,
Sp—

(8695

g
e

!'_" N7O

b

{THRU)

/

et

(ACCESSION NUMBLCR)

7

(COD?

{CATEGORY]

{PAGES),

7234f

{NASA CR OR TMX OR AD NUMBER)

W) (o 2

a9 Wuod ALITIDVL

1AL

1

|
l

@ https://ntrs.nasa.gov/search.jsp?R=19700009390 2020-03-23T19:24:53+00:00Z

NASA CR-73348
Available to the Public

FINAL REPORT

MULTIPAC, A MULTIPLE POOL PROCESSOR AND COMPUTER

FOR A SPACECRAFT CENTRAL DATA SYSTEM

By T. Baker
G. Cummings
R. South

Distribution of this report is provided in the
interest of information exchange. Responsibility
for the contents resides in the author or organi-
zation that prepared it.

QOctober 1969

Prepared under Contract No. NAS2-3255 by
APPLIED RESEARCH LABORATORY
SYLVANIA ELECTRONIC SYSTEMS

§n Operating Group of Sylwvania Electric Products, Inc.

o m ettt armn kR

e Jduced by the <
T O <

40 Sylwvan Road, Waltham, Massachusetts (02154

for

AMES RESEARCH CENTER
MOFFETT FIELD, CALIFORNIA 94035

for Federal Scienhific & Tachnical

i
Information Springheld Va 22151 /

NASA CR-T73348
Available to the Public

FINAL REPORT

MULTIPAC, A MULTIPLE POOL PROCESSOR AND COMPUTER
FOR A SPACECRAFT CENTRAL DATA SYSTEM

By T. Baker
G. Cummings
R. South

Distribution of this report is provided in the
interest of information exchange. Responsibility
for the contents resides in the author or organi-
zation that prepared it.

October 1969

Prepared under Contract No, NAS2-3255 by
APPLTIED RESEARCH LABORATORY
SYLVANTA ELECTRONIC SYSTEMS
An Operating Group of Sylvania Electric Products, Inc.
40 Sylvan Road, Waltham, Massachusetts 02154

for

NATTIONAL AERONAUTICS AND SPACE ADMINISTRATION
AMES RESEARCH CENTER
MOFFETT FIELD, CALIFORNIA 94035

FOREWORD

The study described herein was done at the Applied Research Laboratory
of Sylvanla Electronic Systems, under NASA Contract NAS2-3255, The work
was done under the direction of Mr. Richard O. Fimmel, Systems Engineering
Division, NASA-Ames Research Center.

ii

Section

[
= R R

4.0

TABLE OF CONTENTS

SUMRY LR L B R LR I B R R A B R A A A I T LI NE B NI O B B O A I I I I BRI B AR
INTRODUCTION v venimnnessnnonosonsnanssanansaacssasncssas

THE MULTIPAC CONCEPT AND ITS EVOLUTION Ceeesasaaenn
SYSTEM OPERATION e rerese s s e eonnsrsaenan ceasan
3.1 Data FloW +iveveesvsarnssasarrnssnsosannnananns ceeians
3.2 Transfer Timingceveeeecerecnernrensensssaasoanes
3.3 Word FOrmat ...vc.iveieeueeenaanenennononocecaaasoannans
3.4 Module TYPES teverernncarannssossonsstonancnnanannaenns
3.4.7 The Logic UNif tuiuivivessvisstsranccnsonnnnnns
3.4.2 The I/0 Register .vevveerrernonns teeseanennsas
3.4.3 Memory Unif soeiverernrovenonssssnncaas Ceaasan
3.4.4 D/A Registerceeeeecneaacncnonesanccsncnns
3.4.5 Command Unitciiieinrnnensenncenecssnnananas
3.4.6 Telemetry Unit teestateraaenaas ..
3.4.7 Timing Generatorseivsssisssvscsnsssssssss
3.4.8 Real-Time COUNEEY .uiivevssnrrnasacsasosoanaan
3.4.9 Sample Rate Countercec.ceeeeuecncncnncnns
3.4.10 Magnetic tape UNIE s.veverievnencsascrcaasannas
3.5 The I/0 SYSLEIM teuvrnereacsssansssaroscasasossssssssasans
3.5.1 Bilevel InPULE tuvveieenrrsrsvinnaacsnnnsnassns
3.5.2 BSerial inpulsccieerisersitscsasnssnsnsns
3.5.3 Analog inputs Ceeetieassecaacaacs e
3.5.4 Bilevel command OULPULS svvesvanvnssrsscrsnass
3.9.5 Serial command OUEPUES +.ievivwnresennsenansan
3.8 External Characteristics ...c.veieiirinrnerecnasnnnaas
3.86.1 Parts count ..cceceeves sesrsssesentesassrasans
3.6.2 Power consumptionveveeiienrscnarannas
3.6.3 Speed iiiiiiianrariniteiiasaiisaintaans ranans
3.6.4 Volumec0uevsn Seeanaaessasasrrrrrensars
3.6.5 Wedght ...uiintiiiioiiiiatiaiasencrannnonannns
LST CIRCUIT TECHNIQUES ...vvuvuceevnncsnssososnssnsnssanses
4.1 Speed i ieiireietatsurat et cettsasasstansanecannenas
4,2 Low-Power Logic CirCULLS +eevevreercennsnsaosoonnsans
4.2.1 Low-power bipolar ¢ircuUifs ...eeeeisvecrnassns
4,2.2 P-channel MOS8 ieiiiiiiinivaennronsasananan
4.2.3 Complementary MOSceiveeirecesacscsscasnas
4,.2.4 Low-power complementary bipolar circuits
4.3 Methods of Large-Scale Integrationviveeiuunnn
4.3.1 Custom circuitseevvun... Cheersreaaanens
4.3.2 Hybrid packagingc.cinniieriiriiiiiriaanan
4.3.3 Custom metallization sesseeersvossssccssnncses
4.3.4 Discretionary wiringcicriierincnnnnnens
4.3.5 P-channel MOS technology ceasean
4.4 Memory Cireuils .v.iveeecernnsssavnssnssosssssosancnns
4.5 Special Circuilsiveveeerenrnnrrorrnrsnsrrnrsnnnns
4.6 Circult ChOICE suvivuvintvavstasssarivnssssssssanesus

iii

TABLE OF CONTENTS.-- Continued

Section Page

ETAILED DESCRIPTION OF MODULES ..,.uveeessvecensvssvssnvsnses DB
.1 Flip=Flops ..evvevenn. sversanana tretretserennieia terenn 58
.2 Basic Register Circultceieiiinninevnnencesonsesess BL
.3 16-Way Switch Circull tuseisiieeeeerocnnsnnnsorsnsaanes 62
4 The Logle Unitiuiieieeeiieeeneeennnsasecncansannns 62

5.4.1 Instruction decodingeevueveocessvosvasecaes B2
The control €00eSveviusennrecansnnnnoneanas 72
The sequence COUNEET +.uecieeeecvnscncnononncasss 72
Instruction timiIng seseevveverosssscsnsosnssosss T7
Instruction shift register ceevesesnsaneas 79
The program memory SWIitCh ...iveuveeeneeeenrenss 79
The data memory and register select switching .. 80
Adder input switchesccvevvnrovennennne ... 81

