infectious disease 
modelling are that individuals display infection–avoidance 
behaviour by either losing or reducing the strength of con-
nections with infected individuals (Van Segbroeck  et  al. 
2010) or by replacing them with connections to other non-
infected individuals (Shaw and Schwartz 2008). In the case of 
parasite spread, computational models indicate that adaptive 
networks typically have higher epidemic thresholds, delaying 
outbreaks and reducing peak prevalences (Gross et al. 2006, 
Shaw and Schwartz 2008, Van Segbroeck et al. 2010). These 
behavioural responses to infection also frequently impact 
aspects of the network structure, for example by increasing 
variation in the connectivity of susceptible individuals and 
causing infected individuals to be much more poorly con-
nected (Shaw and Schwartz 2008) or by increasing com-
munity structure with community membership assorted by 
infection state (Yang et al. 2012). While these changes reduce 
the impact of the current epidemic, they may make endemic 
disease more likely (Gross  et  al. 2006, Shaw and Schwartz 
2008) or even result in long-term epidemic re-emergence 

(Zhou et al. 2012), which may have important implications 
for longer-term eco-evolutionary dynamics in animal popula-
tions. It is also possible for infection avoidance behaviour to 
exacerbate epidemics if individuals switch their connections 
from infected to susceptible individuals subsequent to being 
infected, although this remains relatively poorly explored 
(but see Zhang et al. 2012b).

Many adaptive network models have previously assumed 
perfect knowledge about the infection status of other indi-
viduals, and this is unlikely to be the case in many natural 
host–parasite systems. Identifying when information is avail-
able about the infection status of individuals relative to when 
the infection is most transmissible (Stephenson et al. 2018) 
will be crucial to understanding how ‘adaptive’ changes to 
network structure can mediate the tradeoff between infor-
mation and parasite transmission. It may also be important 
to consider changes to the behaviour of infected individuals; 
sickness behaviour. Sickness behaviours in particular could 
be influenced by selection on hosts or parasites. At times, 
sickness behaviour could be favoured by both host and para-
site (e.g. dispersal away from a highly related group; Iritani 
and Iwasa 2014), but at other times optimal outcomes may 
be directly opposed (e.g. reduction in number of contacts; 
Lopes  et  al. 2016) and generate antagonistic co-evolution 
between the host and parasite.

The results from equivalent models of information trans-
mission are more diverse. One model suggests that individu-
als may be more likely to cluster with those who are more 
inclined to use information they are deliberately transmitting 
(Jackson and López-Pintado 2013), while another model 
suggests individuals will break ties with those who do not 
use the information they deliberately transmit (Zhang et al. 
2012a). In some species of animal, individuals may preferen-
tially associate with those who will accept foraging informa-
tion from them, so as to maximise the likelihood of gaining 
benefits from recruiting others to feed (Wright et al. 2003). 
Similarly, a male displaying within a lek will attempt to maxi-
mise the number of individuals who receive their signals, 
while also choosing to give up and stop transmitting to those 
who are unlikely to mate with them (Patricelli et al. 2009). In 
a similar manner to signalling individuals manipulating their 
physical environment (e.g. birds singing from prominent 
perches), individuals may also dynamically alter their social 
interactions so as to maximise their chances of transmitting 
information to less informed node (Liu and Zhang 2014) if it 
is beneficial for them to do so (e.g. in highly related groups). 
In contrast to the avoidance behaviour expected in response 
to the spread of parasites, ‘adaptive’ behaviours that favour 
the acquisition of useful information while minimising expo-
sure to misinformation would be expected (Kulahci and 
Quinn 2019), depending on previous interactions between 
the individuals involved. An individual who produces use-
ful information may be more likely to have others use that 
information in the future, while an individual that frequently 
provides inaccurate information may be ignored (refractory 
behaviour). An important caveat to this idea is that an indi-
vidual who has previously produced useful information may 
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subsequently be more likely to cause misinformation to be 
transmitted (Modlmeier et al. 2014), especially if the value 
of information changes over time (e.g. by becoming out-
dated). This can be exploited by individuals aiming to trans-
mit misinformation to manipulate the receivers’ behaviour to 
their advantage, as is the case in fork-tailed drongos Dicrurus 
adsimilis who mimic other species’ alarm calls to steal food 
from meerkats (Flower et al. 2014). Whether drongos flex-
ibly change their social associations with heterospecifics once 
they have been identified as cheats by the local meerkat group 
remains to be determined.

Considering behavioural dynamics alongside transmis-
sion dynamics is important to our understanding of how 
individuals may resolve the conflict between the acquisition 
and transmission of information and infection. Obvious 
signs of infection or regular transmission of misinformation 
can result in individuals becoming less well connected in a 
network while transmission of useful information can lead 
to the opposite pattern. We predict that behavioural plastic-
ity that causes patterns of social interactions to be modified 
in the presence of infection or innovations will therefore be 
a key mechanism by which this balance between the costs 
and benefits of being highly socially connected is mediated 
and expect that these behavioural dynamics are much more 
widespread than previously described. Behavioural dynamics 
are also likely to be closely interlinked with network struc-
ture, and we predict that behavioural responses to parasitism 
and information will co-vary with social structure (especially 
group dynamics and modularity) between populations.

