2,738 research outputs found

    Emerging trends in the novel drug delivery approaches for the treatment of lung cancer

    Get PDF
    © 2019 Elsevier B.V. Cancer is one of the major diseases that cause a high number of deaths globally. Of the major types of cancers, lung cancer is known to be the most chronic form of cancer in the world. The conventional management of lung cancer includes different medical interventions like chemotherapy, surgical removal, and radiation therapy. However, this type of approach lacks specificity and also harms the adjacent normal cells. Lately, nanotechnology has emerged as a promising intervention in the management and treatment of lung cancers. Nanotechnology has revolutionized the existing modalities and focuses primarily on reducing toxicity and improving the bioavailability of anticancer drugs to the target tumor cells. Nanocarrier systems are being currently used extensively to exploit and to overcome the obstructions induced by cancers in the lungs. The nano-carrier-loaded therapeutic drug delivery methods have shown promising potential in treating lung cancer as its target is to control the growth of tumor cells. In this review, various modes of nano drug delivery options like liposomes, dendrimers, quantum dots, carbon nanotubes and metallic nanoparticles have been discussed. Nano-carrier drug delivery systems emerge as a promising approach and thus is expected to provide newer and advanced avenues in cancer therapeutics

    Differential Growth of Francisella tularensis, Which Alters Expression of Virulence Factors, Dominant Antigens, and Surface-Carbohydrate Synthases, Governs the Apparent Virulence of Ft SchuS4 to Immunized Animals

    Get PDF
    The gram-negative bacterium Francisella tularensis (Ft) is both a potential biological weapon and a naturally occurring microbe that survives in arthropods, fresh water amoeba, and mammals with distinct phenotypes in various environments. Previously, we used a number of measurements to characterize Ft grown in Brain-Heart Infusion (BHI) broth as (1) more similar to infection-derived bacteria, and (2) slightly more virulent in naïve animals, compared to Ft grown in Mueller Hinton Broth (MHB). In these studies we observed that the free amino acids in MHB repress expression of select Ft virulence factors by an unknown mechanism. Here, we tested the hypotheses that Ft grown in BHI (BHI-Ft) accurately displays a full protein composition more similar to that reported for infection-derived Ft and that this similarity would make BHI-Ft more susceptible to pre-existing, vaccine-induced immunity than MHB-Ft. We performed comprehensive proteomic analysis of Ft grown in MHB, BHI, and BHI supplemented with casamino acids (BCA) and compared our findings to published “omics” data derived from Ft grown in vivo. Based on the abundance of ~1,000 proteins, the fingerprint of BHI-Ft is one of nutrient-deprived bacteria that—through induction of a stringent-starvation-like response—have induced the FevR regulon for expression of the bacterium's virulence factors, immuno-dominant antigens, and surface-carbohydrate synthases. To test the notion that increased abundance of dominant antigens expressed by BHI-Ft would render these bacteria more susceptible to pre-existing, vaccine-induced immunity, we employed a battery of LVS-vaccination and S4-challenge protocols using MHB- and BHI-grown Ft S4. Contrary to our hypothesis, these experiments reveal that LVS-immunization provides a barrier to infection that is significantly more effective against an MHB-S4 challenge than a BHI-S4 challenge. The differences in apparent virulence to immunized mice are profoundly greater than those observed with primary infection of naïve mice. Our findings suggest that tularemia vaccination studies should be critically evaluated in regard to the growth conditions of the challenge agent

    Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: an update

    Get PDF
    Respiratory disorders, especially non-communicable, chronic inflammatory diseases, are amongst the leading causes of mortality and morbidity worldwide. Respiratory diseases involve multiple pulmonary components, including airways and lungs that lead to their abnormal physiological functioning. Several signaling pathways have been reported to play an important role in the pathophysiology of respiratory diseases. These pathways, in addition, become the compounding factors contributing to the clinical outcomes in respiratory diseases. A range of signaling components such as Notch, Hedgehog, Wingless/Wnt, bone morphogenetic proteins, epidermal growth factor and fibroblast growth factor is primarily employed by these pathways in the eventual cascade of events. The different aberrations in such cell-signaling processes trigger the onset of respiratory diseases making the conventional therapeutic modalities ineffective. These challenges have prompted us to explore novel and effective approaches for the prevention and/or treatment of respiratory diseases. In this review, we have attempted to deliberate on the current literature describing the role of major cell signaling pathways in the pathogenesis of pulmonary diseases and discuss promising advances in the field of therapeutics that could lead to novel clinical therapies capable of preventing or reversing pulmonary vascular pathology in such patients