5.0 D
5
5
5
5

[] - & [- - »
N N N Y Y N N S Y N N S S

Pl et e el D 00 =T R o B

B w o

.4, The adder teetssrssasiranssrtrrersaeesesss 82
4. The accumulators bes i it eessresecaassenins 82
.4, Accumulator clocking seeenaan thecasnnes 83

12 Timing counter .evvevoveveaonanssnsssvsoceseasss 84

Skipl lllllll LR AN L B R B I AN O I I R R N I R R N A] 85
Program counterceveeusenranssnssnsanns ... 86
9.4.15 The interrupt mechanismc.vcvvvurvnncocenn. 86

Q1A 1T CA QNN LT ST CA N

5.5 I/0 Register cersesenen et reeenaa teeacecesacssass B8
5.6 Memory Unit tesenrrreerrarrerrressnreressesesssss 08
5.7 D/A Registerveveeereeees Cescsscacasanean vesseeeses 96
5.8 Command Unitec00cv... U *)
5.9 Telemetry Unit ...vevevseeesesesoverscsnnrssnnssssnssasl00
5.10 Timing Generatorc.ceceea. trsaternarernras veennes 105

5,11 Real-Time Counter .viveeeeoeces crssecseneaaanas et ecanee 106
5,12 Sample Rate COUNLEY +iuviistvarsoaneesocansansoansansaalll
RELIABILITY ..v.vesvcosvasanncnoosnsoraasssssssasananscnaessllB
INSTRUCTION MANUAL ,.eevvevvoerocoorrocsosscsasncosssnnsssssesl2B
T.1 Instruction FOrmatseevesveseoonesnasccannes vees.125
7.2 Arithmetic and Logical Instructionse.eeeeeee...126
Te2.1 INSEtrUCLion SEE .uivereessstoninnsssasssnennnses 126
8 Input/Output Instruetion Ceessaarsrans eeee 150
7.3.1 InStruction Setvevrervorssensnrrancosesseldl
4 Miscellaneous INStructions ..vveveveeovesvrosenrennnsas 153
5 Branching Instructions tesaan fesessterrena R 1
-6 Shifting InStructiONdeeseecsecesnsscrseonsusnnsessaldT
0
1

-1
oo

7.

ROGRAMMING .. ivovvevevonrnnncnceasaraassoosennannes creeacenn 159
Typical Subroutines et et at st ananee 159
8.1,1 A/D conversion subroutineeeoeevvsvueere..158
8.1.2 Inputting subroutineceeeevienrrivennnans 159
8.1.3 TFormatting subroutines ...,..... tererrreeraeneselDO
8.1.4 Timing ...veeeeeveoens cesascrnannnes ceeesrasaas 159
.2 Communication Between ProceSSeSeceessvescerseessss BB
«3 Data RedUCEIiON +uveuvsreressssssasessaascsasossnsssosesslBT

8.3.1 Histograms or quantileseeveeveuvnevenes..167

8.3.2 Digital filterscevvvennecrsaes terresasa eees 167

8.0

Section

9.0

10.0

Appendix

A
B
C

TARLE OF CONTENTS.-- Continued

Page

8.3.3 Spectral analysis ..iecetaeranenerranctonins 163
8.3.4 Usage of data reduction techniques 168

8.4 Addition of Magnetic Tape StOTEAZE ..vevvisonovrsanos 174

REPROGRAMMING AROUND FAILURES .ivevnrteocnsssssssasssasas L7
9.1 Complete Failure of a Reglster vieessevesesanssaaass LT6

9.2 Complete Failure of a Logic Unitvieenvuvenns 176
8.3 Memory Failuresccovveene Ceesrentac e, 1717
9.3.1 Complete failure et ess it eaaarsaansa 171
9.3.2 Partial failures ...cvveeeesrveacsrannsscsnns 178
8.4 Command Override Procedurec.iiiuceeerneanrnnanns 179
9.5 Reprogramming Methods Sereess et anseann .. 180
9.5.1 Diagnostic tests Chreneaasasae e as 182
0.5.2 Timing ceevuevvsssessstoosncnanaansaassmnssnnns 182

9.0 Ground SoftWATE wevecerecsssosertssesansccsnsnssesces L83
CONCLUSIONS AND FUTURE RECOMMENDATIONS ...veeveeceoseeses 18D

RELIABILITY PROGRAM. .o tvvivier it vanstssnanossosanscsanss 187
LOGIC DESTIGN SIMULATTON ,...vcicirionerannennnsnansasnnns 199
NOMENCLATURE OF LOGLC DESIGN OF SECTION 5 205

Figure

W O =3 & W W W D

-
e e = = v v
W =3 D @ B W N O

19
20
21
22
23
24
25
26
27

28
29
30

PRECEDING PAGE BLANK NOT FILMED.

LIST OF TLLUSTRATIONS

Page
MULTIPAC Block Diagram (Typical System),...... 6
Original MULTIPAC Concept.c.cecinusenrossannans 9
Data Flow in Original MULTTIPAC Concept.....-.. 10
Logic Unit Block Diagram...ceeveseeesscearanes 18
I/0 Register Block Diagrae.e.eeseveceaanesns .o 21
Memory Unit Block Diagramisseeseessseseansanes 22
D/A Register Block Diagram....ccoevesesnnnsasas 24
Command Unit Bloeck Diagram...c.ccvvecveensceaas 25
Telemetry Unit Block Diagram......eecvceeenns 28
Timing Generator Block Diagram....cieveeeaae.s 29

36-Bit Real-Time Counter..cueseesescssnasensse 30

Sample Rate CoUNter.ceesesasansoscasennrranass 31
Critical Propagation Path........ccoviiiian.. 49
Set-Reset Flip-FlopP.veissnasssrsssnrssnsassesss 59

AND Input D Flip-Flopttdno-ti-d‘ut-dob--tolill 59
NAND I‘ﬂput D Flip'FlOP.|004||-ooouunn-ool-.--n 60

BaSiC Register...............o-.-n-oo-.coo.--- 63

Basic Register Connected as Left/Right
Shifting Register..iiveeererseronecnnas P £ 15

16"Way SWitCh.llt.olllnlaoal.ooono--a-nn--lnn- 67

LST MULTIPAC Logic Unit Logic Diagram......... 69
1ST-MULTIPAC Operation CodeS.eeveearsercaseanaa T1L
R Field Coding for SHF and SKP, Part 1l........ 73
R Field Coding for SHF and SKP, Part Z........ T4
LSI MULTIPAC I/0 Register.iceenreeacsecassesss 89
State Diagram of R/M Control Sectiome.....s... 91
Timing Diagram of R/M Control Section......... 92
MULTIPAC Memory Unit (Typical Connectioms,

Bit 11 Locations # and 1 Shown) .ceeeeecenannne 93
MULTIPAC D/A Register....cviveenironaen Ceseaaeea a7
MULTIPAC Command Register........ceeuc-. seraess 101

MULTIPAC Telemetry Uniteesesseevesneoneresnraa 103

vii

LIST OF ILLUSTRATIONS. -~ continued

Figure -+ Page
31 MULTIPAC Timing Generator...ceevsssssssesees 107
32 Real-Time COUNLET e seessocacnsosassesesesoss OO
33 Sample Rate Counter.....vvvveeeeccccncses .o. 113
34 Reliability Model of LSI MULTIPAC........... 116
35 Qutputting Routine Flow Chart........ ceneess 164
36 Overall System Block Diagrameiceescvessccccss 169
37 An Example of a Three-Stage Feedback Shift