Future research priorities

Our review highlights several key priorities for future research. 
First, it is essential that we continue to build on our under-
standing of how infection and information are transmitted 
through natural populations. In particular, discovering how 
widespread the use of complex social learning strategies is in 
animals will be critical in revealing whether particular social 
network structures, and particular social network positions 
within them, favour the transfer or acquisition of informa-
tion over and above that of parasites. Revealing the use of 
complex contagions or directed social learning strategies will 
require experimental approaches in study systems for which 
high-quality social network data are also available (e.g in 
primates: Carter et al. 2016, or passerine birds: Farine et al. 
2015a). However, it would also be valuable to extend our 
understanding of social learning strategies away from these 
model systems to better quantify the generality of different 
forms of information spread. This could exploit experiments 
that test for learning being directed by traits such as social 
dominance (Benskin et al. 2002, Kendal et al. 2015, Jones 
and Monfils 2016) or by conformity (Aplin  et  al. 2015, 
Danchin et al. 2018). In addition, we have emphasised how 
the transmission of information can also depend on differ-
ent types of association or interaction than those influencing 

parasite transmission. A renewed effort to consider the conse-
quences of the multilayer structure of animal social networks 
will be crucial to understanding differences in the opportu-
nities for transmission of information and parasites within 
animal groups. Comparisons of the structure of interactions 
relevant for social learning, and those that provide opportu-
nities for parasite transmission, are likely to be particularly 
informative.

We have also highlighted the importance of temporal 
heterogeneity in transmission-relevant contacts and the role 
of behavioural plasticity in response to parasite prevalence 
in mediating the tradeoff between acquiring information 
and avoiding infection. Further research into social net-
work dynamics will therefore also be critical in understand-
ing how these two ecological processes shape the evolution 
of social network structure. Network dynamics that result 
from infection avoidance behaviour provide a context where 
both information and parasites are spreading, and the out-
comes are inter-dependent. Therefore, work that builds on 
existing research addressing how social network structure 
responds to changes in parasite prevalence will be valuable 
(Stroeymeyt et al. 2018), especially if it provides a mechanis-
tic understanding of how individuals learn to change their 
behaviour (rapid spread of behavioural changes via conform-
ist social learning, for example). Social insect colonies would 
be ideal for such experimental studies. These species lend 
themselves to high-throughput construction of replicated 
social networks, and studies quantifying the role of these net-
works in the transmission of information and parasites have 
already been conducted using such systems (Blonder and 
Dornhaus 2011, Bos  et  al. 2012, Stroeymeyt  et  al. 2018). 
The final piece of this puzzle will be understanding changes 
in the behaviour of infected individuals (Lopes et al. 2016) 
in a variety of different social systems and contexts, especially 
when social networks are kin-structured, given that the evo-
lution of sickness behaviour is predicted to depend on popu-
lation structure (Iritani and Iwasa 2014).

These experimental approaches will be most powerful 
when paired with novel mathematical models that examine 
the evolutionary ecology of individual social behaviour. Such 
models could demonstrate how social network positions are 
associated with different fitness outcomes when the costs and 
benefits provided by parasitism and social learning are varied. 
The theoretical transmission models described in this review, 
although extremely detailed, focus on the transmission pro-
cesses themselves rather than placing them in a broader eco-
logical and evolutionary context. Thus, combining these 
techniques for simulating transmission with evolutionary 
modelling will represent a key priority. In addition, tailor-
ing theoretical network models to more accurately reflect 
typical contact behaviours of animals using recently estab-
lished data repositories (Sah  et  al. 2019) will help to pro-
vide more detailed predictions for different social systems. 
Combining theoretical and empirical work to develop data-
based evolutionary models will be important to fully under-
stand the implications of these differences in the transmission 
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of infection and information for the evolution of animal  
social systems.

Conclusions

Social network structure is fundamental to both the transmis-
sion of information and parasites through populations. Both 
represent important selection pressures on how individuals 
structure their social interactions. Individuals face a tradeoff 
to maximise the acquisition of reliable information while 
minimising the risk of becoming infected with parasites. 
However, our understanding of this tradeoff is complicated 
by how these processes depend on social network structure 
in different ways. The risk of acquiring infection typically 
increases monotonically with the frequency and duration of 
interaction with infectious individuals. In contrast, infor-
mation acquisition is more complex, with the likelihood of 
accepting information often depending on exposure to that 
information in a non-linear fashion. For example, empiri-
cal evidence from some animal social networks suggests that 
acquisition of information might often be a threshold trait. 
A receiver’s threshold of exposure could be determined by 
the proportion of associates demonstrating the behaviour, 
or could be determined more broadly by the identity, influ-
ence or traits of transmitters (e.g. social learning directed by 
dominance, familiarity, relatedness). Information transmis-
sion is also complicated by the sharing of both good and bad 
(or out-dated) information, and by ‘refractory’ behaviours 
among recipients that result in the acquisition of information 
not affecting the behaviour of all individuals in the same way.

Crucially, these differences in the nature of transmission 
and the types of interactions that result in transmission can 
mediate the apparent tradeoff between acquiring informa-
tion and infection in social systems. Furthermore, plasticity 
of social behaviour can generate changes to social structures 
that can protect against the spread of parasites or promote 
the spread of information. In this way, behavioural plasticity 
is likely critical in regulating infection risk and information 
benefits obtained by social animals. Information transmis-
sion is often integral to behavioural responses to avoid 
infection, making quantifying differences in how informa-
tion and infection are transmitted and their different routes 
of transmission even more important. Consequently, our 
understanding of the interplay between information and 
infection in shaping animal social systems requires a better 
grasp of how transmission is affected by the structural, tem-
poral and multi-layered heterogeneities that are inherent to 
animal social networks.
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