We report on the fabrication and electrical characterization of field-effect
devices based on wire-shaped InP crystals grown from Au catalyst particles by a
vapor-liquid-solid process. Our InP wires are n-type doped with diameters in
the 40-55 nm range and lengths of several microns. After being deposited on an
oxidized Si substrate, wires are contacted individually via e-beam fabricated
Ti/Al electrodes. We obtain contact resistances as low as ~10 kOhm, with minor
temperature dependence. The distance between the electrodes varies between 0.2
and 2 micron. The electron density in the wires is changed with a back gate.
Low-temperature transport measurements show Coulomb-blockade behavior with
single-electron charging energies of ~1 meV. We also demonstrate energy
quantization resulting from the confinement in the wire.Comment: 4 pages, 3 figure