297 research outputs found

    Hybrid Superconductor-Quantum Point Contact Devices using InSb Nanowires

    Get PDF
    Proposals for studying topological superconductivity and Majorana bound states in nanowires proximity coupled to superconductors require that transport in the nanowire is ballistic. Previous work on hybrid nanowire-superconductor systems has shown evidence for Majorana bound states, but these experiments were also marked by disorder, which disrupts ballistic transport. In this letter, we demonstrate ballistic transport in InSb nanowires interfaced directly with superconducting Al by observing quantized conductance at zero-magnetic field. Additionally, we demonstrate that the nanowire is proximity coupled to the superconducting contacts by observing Andreev reflection. These results are important steps for robustly establishing topological superconductivity in InSb nanowires

    Single-electron tunneling in InP nanowires

    Get PDF
    We report on the fabrication and electrical characterization of field-effect devices based on wire-shaped InP crystals grown from Au catalyst particles by a vapor-liquid-solid process. Our InP wires are n-type doped with diameters in the 40-55 nm range and lengths of several microns. After being deposited on an oxidized Si substrate, wires are contacted individually via e-beam fabricated Ti/Al electrodes. We obtain contact resistances as low as ~10 kOhm, with minor temperature dependence. The distance between the electrodes varies between 0.2 and 2 micron. The electron density in the wires is changed with a back gate. Low-temperature transport measurements show Coulomb-blockade behavior with single-electron charging energies of ~1 meV. We also demonstrate energy quantization resulting from the confinement in the wire.Comment: 4 pages, 3 figure

    Measurement of g-factor tensor in a quantum dot and disentanglement of exciton spins

    Get PDF
    We perform polarization-resolved magneto-optical measurements on single InAsP quantum dots embedded in an InP nanowire. In order to determine all elements of the electron and hole gg-factor tensors, we measure in magnetic field with different orientations. The results of these measurements are in good agreement with a model based on exchange terms and Zeeman interaction. In our experiment, polarization analysis delivers a powerful tool that not only significantly increases the precision of the measurements, but also enables us to probe the exciton spin state evolution in magnetic fields. We propose a disentangling scheme of heavy-hole exciton spins enabling a measurement of the electron spin T2T_2 time

    Disentangling the effects of spin-orbit and hyperfine interactions on spin blockade

    Get PDF
    We have achieved the few-electron regime in InAs nanowire double quantum dots. Spin blockade is observed for the first two half-filled orbitals, where the transport cycle is interrupted by forbidden transitions between triplet and singlet states. Partial lifting of spin blockade is explained by spin-orbit and hyperfine mechanisms that enable triplet to singlet transitions. The measurements over a wide range of interdot coupling and tunneling rates to the leads are well reproduced by a simple transport model. This allows us to separate and quantify the contributions of the spin-orbit and hyperfine interactions.Comment: 5 pages, 4 figure

    Realization of microwave quantum circuits using hybrid superconducting-semiconducting nanowire Josephson elements

    Get PDF
    We report the realization of quantum microwave circuits using hybrid superconductor-semiconductor Josephson elements comprised of InAs nanowires contacted by NbTiN. Capacitively-shunted single elements behave as transmon qubits with electrically tunable transition frequencies. Two-element circuits also exhibit transmon-like behavior near zero applied flux, but behave as flux qubits at half the flux quantum, where non-sinusoidal current-phase relations in the elements produce a double-well Josephson potential. These hybrid Josephson elements are promising for applications requiring microwave superconducting circuits operating in magnetic field.Comment: Main text: 4 pages, 4 figures; Supplement: 10 pages, 8 figures, 1 tabl

    Spin and Orbital Spectroscopy in the Absence of Coulomb Blockade in Lead Telluride Nanowire Quantum Dots

    Full text link
    We investigate quantum dots in semiconductor PbTe nanowire devices. Due to the accessibility of ambipolar transport in PbTe, quantum dots can be occupied both with electrons and holes. Owing to a very large dielectric constant in PbTe of order 1000, we do not observe Coulomb blockade which typically obfuscates the orbital and spin spectra. We extract large and highly anisotropic effective Lande g-factors, in the range 20-44. The absence of Coulomb blockade allows direct readout, at zero source-drain bias, of spin-orbit hybridization energies of up to 600 microelectronvolt. These spin properties make PbTe nanowires, the recently synthesized members of group IV-VI materials family, attractive as a materials platform for quantum technology, such as spin and topological qubits.Comment: Full transport data available via Zenodo at https://zenodo.org/communities/frolovlab

    Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires

    Get PDF
    Double quantum dot in the few-electron regime is achieved using local gating in an InSb nanowire. The spectrum of two-electron eigenstates is investigated using electric dipole spin resonance. Singlet-triplet level repulsion caused by spin-orbit interaction is observed. The size and the anisotropy of singlet-triplet repulsion are used to determine the magnitude and the orientation of the spin-orbit effective field in an InSb nanowire double dot. The obtained results are confirmed using spin blockade leakage current anisotropy and transport spectroscopy of individual quantum dots.Comment: 5 pages, supplementary material available at http://link.aps.org/supplemental/10.1103/PhysRevLett.108.16680

    Suppression of Zeeman gradients by nuclear polarization in double quantum dots

    Get PDF
    We use electric dipole spin resonance to measure dynamic nuclear polarization in InAs nanowire quantum dots. The resonance shifts in frequency when the system transitions between metastable high and low current states, indicating the presence of nuclear polarization. We propose that the low and the high current states correspond to different total Zeeman energy gradients between the two quantum dots. In the low current state, dynamic nuclear polarization efficiently compensates the Zeeman gradient due to the gg-factor mismatch, resulting in a suppressed total Zeeman gradient. We present a theoretical model of electron-nuclear feedback that demonstrates a fixed point in nuclear polarization for nearly equal Zeeman splittings in the two dots and predicts a narrowed hyperfine gradient distribution

    Delocalized states in three-terminal superconductor-semiconductor nanowire devices

    Full text link
    We fabricate three-terminal hybrid devices with a nanowire segment proximitized by a superconductor, and with two tunnel probe contacts on either side of that segment. We perform simultaneous tunneling measurements on both sides. We identify some states as delocalized above-gap states observed on both ends, and some states as localized near one of the tunnel barriers. Delocalized states can be traced from zero to finite magnetic fields beyond 0.5 T. In the parameter regime of delocalized states, we search for correlated subgap resonances required by the Majorana zero mode hypothesis. While both sides exhibit ubiquitous low-energy features at high fields, no correlation is inferred. Simulations using a one-dimensional effective model suggest that delocalized states may belong to lower one-dimensional subbands, while the localized states originate from higher subbands. To avoid localization in higher subbands, disorder may need to be further reduced to realize Majorana zero modes.Comment: Original data available at https://zenodo.org/record/395824
    • …
    corecore