50,492 research outputs found

    Operational considerations for the application of remotely sensed forest data from LANDSAT or other airborne platforms

    Get PDF
    Research in the application of remotely sensed data from LANDSAT or other airborne platforms to the efficient management of a large timber based forest industry was divided into three phases: (1) establishment of a photo/ground sample correlation, (2) investigation of techniques for multi-spectral digital analysis, and (3) development of a semi-automated multi-level sampling system. To properly verify results, three distinct test areas were selected: (1) Jacksonville Mill Region, Lower Coastal Plain, Flatwoods, (2) Pensacola Mill Region, Middle Coastal Plain, and (3) Mississippi Mill Region, Middle Coastal Plain. The following conclusions were reached: (1) the probability of establishing an information base suitable for management requirements through a photo/ground double sampling procedure, alleviating the ground sampling effort, is encouraging, (2) known classification techniques must be investigated to ascertain the level of precision possible in separating the many densities involved, and (3) the multi-level approach must be related to an information system that is executable and feasible

    Exciton-polaron complexes in pulsed electrically-detected magnetic resonance

    Full text link
    Several microscopic pathways have been proposed to explain the large magnetic effects observed in organic semiconductors, but identifying and characterising which microscopic process actually influences the overall magnetic field response is challenging. Pulsed electrically-detected magnetic resonance provides an ideal platform for this task as it intrinsically monitors the charge carriers of interest and provides dynamical information which is inaccessible through conventional magnetoconductance measurements. Here we develop a general time domain theory to describe the spin-dependent reaction of exciton-charge complexes following the coherent manipulation of paramagnetic centers through electron spin resonance. A general Hamiltonian is treated, and it is shown that the transition frequencies and resonance positions of the exciton-polaron complex can be used to estimate inter-species coupling. This work also provides a general formalism for analysing multi-pulse experiments which can be used to extract relaxation and transport rates

    Design of an inert fluid injection system, phase 3 Final report

    Get PDF
    Research, development, and design of velocity trim system for third stage of Delta launch vehicl

    Stability of shear flow with density gradient and viscosity

    Get PDF
    Stability of shear flow with density gradient and viscosit

    Suggestions and Instructions for Using the Ohio Commercial Farm Account System

    Get PDF
    PDF pages: 1

    Multipac, a multiple pool processor and computer for a spacecraft central data system

    Get PDF
    Spacecraft central data system computer used on deep space probe

    Using coherent dynamics to quantify spin-coupling within triplet-exciton/polaron complexes in organic diodes

    Full text link
    Quantifying the spin-spin interactions which influence electronic transitions in organic semiconductors is crucial for understanding their magneto-optoelectronic properties. By combining a theoretical model for three spin interactions in the coherent regime with pulsed electrically detected magnetic resonance experiments on MEH-PPV diodes, we quantify the spin-coupling within complexes comprising three spin-half particles. We determine that these particles form triplet-exciton:polaron pairs, where the polaron:exciton exchange is over 5 orders of magnitude weaker (less than 170 MHz) than that within the exciton. This approach providing a direct spectroscopic approach for distinguishing between coupling regimens, such as strongly bound trions, which have been proposed to occur in organic devices.Comment: 5 pages, 4 figure

    MULTIPAC, a multiple pool processor and computer for a spacecraft central data system, phase 2 Final report

    Get PDF
    MULTIPAC, multiple pool processor and computer for deep space probe central data syste

    Power spectra methods for a stochastic description of diffusion on deterministically growing domains

    Get PDF
    A central challenge in developmental biology is understanding the creation of robust spatiotemporal heterogeneity. Generally, the mathematical treatments of biological systems have used continuum, mean-field hypotheses for their constituent parts, which ignores any sources of intrinsic stochastic effects. In this paper we consider a stochastic space-jump process as a description of diffusion, i.e., particles are able to undergo a random walk on a discretized domain. By developing analytical Fourier methods we are able to probe this probabilistic framework, which gives us insight into the patterning potential of diffusive systems. Further, an alternative description of domain growth is introduced, with which we are able to rigorously link the mean-field and stochastic descriptions. Finally, through combining these ideas, it is shown that such stochastic descriptions of diffusion on a deterministically growing domain are able to support the nucleation of states that are far removed from the deterministic mean-field steady state
    • …
    corecore