REgisteruucilollO.aoolo.---o.----l'uco.!n.'- 200

viii

Table

w oo =1 ¢ G i L b

o=
M o= O

13
14
15
Al
A2

LIST OF TABLES

SCIENCE INTERFACE LINES.....ceeevavsnanans
ENGINEERING INTERFACE LINES....... seesemucaan
I/0 CHANNELS REQUIRED.....cvvvaeon.. R
PARTITIONING OF THE LSI MULTIPAC DESIGN......
QUANTITY OF CIRCUITS PER SYSTEM...e00s. teennn
ESTIMATED POWER CONSUMPTION...ueevevevas Ceeenn
CONTROL CODES.eeossevrraseneosarssssrossonnns
INSTRUCTION TIMING....evvevvannn. Cereaearanae
INTERRUPT TIMING........ Ceermaaaan e ..
STATES OF THE TIMING COUNTER..ceeecvsasonana .
LSI MULTIPAC SYSTEM RELIABILITY....... Ceeaaea
LSI MULTIPAC SYSTEM RELIABILITY WITH FULL

MEMORY 4 v v vueennomnnnnans Ceeennan
A/D CONVERSION ROUFINE,....cecencacanass cenon
INPUTTING ROUTINE . cvvuvvennvnnronnnanns Cereaes
QUTPUTTING ROUEINE. . eueeerossovossnararnsvens
PROGRAM FOR RELIABILITY....coceevaces ceterean
OUTPUT OF PROGRAM: v vuuvrreonnnnannans

ix

40

106
118

120
160
161
162
188
180

LIST OF ABBREVIATIONS

ACC Accumulator

A/D Analog-to-~digital

ANAP Analog amplifier

ANSW Analog switch

BMIC - Bipolar-to-MOS interface circuit
CCD Control code

CcDs Central data system

CMD Command module

CMOS Complementary metal oxide semiconductor
CNI Copy next instruction
- COMBR Combinational rellability

CR Control regisfer

CIR Counter

DIN Data input

DOUT Data output

D/A Digital~to=-analog

DMR Data memory paging register

DTL Diode-transistor logic

EX Execute state~of sequence counter
FR Failure rate

Ic Integrated circuit

IND Index state of sequence counter
INHR Inhibit register (signal)

INP/WR Input or write

INTO Zero state of imterrupt sequence
INT1 One state of interrupt sequence
I/0 Input or output

IR Instruction register

ISR Instruction shift register

LIR Logic instruction register

L3I Large-~scale integration

LSIC Large-scale integrated circuit
LU Logic unit

LIST OF ABBREVIATIONS, -~ Continued

MA Memory address (register)

MBIC MOS-to-bipolar interface cirecuit
MD Memory data (register)

MEM Memory

MNR Minimum number of modules required
MOS8 Metal oxide semiconductor

MR Reliability of module

MSI Medium«gcale integration
MULTIPAC Multiple Pooled Processor and Computer
MUX Multiplexer

JUN Number (of modules in system)
NOF No operation

NS Number surviving

OFPC Operation code

OUT/RD Output or read

PC Program counter

PMR Program memory paging register
R Register

REG Register

R/M Register or memory

] Select signal

sC Shift clock

sQ Sequence counter

™ Telemetry module

TTL Transistor-transistor logic

Voo Power supply voltage

us Word strobe

xi

FINAL REPORT

MULTIPAC, A MULTIPLE PODIL PROCESSOR AND COMPUTER
FOR A SPACECRAFT CENTRAYL, DATA SYSTEM

By T. Baker
G, Cummings
R. South

SUMMARY

MULTTPAC is a computer designed especially for use as an "off-the-shelf"
central data system for deep space probes. This computer has the unusual
characteristic that it may be repaired during flight through the command and
telemetry link by reprogramming around the failed unit. This reprogramming
is possible through a computer organization that uses pools of identical
modules which the program organizes into one or more computers. The inter-
action of these modules is dymamically controlled by the program and not
hardware. In the event of a failure, new programs are entered which reorga-
nize the central data system. The only effect of such reorganization is to
reduce the total processing capability aboard the spacecraft. GConsequently,
some low priority process may have to be eliminated, but data taking and
transmission may continue.

As an example of one MULTIPAC configuration, a l6-watt system, includ=-
ing 12,288 words of memory, can act as a sophisticated data management

system for a space probe with gbout 200 science and engineering input lines
and 200 output lines. This MULTIPAC system could simultaneously schedule
sampling of the experiments, perform mneeded analog-to-digital conversions,
reduce the data using histograms or other data reduction techniques, perform
some data processing for the experiments such as digital filtering, and then
format the data for transmission by the telemetry subsystem. In addition,
the system has all the flexibility of a computer by allowing wide variations
in formatting, sampling schedule, etc. These program variations can occur
under program control or be completely changed later in the flight from the
ground after analysis of the data received.

PRECEDING PAGE BLANK NOT FILMED.

1.0 INTRODUCTION

This report describes MULTIPAC, a spacecraft central processor, the
concept of which was derived from the first year of this study. (The re-
sult of the first year study is reported in the final report for that part
of the contract.l) MILTIPAC has modular organization which permits repro-
gramming around failed modules. Machine reorganization may be accomplished
by program changes to utilize surviving modules optimally, thus affecting
a gradual degradation of processing capability as additional modules fail
in the course of a long mission. The overall reliability is such that the
probability is very high that at least some minimum mode of operating the
spacecraft .can be sustained throughout very long missions.

The MULTIPAC system is intended to replace the current technique of
designing a new central data system for each probe with a standard Toff-
the-shelf" central data system which is programmed with software to per-
form as a flexible data management system. Some variation of flight-to-
flight requirements are expected to be made up by differences in the num-
ber of modules carried and also with the possibility of the addition of
one or two special modules,

As an example of one MULTIPAC configuration, a l6-watt system, in-
cluding 12,288 words of memory, can act as a sophisticated data manage-~
ment system for a space probe with about 200 science and engineering in-
put lines and 200 output lines. This MULTIPAC system could simultaneocusly
schedule sampling of the experiments, perform needed analog-to-digital
conversions, reduce the data using histograms or other data reduction
techniques, perform some data processing for the experiments such as digi-~
tal filtering, and then format the data for transmission by the telemetry
subsystem. In addition, the system has all the flexibility of a computer
by allowing wide variations in formatting, sampling schedule, etc. These
program variations can occur under program control or be completely changed
later in the flight from the ground after analysis of the data received.
In contrast, today's fixed format central data system simply performs a
fixed schedule of sampling followed by one of a few fixed formatting rou-
tines. Processing of the data is not possible, and the scheduling and the
formatting is primarily variable by scaling to the telemetry rate.

The first year of this study, which has been reported earlier, was
concerned with overall spacecraft organization and usage of the central
data system., The three major recommendations of this phase were that the
central data system use stored program computer concepts, data formatting
should be very flexible, and data reduction algorithms should be used
whenever possible,.