    Malignancy risk analysis in patients with inadequate fine needle aspiration cytology (FNAC) of the thyroid

    Get PDF
    Background Thyroid fine needle aspiration cytology (FNAC) is the standard diagnostic modality for thyroid nodules. However, it has limitations among which is the incidence of non-diagnostic results (Thy1). Management of cases with repeatedly non-diagnostic FNAC ranges from simple observation to surgical intervention. We aim to evaluate the incidence of malignancy in non-diagnostic FNAC, and the success rate of repeated FNAC. We also aim to evaluate risk factors for malignancy in patients with non-diagnostic FNAC. Materials and Methods Retrospective analyses of consecutive cases with thyroid non diagnostic FNAC results were included. Results Out of total 1657 thyroid FNAC done during the study period, there were 264 (15.9%) non-diagnostic FNAC on the first attempt. On repeating those, the rate of a non-diagnostic result on second FNAC was 61.8% and on third FNAC was 47.2%. The overall malignancy rate in Thy1 FNAC was 4.5% (42% papillary, 42% follicular and 8% anaplastic), and the yield of malignancy decreased considerably with successive non-diagnostic FNAC. Ultrasound guidance by an experienced head neck radiologist produced the lowest non-diagnostic rate (38%) on repetition compared to US guidance by a generalist radiologist (65%) and by non US guidance (90%). Conclusions There is a low risk of malignancy in patients with a non-diagnostic FNAC result, commensurate to the risk of any nodule. The yield of malignancy decreased considerably with successive non-diagnostic FNAC

    Hypoxia-inducible factor (HIF): fuel for cancer progression

    Get PDF
    Hypoxia is an integral part of the tumor microenvironment, caused primarily due to rapidly multiplying tumor cells and a lack of proper blood supply. Among the major hypoxic pathways, HIF-1 transcription factor activation is one of the widely investigated pathways in the hypoxic tumor microenvironment (TME). HIF-1 is known to activate several adaptive reactions in response to oxygen deficiency in tumor cells. HIF-1 has two subunits, HIF-1β (constitutive) and HIF-1α (inducible). The HIF-1α expression is largely regulated via various cytokines (through PI3K-ACT-mTOR signals), which involves the cascading of several growth factors and oncogenic cascades. These events lead to the loss of cellular tumor suppressant activity through changes in the level of oxygen via oxygen-dependent and oxygenindependent pathways. The significant and crucial role of HIF in cancer progression and its underlying mechanisms have gained much attention lately among the translational researchers in the fields of cancer and biological sciences, which have enabled them to correlate these mechanisms with various other disease modalities. In the present review, we have summarized the key findings related to the role of HIF in the progression of tumors

    Techno-Ecological Synergy: A Framework for Sustainable Engineering

    Get PDF
    Even though the importance of ecosystems in sustaining all human activities is well-known, methods for sustainable engineering fail to fully account for this role of nature. Most methods account for the demand for ecosystem services, but almost none account for the supply. Incomplete accounting of the very foundation of human well-being can result in perverse outcomes from decisions meant to enhance sustainability and lost opportunities for benefiting from the ability of nature to satisfy human needs in an economically and environmentally superior manner. This paper develops a framework for understanding and designing synergies between technological and ecological systems to encourage greater harmony between human activities and nature. This framework considers technological systems ranging from individual processes to supply chains and life cycles, along with corresponding ecological systems at multiple spatial scales ranging from local to global. The demand for specific ecosystem services is determined from information about emissions and resource use, while the supply is obtained from information about the capacity of relevant ecosystems. Metrics calculate the sustainability of individual ecosystem services at multiple spatial scales and help define necessary but not sufficient conditions for local and global sustainability. Efforts to reduce ecological overshoot encourage enhancement of life cycle efficiency, development of industrial symbiosis, innovative designs and policies, and ecological restoration, thus combining the best features of many existing methods. Opportunities for theoretical and applied research to make this framework practical are also discussed

    Distinct Regulatory Functions of Calpain 1 and 2 during Neural Stem Cell Self-Renewal and Differentiation