Data formatting should be flexible in order to use effectively the
telemetry rate when failed experiments are turned off. A format of fixed
eyclic sequence of data words is used on present space probes. For this
fixed format, the CDS input and output rates are matched to the instrument

sampling rate, The advantages of fixed format are that only a relatively
small number of bits (frame sync bits) need to be transmitted to mark the
start of the known sequence and, secondly, the same sequence can be used
at different bit rates simply by making adjustments in the input sampling
rates, The chief disadvantage of such fixed formatting is that, when
instruments are turned off, meaningless bits must be inserted into the
telemetry data stream in place of those which would normally come from
the inoperative instruments to preserve the fixed sequential telemetry
pattern. A variable format will eliminate this disadvantage when an in-
strument is turned off but will pay for this in extra transmitted bits
when all instruments are operating. The recommended wvariable format uses
data arranged in source-asscciated blocks which contain relatively small
numbers of bits in a fixed order. Each block carries its own identifica-
tion bits, which can be distinguished from ordinary data bits. These
blocks are then transmitted in a wvariable sequence.

The first phase of the contract recommended that both the fixed
and variable format be available 'and changes from one to the other be
made when experiments are turned off or when telemetering bit rate changes.
This ability to carry a number of radically different formats is easily
possible if the central data system is a stored program computer.

For some of the experimental data, enough redundancy exists so that
data reduction processing can significantly increase the amount of informa-
tion which may be transmitted at a given telemetry rate. Recommended data
reduction techniques are histograms, digital filtering, and spectral anal-
ysis. The decision to process the raw data for a particular scientific
instrument prior to transmission must be made by the instrument designer
or experimenter., Therefore, it is clear that the only reasonable solution
is a stored program CDS which could be spec1f1cally programmed to each
experimenter's requirements,

The central data system is ideally suited to the formation of histo-~
grams and the subsequent computation of statistics from these histograms.
For cosmic ray and neutron experiments, a histogram of the counts can be
accumulated over a large number of spacecraft revolutions. The mean,
variance, and modes for each histogram can be computed and transmitted.
Alternately, the quantiles of the histograms can be computed and trans-
mitted., Histograms require very little processing time for their imple-
mentation, which is desirable in the event of a component failure that
would reduce the central data system processing capability.

Another data reduction technique is digital filtering. The avail-
ability of a stored program central data system allows consideration of
employing digital filtering for replacing analog filters in the instrument
electronies. 1In addition, digital filtering can be employed to reduce
signal bandwidth and provide estimates of spectral emnergy at different
frequencies, These filters can be either lowpass, bandpass, or highpass
filters. :

A third data reduction technique considered in the early study was
spectral analysis. Spectral analysis is a mathematical tool Tfor estimating
the power spectrum of a time function for a finite length record. There
is a basic trade-off when making spectral estimates between the spectral
resolution that can be obtained and the variability of the estimate. The
finer the resolution of individual spectral lines in a signal, the greater
the gpread of the confidence range about the estimate. Conversely, reduc-
ing the variability of the estimate reduces the resolution of the spectral
lines.

Several conclusions can be made about handling data reductions of
signals generated by the instruments. In general, it seems better to em-
ploy averaging methods (e.g., computational of mean, variance, and spec-
tral distribution) rather than omit data samples when the rate of data
collection exceeds the telemetry channel capacity. 1In this way, the CDS
is being used to affect compression, and aliasing errors due to insuffi-
cient sampling rates are minimized. -

It is also clear that a variety of algorithms could be stored by the
central data system so that, when monitoring the data from each instrument,
the appropriate algorithm can be selected. This tailoring of the process-
ing of each channel is a distinct advantage possessed by a stored program
central data system.

The data formatting and data reduction studies in the first phase of
the contract highlighted the need for stored program computer concepts
for the design of the Central Data System. A centralized computer for a
central data system leads to the problem of how to prevent failures from
aborting the entire mission. Reliability becomes even more important when
we realize it was recommended in phase ome that many additional tasks nor-
mally performed in each experiment be taken over by this centralized com-
puter., The solution arrived at was a multiple pool processor and computer
(MULTIPAC) made up of a number of modules of a few types tied together by
the program. The remainder of this study was devoted to the design of this
MULTIPAC system.

The MULTIPAC system, as finally developed, is shown in Figure 1.
It's most important module, the Logiec Unit, controls the actions of all
other module types. ZEach logic unit, using a few registers and one or two
memories, acts as a computer. A typical system will have three logic units
and enough registers and memories to act as three simultaneous computers,
each performing one-third the overall processing tasks. This typical sys-
tem will consume only 16 watts and use 173 LSI logic circuits, 768 memory
store LSI circuits and six integrated circuits for special purposes (e.g.,
oscillator). The number of different LSI circuit types is 13 or 17, de-
pending on whether or not a large discretiomary wiring LST type is used on
the logic unit.

MEMORY

-

|—af MEMORY {3
5

LOGIC
bNIY
Q

LOGIC
umitT

LOGIC
umIT
ki

COMMAND
REGISTER 1

TELEMETRY
REGISTER 1

N

L]

REGISTER 2 1

1

TELEMETRY
REGISTER 2

28

FROM EXPERIMENITS

1!

REGISTER 7 |[

F—J

1O EXPERIMENTS

|
|
|
|
I

FROM EXFERIMENTS

_’% REGISTER 31 *r’

TO EXFERIMENTS

| -
J 1

B/A
REGISTER

b

OfA
CONVERTER

ANALOG TO EXPERIMENTS
0/A
_‘ﬂl PEGISTER 7]'-l

A
CONVERTER

AMALOG TO EXPERIMENTS

Figure 1. Block Diagram of Typical LS| MULTIPAC System

The reglsters are dual purpose. They act as index or scratch regis-
ters for normal processing and they are the input/output interface to the
experiments, Each register contains a separate output buffer which holds
output interface information., Thus, the register can be used as a scratch
register without disturbing the output interface.

A few of the registers are special. One is used to produce an
analog voltage of its digital contents to be used in analog-to-digital
conversion for some of the experiments'! signals. Another pair is used for
the command and telemetry interface. The command register must have the
ability to overtake the logic units by command in the event that the sys-
tem does not respond properly to normal commands due to component failures.

The memories are passive devices which read or write data as com-
manded by a logic unit. The program counter is contained within the logic
unit and instructions are requested from a memory selected as the program
memory. Usually, a second memory is selected for data since the instruc-
tion rate for a separate data memory is faster than using the program
memory for data.

A1l logic units can address all registers and all memories. In the
event that two logic units address the same register or memory, any data
transferring to this selected module will be ORed. The hardware normally
associated with a multiprocessing system for handling such conflicts was
purposely left out to keep the central data system small, light, and low
power. Since all three processes are essentially working on three dif-
ferent tasks of the same problem and, therefore, know what the other pro-
cesses are doing, these conflicts can be kept to an absolute minimum and
those conflicts that do exist can be easily programmed around.

Overall, the system described here has a high 1ikelihood of surviv-
ing a long mission with small minimal processing capability. A failure
of a module will cause slightly degraded processing capability because
some extfra programming must be done to program around the failed module
unless a spare module exists. But even in the case of a failure of a
logic unit, the worse—that will happen is that the central data system
will be able to perform only two-thirds of its processing load, The pro-
cessing capability of only one logic unit is more than enough to accom-
plish all the tasks domne by the data system of Pioneer VI.

2.0 THE MULTIPAC CONCEPT AND ITS EVOLUTION

The MULTIPAC system was originally proposed as a computer organiza-
tion which would make the versatility of a programmable central processor
available on long space flights without making the spacecraft dependent
on the poor reliability of a conventional computer in which any failure
normally makes the entire system useless. The solution then envisioned,
shownn in Figure 2, was a very simple processor organized from modules se-
lected from pools of three basic module types (logic units, memories, and
general-purpose registers) which would be assigned to their functional
roles by software methods. Should a failure occur, the faulty module
could be replaced by assigning another to fulfill its function. Moreover,
spares would not have to be assigned as such but could be used insofar as
possible to enlarge the initial capacities of the processor. Failures
would simply cause a gradual degradation of processing capability so long
as sufficient modules remained from which to construct the minimal proces-
sor,

As originally envisioned, a processor could be constructed from three
logic units, two memories and severdl registers, plus a multiplexer to
provide I/0 to the spacecraft experiments and modules to interface with
the command and telemetry links. The logic units pexrform all transfers
in the machine as dictated by their individual instruction registers
(LIR's). The memories automatically output to their data registers (MD)
the contents of the location specified by their address registers (MA) or
write in that location any data word transferred into their MD registers.

The data flow, which is programmed, is typically as shown in Figure 3.
LIR1, the instruction register of Logic Unit 1, is initially loaded with
an instruction causing the contents of a register (Rpc)’ used as the pro-

gram counter, to be incremented and passed to the address register (MAl)
of the memory containing the program.

A second logic unit (LU2) is also initially programmed, causing it
to continuously transfer the contents of the program memory data register
into the instruction register of a third logic unit (LU3) which actually
executes the program. 1It, in turn, operates on several registers which
may be used as accumulators, index registers, counters, and scratch stor-
age, and upon a second memory used for data storage. If the memory ad-
dress is set in MA2 by the logic unit, one machine cycle later the con-
tents of the location may be read from the memory data register (MD2).

The following table illustrates the overlapping timing with which the
program counter is advanced, the instructions delivered into the instruc-
tion register and, as an example, how an add from memory into the accumu-

lator (RACC) is executed. Operation codes used are copy (COP), no opera-

tion (NOP), and add (ADD).

8 LOGIC UNIT QUTPUT BUSSES 8 LOGIC UNIT INPUT BUSSES

L i] ’ ~, .

3
 §

I
&
L.
Y

Yy
MEMORY 4

yyid

o MD4 |

- RI

4

f

R20

.

y

o

»l

» LR
(2]

LOGIC UNIT 1

hiryriiind

» LRA -
'R

LOGIC UNIT 4

B

o

-}

lgigure 2, Criginal MULTIPAC Concept

10

(Rpe)HI=SRPC, MAI

LIR]
¥
RPC Lu1 L
Figure 3,

MAI (MD1) =5 LIR3
y
MEMI LIR2 PROGRAMMED
¥ X
MD1 |—1 LU2 > LIR3
Y
I RITE
i MA2 |+—9
y
MEM2
1.2
] *
" RN
) I
™ | TELEMETRY |
1
| MUX [+
EXPERIMENTS

Data Flow in Original MULTIPAC Concept

Rpc MA]L Ml LIR3 MA2 MD2 RACC
0 0 == -—- ——— ——— A
1 1 (0) -——— “—- —- A
2 2 (1) (0)=COoP MD1, MA2 - ——— A
-—- -—- (2) (1) =NOP ADDR ADDR -— A
- --- (2)=ADD MD2, R,..| ADDR (ADDR) A
A+(ADDR)

The original machine was to have used a 16-bit word having a 4-bit
operation code and three 4-bit addresses. Addresses were 12 bits long
with an operation code field containing all zeros, defined as a no opera-
tion (NOP) instruction. Addresses were buried in the program stream’ in
what were essentially two-word instructions and prevented from acting as
instructions when they reached LIR3 by their NOP coding.

Three factors have proved troublesome in the practical design of the
machine. First, there is a great deal of switching interconnecting all the
modules in order that they may all be interchangeable. Second, the power
limits set upon the design constrain the choice of circuitry to the lowest-
powered (and lowest-speed) logic families. Third, the real-time data pro-
cessing requivement, initially assumed to consist of low-rate data format-
ting, has grown quite large, enough to exceed the capability of the simple
micro-ordered set of trivial modules originally envisioned.

These three factors have influenced the evolution of the design. The
choice between a serial or parallel machine was resolved in favor of a
serial one, largely in order to minimize the amount of switching logic
between modules. Also inveolved in this decision was the question of speed
versus power. Investigation indicated that a paraliel machine would have
been too large, considering the switching logic, and would exceed the
power budget even with very low-powered logic. The serial system was
smaller and could stay within the power budget if constructed from very
low-powered logic. However, it would be an order of magnitude slower,
which would have an adverse effect upon the ability of the machine to
handle the processing load. This can be alleviated to some extent by the
use of a small percentage of higher power, faster logic In the eritical
data paths. -

The power budget was also responsible for the decision to reduce the
machine word size to 12 bits. The three-address instructions were elimi-
nated, which not only disposed of one 4-bit address field, but also pro-
hibited instructions designating two locations in which the result should
be stored. This permitted the simplification of the switching logic to
include only one output data bus instead of two.

11

The reduction in gating resulting from a serial transfer organization
was further reduced by eliminating the normal transfer control lines to
each of the registers. 1Imstead, the number of transfer pulses was set at
15; one for word strobe (beginning of word), two for transfer control, and
12 shift pulses for the 12 data bits. The two transfer control bits in-
form the register what to do for the 12 data shift pulses (e.g., read word
in, read word out) and replace the normal gated control lines. The extra
logic due to encoding and decoding the 2-bit transfer code is more than
offset by the savings in gates needed to switch the control signals.

Considering the speed that could be attained with such a serial ma-
chine (estimated at about 1l5-microsecond instruction times), it became
necessary to consider a multiprocessing system having two or three inde-
pendent processors in order to fulfill the real-time requirements. This,
in turn, increased the number of modules required and the size of the
switching matrix. At this point, it became necessary to depart from the
generality of the Figure 2 arrangement, which had standard logic unit
modules doing such simple tasks as incrementing the program counter and
transferring the output of the program memory into the instruetion regis-
ters. The logic umnits used for these simple tasks were eliminated. Wow,
self-incrementing logic is built into the memory address register and the
program memory selection switch is built into the logic unit. The number
of logic units was reduced by two thirds. Since logic units are no longer
program addressable devices, a secondary bus structure was created for the
transfer of instructions. In essence, some of the simplicity and general-
ity of the original concept had to be specialized to meet the demands of
speed and efficiency.

MULTIPAC evolved from a processor in which each microinstruction was
dealt with separately and was independent, so far as the hardware was con-
cerned, from those preceding it and following it. Thus, its individual
treatment by the. instruction register had to be coded into it, and se-
quences of micreinstructions were solely a matter of programming. As a
more specialized system evolved, however, sequences of instructions had to
be anticipated in the jump and interrupt hardware. This specialization
was extended to realize further efficiencies by recognizing other similar
gsequences of microinstructions, or macroinstructions, in the hardware.
These macroinstructions would be multiple word instructions containing
memory addresses. The sequencing hardware need only recognize these ad-
dresses and prevent their being treated as instructions.