    Get PDF
    Calpains are calcium regulated cysteine proteases that have been described in a wide range of cellular processes, including apoptosis, migration and cell cycle regulation. In addition, calpains have been implicated in differentiation, but their impact on neural differentiation requires further investigation. Here, we addressed the role of calpain 1 and calpain 2 in neural stem cell (NSC) self-renewal and differentiation. We found that calpain inhibition using either the chemical inhibitor calpeptin or the endogenous calpain inhibitor calpastatin favored differentiation of NSCs. This effect was associated with significant changes in cell cycle-related proteins and may be regulated by calcium. Interestingly, calpain 1 and calpain 2 were found to play distinct roles in NSC fate decision. Calpain 1 expression levels were higher in self-renewing NSC and decreased with differentiation, while calpain 2 increased throughout differentiation. In addition, calpain 1 silencing resulted in increased levels of both neuronal and glial markers, β-III Tubulin and glial fibrillary acidic protein (GFAP). Calpain 2 silencing elicited decreased levels of GFAP. These results support a role for calpain 1 in repressing differentiation, thus maintaining a proliferative NSC pool, and suggest that calpain 2 is involved in glial differentiation

    A bibliography of parasites and diseases of marine and freshwater fishes of India

    Get PDF
    With the increasing demand for fish as human food, aquaculture both in freshwater and salt water is rapidly developing over the world. In the developing countries, fishes are being raised as food. In many countries fish farming is a very important economic activity. The most recent branch, mariculture, has shown advances in raising fishes in brackish, estuarine and bay waters, in which marine, anadromous and catadromous fishes have successfully been grown and maintained

    Dissipation via Particle Production in Scalar Field Theories

    Get PDF
    The non-equilibrium dynamics of the first stage of the reheating process, that is dissipation via particle production is studied in scalar field theories in the unbroken and in the broken symmetry phase. We begin with a perturbative study to one loop and show explicitly that the mechanism of dissipation via particle production cannot be explained with a simple derivative term in the equation of motion. The dissipative contribution is non-local and there does not exist a local (Markovian) limit at zero temperature. Furthermore, we show that both an amplitude as well as a one-loop calculation present instabilities, requiring a non-perturbative resummation. Within the same approximations, we study an O(2) linear sigma model that allows to study dissipation by Goldstone bosons. We find infrared divergences that require non-perturbative resummation in order to understand the long-time dynamics. We obtain a perturbative Langevin equation that exhibits a generalized fluctuation-dissipation relation, with non-Markovian kernels and colored noise. We then study a Hartree approximation and clearly exhibit dissipative effects related to the thresholds to particle production. The asymptotic dynamics depends on the coupling and initial conditions but does not seem to lead to exponential relaxation. The effect of dissipation by Goldstone bosons is studied non-perturbatively in the large N limit in an O(N) theory. Dissipation produced by Goldstone bosons dramatically changes the picture of the phase transition. We find the remarkable result that for ``slow-roll'' initial conditions (with the expectation value of the field initially near the origin) the final value of the expectation value of the scalar field is very close to its initial value. We find that the minima of the effective action depend on the initial conditions. We provide extensive numerical analysis of the dynamics.Comment: 57 pages, 41 figures available upon request by mail, LATEX, PITT-94-0

    Usefulness of molecular biology performed with formaldehyde-fixed paraffin embedded tissue for the diagnosis of combined pulmonary invasive mucormycosis and aspergillosis in an immunocompromised patient

    Get PDF
    Immunocompromised patients who develop invasive filamentous mycotic infections can be efficiently treated if rapid identification of the causative fungus is obtained. We report a case of fatal necrotic pneumonia caused by combined pulmonary invasive mucormycosis and aspergillosis in a 66 year-old renal transplant recipient. Aspergillus was first identified during the course of the disease by cytological examination and culture (A. fumigatus) of bronchoalveolar fluid. Hyphae of Mucorales (Rhizopus microsporus) were subsequently identified by culture of a tissue specimen taken from the left inferior pulmonary lobe, which was surgically resected two days before the patient died. Histological analysis of the lung parenchyma showed the association of two different filamentous mycoses for which the morphological features were evocative of aspergillosis and mucormycosis. However, the definitive identification of the associative infection was made by polymerase chain reaction (PCR) performed on deparaffinized tissue sections using specific primers for aspergillosis and mucormycosis. This case demonstrates that discrepancies between histological, cytological and mycological analyses can occur in cases of combined mycotic infection. In this regard, it shows that PCR on selected paraffin blocks is a very powerful method for making or confirming the association of different filamentous mycoses and that this method should be made available to pathology laboratories
    corecore