It appeared useful to be able to ugse the same memory Ffor instructions
and data, thus permitting more flexibility in the modes of MULTIPAC opera-
tion, including a single memory mode with a higher probability of survival
than any previous workable configuration. This was accomplished through
macroinstructions using a program counter (PC) separate from the memory
address register. It increments its own contents, delivering the result
back to itself and at the same time transferring it to the memory address
register. Jump instructions require a control signal to alter the PC as
well as the MA. Other addressing of the MA overrides the input from the
PC to the MA but does not affect the actual PC contents,

12

The address fields of the instruction format were incréased from four
to six bits in order to address all devices directly. The previous machine
required 40 addresses. Six-bit fields would provide an expansion capabil-
ity of 24 addresses, a feature which is highly desirable in the system.
Additionally, the use of macroinstructions suggested above would require
at least five or six bits in the operation code field. It initially ap-
peared that if three fields were retained in the instruction, the machine
word would have to be lengthened to 18 bits, as follows:

OPC B A

6 bits 6 bits 6 bits

An earlier design used 4-bit register address fields with 3-bit base
registers to give an effective T-bit register address. To change from
the 16 addresses each instruction could address, the base register would
have to be changed by an extra instruction. It was gquickly discoveréd
that- (1) many of the 16 addresses (particularly memory) had to be inde-
pendent of base register setting to prevent excessive base register set-
tings, and (2) the few addresses left per base register significantly in-
hibited efficient programming, especially in the event of a register
failure. - .

The machine word could be reduced to 12 bits, however, by reducing
the number of address fields to one. The reason for the two-address in-
struction, if traced back, lies largely with the earlier use of one logic
unit to transfer instructions into another logic unit. Normal data opera-
tions could function with only one address field if the logic unit con-
tained two accumulators and a 1-bit field in the instruction referencing
one or the other. Indexed or indirect addressing operations require a
temporary storage and addition facility in the logiec unit whose use will
not destroy the contents of the regular accumulator, i.e., a second accu-
milator. This gave an instruction format of:

Operation Accumulator
Code Number Address
5 bits 1 bit 6 bits

In the course of designing the I/0 devices, it was found that the
multiplexer had switching problems very similar to those of the logic
units., At least 200 I/0 channels had to be provided, which called for
something like four modules, each containing addressable 64-way switching
of in, out, and control signals. This problem was solved by combining the
multiplexer with the general-purpose registers .and providing spécial in-
structions to use each bit of each register as an I/0 channel. The number

13

of chamnels required was essentially divided by 12, the number of bits in
each register, and the multiplex switching was moved back into the main

address switching.

Another step taken to increase the efficiency of the processing rou-
tines was the improvement of the A/D conversion method. The original con-
cept called for analog-to-pulse-width converters at the experiments, the
duration of whose output levels would be counted by the processor. This
consumed too much processing time, since the processor would have had to
devote itself to each comversion for about 50 milliseconds in a tight loop
to achieve the required 8-bit accuracy. To solve the problem, a new
module was created, a register which has a D/A ladder network on its out-
puts. This provides an analog reference signal to the experiments, and
each of the latter now must have an analog comparator which returns a sig-
nal level to the processor 1/0 indicating whether their output signal is
greater or less than the reference signal supplied, This makes possible
the successive approximation method of conversion whose algorithm runs
much faster, i.e., about 1.4 milliseconds for the maximum length (8-bit)

conversion.

The instruction set was then enlarged from simple two-argument logi-
cal and arithmetic instructions and test commands to include .the bit ma-
nipulating and I/0 instructions necessary to make the I/0 registers and
the A/D algorithm operate efficiently.

14

3.0 SYSTEM OPERATION

MULTIPAC is expandable and is comprised of seven module types as
follows (see Figure 1 in Introduction):

Min, WNo. Number in Number in Fully
Module Required Typical System Expanded System
Logiec Unit 1 3 5
Memory Unit 1 6 15
I/0 Register 1 25 57
D/A Register 1 2 2
Command Unit 1 2 2
Telemetry Unit 1 2 2
Timing Generator 1 1

A processor is formed by software assignment of one logic unit, one
or two memories, and several registers to operate in conjunction with ome
another. The 1/0 Registers serve the purpose of index or temporary stor-
age registers and also provide I/0 connections to the system. The most
efficient use of memory units requires two per processor in order that
program storage and data storage can be separate. The processor can also
operate from a single memory unit but at a reduced computation rate. Com-
munication with the command receiver and the telemetry transmitter are
provided by the Command and Telemetry Units respectively, which are essen-
tially specialized registers. Another specialized register is the D/A
Register, which has a D/A ladder comnected to its outputs so as to provide
a reference signal for the successive approximation method of A/D conver-
sion.

The MULTIPAC System is mot limited to the module types listed above,
but these are sufficient for our "typical" mission. Possible omissions
are a magnetic tape (or other mass memory) interface, a real-time counter,
a sample rate counter, and a Television imaging system. These are dis-
cussed briefly in paragraphs 3.4.8, 3.4.9 and 3.4.10 below, and logic dia-
grams for a real-time counter and a sample rate counter are described in
paragraphs 5.11 and 5.12,

In the discussion which follows, the system is assumed to be con-

figured with the quantity of modules listed in the table above under the
heading "Number in Typical System."

15

3.1 Data Flow

Data flow takes place only under the control of one of the three
logic units. Each of these communicate directly with six memories, 25
general purpose registers which also serve as I/0 interfaces, two D/A
registers, two command registers, and two telemetry registers.

Each memory is controlled by the logie unit addressing it. The
logic unit can direct the memory to read and send the contents of a speci-
fied memory location to itself as either instructions or data, or to write
the data which it supplies to the memory,

Each of the 25 general purpose registers has connections for 12 digi-
tal inpute and 12 digital outputs which may be accessed by I/0 instructions.
Thus, they provide 324 inputs (counting the D/A registers) and 300 outputs
to the rest of the spacecraft and the instruments.

The D/A registers are very similar to the general purpose registers,
having the same number of input channels, but the output chanmels are not
present. Instead, a D/A ladder network is connected to provide an analog
signal proportional to the arithmetic value of the register contents.
This analog signal is used by the experiments as a reference voltage in
the successive approximation A/D conversion process.

The telemetry and command registers share a common address. Instruc-
tions operating on such an address will connect one of the command regis-
ters to its input bus and/or one of the telemetry registers to its output
bus,

The command module serves as the link between the command decoder
and receiver and the MULTIPAC system. The module has three purposes: To
transfer normal commands (e.g., turm on or off experiments, change mode),
to allow special override commands to diagnose and reload new programs
from the ground through the command link, and to allow loading of programs
while on the ground before launch. The latter two use the ability of this
module to have the instruction words it recelves executed while iInhibiting
the normal program stream.

3.2 Transfer Timing

All data transfers between modules are serial. Synchronous machine
timing is provided by two clock signals, the shift clock {SC) and the word
strobe ,(WS). These are generated in the Timing Generator and distributed
to all modules by triplicated gignals driving majority voting gates at
each module interface. Timing consists of 14 8SC pulses followed by one
WS pulse at equally spaced intervals of approximately 1 microsecond., The
machine cyele is therefore about 15 microseconds.

16

The actual 12-bit data transfer is preceded by the transfer of a
2-bit control code on the same line. It is by the transfer of this code
that the logic unit controls the operations of the other modules with
which it communicates.

3.3 Word Format
MULTTIPAC uses a 12-bit word. The instruction format is as follows:

Single Word Instruction:

6 bits 6 bits

0P Code Reg Addr

Double Word Instruction:

6 bits 6 bits

OP Code Index Reg Addr

Memory Address

12 bits

Data words are 12 bits in length and use two's complement arithmetiec.
3.4 Module Types

3.4.1 The Logic Unit.-- This module executes the program it receives
from the memory unit which it selects as its program source. Figure 4 is
a block diagram of the Logic Unit. It is connected to all other modules
in the system and controls those which it addresses. In general, a module
is addressed by only one logic unit, the one to whose process it is as-
signed. (Use of a module by more than one processor for purposes of inter-
communication must be coordinated between the two programs concerned.)
The Logic Unit selects one memory as its source of program and another
(although it may also be the same one) as its source of data locations by
means of an instruction which loads two 4-bit base, or paging, registers.

The Logic Unit also addresses 64 register locations by the contents
of the instruction R field, or six lowest order bits. The first seven such
locations are specifically assigned as follows:

N}

81

TO MEMORY MODULES

-
. 2}
e el <) 4
PROGRAM MEMPF—— LIR DATA MEM
SELECT +—— OFC = SELECT
Il h
PROGRAM
INTERRUPT — l
COUNTER SEQUENCER
T | N
JUMP
SELECT
N U
SELECTE——> ADDER ke SELECThe
— ACC 1
S ACC2

-

Figure 4.

Logic Unit Block Diagram

R
INPUT
SELECT

REG
SELECT

L

—
: o4
Smam—

TO
REGISTERS
ETC.

Address Register

0 Dummy register: Contents = 0
1 Accumulator 1

2 Accumulator 2

3 Input: Command Unit 1

3 OQutput: Telemetry Unit 1

4 Input: Command Unit 2

4 Qutput: Telemetry Unit 2

5 D/A Register 1

4] D/A Register 2

The remaining addresses in the first addressing section are nine. Address
switching may optionally be included to expand the number of addresses in
blocks of 16 to the maximum of 64. The unallocated register locatioms, up
to 57, will normally be assigned to I/O registers, which makes the permis-
sible I/0 interface as large as 57 x 12 = 684 channels each way. These
registers also serve the functions of index registers and provide scratch
storage for the processor. R

Arithmetiec and logical operations are performed with the contents of
either the registers or the dats memory by means of a serial adder and two
internal accumulators. Section 7 describes instructioms executable by a
logic unit. All instructions which access memory are two-word instructions
and require two memory cycles for their execution, assuming a data memory
unit separate from that in which the program is stored. If only one memory
unit is in use, i.e., if the contents of the program paging register and
the data paging register are the same, the instruction cycle is automati-
cally extended one cycle. All memory accesses are in practice indexed.
Non-indexed instructions reference index register zero and the contents
of the dummy register R0 are hardwired to present the number ZERO.

Each logic unit has interrupt capability which may be enabled by an
EINT instruction which sensitizes that particular logic unit to the inter-
rupts. Upon responding to an interrupt, the logic unit breaks off the pro-
gram stream, and the interrupt hardware forces the program memory address
to zero and executes the instruction in that location before modifying the
program counter. The instruction stored in location zero (STPC, see Sec-
tion 7) will store the program counter in a register. After executing this
STPC instruction, the program counter is set to ONE and execution of in-
structions proceeds from there.

19

Since a second interrupt during the interrupt subroutine would de-
stroy the return address, the interrupt emable flip-flop is cleared at the
start of each interrupt and must be enabled before returning to the main
program.

3.4.2 The I/0 Register.-- Figure 5 is a block diagram of the I/O
Register. It consists of a shift register for shifting serial data to and
from the logic units, an output buffer register for holding output inter-
face information, gating to enter input interface information into the
register in parallel, and control section which decodes register control
codes from the logic units. The 2~bit control codes cause one of the fol-
lowing four actions:

Control Action
co Do nothing.
01 Read input chamnels, then shift
register.
10 Shift register.
11 Shift register, then load output
buffer.

For the 10 code, the register is simply shifted which causes data to be
serially read into the register from the logic unit and into the logic
unit from the register. The 01 code reads the input interface data inte
the register and then by shifting the register, sends the data to the logic
unit. The 11 code shifts serial data from the logic unit to the register
and then transfers the data in parallel to the output buffer. The 00 code
does nothing., In the case of inputting or outputting, it also generates
clock pulses to the receiving or outputting I/0 devices to acknowledge the
transfer of I/0 data to or from them. In the case of serial transfers, for
example, these serve as-shift pulses shifting data into or out of the i/0
device.

it should be pointed out that the Register Control Section is also
intended to serve a similar function in the Memory Unit. What differences
exist in the two functions are accommeodated by hard-wiring two connections,
REG and MEM, to 4+Vece and ground respectively when the circuit is used in
the I/0 Register module., The inverse conmections are made when using the
circuit in a memory unit.

3.4.3 Memory Unit.-- The Memory Unit incorporates the I/0 Register
module, with minor alterations to its timing through hard-wired connec-
tions, together with additional LSI circuits for address decoding, inter-
face circuits and complementary MOS memory storage cells., Figure 6 is a

20

DATA IN

I/ © INPUTS

INPUT TRANSFER - A \
CLOCK
Fy
U - .12 o ”

U SHIFT REGISTER ——=DATA OUT
REGISTER C e 12 e .
CONTROL {4 |

l OUTPUT BUFFER REGISTER
OUTPUT U """ 12-- - U
TRANSFER . ;
CLOCK

Y
I/ O OUTPUTS

Figure 5. 1/ O Register Block Diogram

21

22

DATA

INPUT

IDENTICAL TO I/ O

=EEES e e U Smoomoo|[fT T REGISTERMODULE
l - 88 * 8 y I
| ~ /
1 ﬂ 7 SHIFT REGISTER I
| — |
| |
: swe e]2 v e ’
i | REGISTER !
] |
Il controL |1 |
i f ‘uf E
Lo — ey |
wl| ¢ OUTPUT BUFFER REGISTER |
=] ! I
Q Q I |
Zl Bl nroha 7lls4 PBrpio |
b 1T} L__,_______,______._______.._J
3 E
= = 1oFr16 || 10F 18
DECODER | {DECODER
X(16) Y{(16}
\L 1y 1 vy
INTERFACE CONVERTERS {34)
X(16) Y(16) J Al4)
)
vy A4 4 o
2 . CMOS MEMORY . >
- . 16 x 16 CIRCUITS, g
~ | o EACH CIRCUIT o~ g
A - CONTAINING R O
.l = . 16 WORDS x 12 BITS . 3
il
7] =
Z
Figure 6. Memory Unit Block Diagram

block diagram of a 4096-word unit. The X and Y lines select ome circuit

of 16 words and the A lines are decoded at the cirecuit to select one word.
The 2048-word memory as used in the typiecal system would have only 8 X lines
and 28 interface converters.

Complementary MOS was chosen for the basic storage element as the
only element with low enough standby power and operating power to allow
large amounts of memory for the MULTTIPAC system. This element has a stand-
by level of less than 100 nanowatts per bit and can be driven with rela-
tively low power drivers (order of 10 milliwatts). It is commercially
available in 16-bit memory chips and NASA ERC has a 256-bit element under
development.

3.4.4 D/A Register.-- The D/A Register is similar to the I/O Regis-
ter, lacking only its output buffer register and replacing this with an
8-bit D/A ladder network. Figure 7 is a2 block diagram of this module. It
supplies a reference signal to all peripheral devices requiring A/D signal
convergion., Each such device has its own comparator to compare this refer-
ence signal with the analog signal to be converted and returns the resul-
tant bilevel signal into one of the I/0 channels which indicates whether
the reference signal is greater than or less than the analog signal to be
converted. The processor then tests this channel as it performs a pro-
grammed A/D conversion by the successive approximation method. Since the
D/A ladders are comnected directly to the shift register stages (as op-
posed to the buffer register), the MSKR instruction and other register in-
structions can be used for this conversion routine.

3.4.5 Command Unit.-- The Command Imit provides an interface with
the command receiver to receive normal operational commands for the space-
craft and also to take over control of the processor(s) for reprogramming.
Figure 8 is a block diagram of the unit.

The command receiver must assemble a digital word of data, and load
this word into one of the two CMD registers in the CDS. Commands received
on the up-link will contain a special command address of four bits. These
will directly address the instruction register and both accumulators in
each of five possible logic units in such a manner that they can override
their normal funetioning and force data into them. The sixteenth address
is used for normal command transfers.

3.4.5.1 Normal commands:-- Normal commands are handled by the use
of the sixteenth command address. Receipt of this address causes a pro-
gram flag to be set through one of the I/0 channels and the command word
itself remains in the command unit shift register until read out by the
progranm.

aSee. Reference 3 at the rear of this report.

23

DATA
INPUT

24

CONITROL

ili SHIFT REGISTER

REGISTER |}

iy h

D/A SWITCHES (8)

8 BIT D/A LADDER

l

ANALOG
AMPLIFIER

l

A/D COMPARISON
SIGNAL

Figure 7. D/A Register Block Diagram

DATA
QUTPUT

G9%

DATA IN

FROM DATA CLOCK IN

COMMAND +
RECEIVER

FROM DATA IN
EXTERNAL —

CONNECTOR| DATA FINISHED ———

DATA FINISHED

SHIFT REGISTER

i J,
C OMMAND
COMMAND e UNIT __ »| SHIFT REGISTER ——, NORMAL
ADDRESS CONTROL DATA OUT
U L "COMMAND
DECODE COMMAND OVERRID k——> OVERRIDE DATA
i A VERRIDE " COMMAND
OVERRIDE
CONTROL
v
NORMAL
COMMAND
FLAG
Figure 8.

Command Unit Block Diagram

3.4.5.2 Command override:-- The command module inputs to the pro-
gram switch exercise hard-wired priority over the source dictated by the
command address bits., This overriding control is used to take over the
MULTIPAC system to recover from circuit failure by reprogramming.

The command override function replaces the normal program source of
the logic unit and causes instructions thus inserted to be executed in
iieu of the next program step. The first step in reprogramming is to in-
troduce an SPMP (Set Program Memory Page - see Section 7) inmstruction into
each logie unit, setting the program page register to ZERO. This position
is unused and is hard-wired to a data level of ZERO. All logic units would
therefore copy instructions which are all ZEROS. This is interpreted as a
series of no operation (NOP) instructions and the logic unit is effectively
disabled. Since only the logic unit itself can address its own program
switch, there is mo danger of another processor which is still active
interfering and restarting it, During the relatively long periocd while
each instruction of the reprogramming bootstrap loader is being received
on the command link, the logic units are disabled, but when an instruction
has been assembled in the command recelver and transferred to the MULTIPAC
Command Register, it is inserted in the stream of NOP'szs at the normal in-
struction rate,

A bootstrap loader 1is then written into one of the memory units
through one of the logic units. This memory unit is selected to be the
data memory of the logic unit, and the memory address and data to be
stored there are loaded directly by the command override logic into ACC2
and ACCl of the logic unit. An instruction is then loaded by the override
logic directly into the instruction register to store in data memory the
contents of ACC2 indexed by ACCl. The address of the store instruction
will be the next word seen in the program, but since this is all zeros
except for instructions inserted by the command override, the address seen
will be ZERO. Thus, the data word contained in ACCl will be loaded into
the location specified by the index in ACC2. Once a bootstrap loader has
been stored in a memory unit, the program paging register can be switched
to that unit by the command override and the remainder of the new program
loaded by means of normal command transfers.

3.4.5.3 TLoading from the ground:-- Programs can be loaded on the
ground before launch through the input commector shown on Figure 8., This
connector is wired in parallel with the signals from the command receiver.
When the receiver is off, the programs can be loaded in the same manner as
the command override, except at a much higher rate since there is no com-
mand link limitation. Of course, once the program is loaded, the power to
the memory must remain on to retain the information.

3.4.6 Telemetry Unit.~- The Telemetry Unit interfaces with the

modulator of the telemetry transmitter which is used to transmit the space-
craft data to the ground stationm,

'26

The block diagram of this unit is Figure 9. It is similar to an I/0
Register except for the Telemetry Buffer Register and associated logic.
The buffer register shifts, including a 1-bit high-order extension of it,
on the telemetry clock pulses. Since the l-bit extension is preset to a
ONE but shifting fills from the left with ZEROS, when the ONE reaches the
next-to-low-order stage, the contents of the register will be either 0002g
or 00035, depending on the last bit of telemetry data, At this point one
more shift would bring the preset ONE to the telemetry interface. Instead,
however, the control causes the next telemetry clock pulse to load a new
telemetry data word in parallel from the shift register and to preset the
extension bit again. A flag to the processor is also set to advise it that
the next telemetry word should be transferred into the shifting register.
The frequency with which the processor must sample the flag is one-twelfth
the telemetry bit rate.

3.4.7 Timing Generator.-- The Timing Generator, diagrammed in
Figure 10, provides both the shifting clock (SC) pulses and the word strobe
(WS) pulses to all other modules. Each of these signals is supplied in
triplicate throughout the system and is decoded by majority voting gates at
each module interface. The Timing Generator contains two sources of 1-MHz*
square waves selectable by the Command Decoder plus three identical count-
ers which operate in synchronism, routing 14 of the clock pulses onto the
SC line, then diverting one to the WS line and resetting. This resetting,
which maintains synchronism, is accomplished through majority voting gates
also. Thus, the clock distribution system can absorb the malfunction of
any one of these counters, or clock drivers, or the loss of any one clock
signal up to the individual module interfaces.

3.4.8 Real-Time Counter,-- Many missions will require a real-time
counter in order to label experimental data with time of occurrence. This
will be particularly true if data is stored or data reduction techniques
performed before transmission to the earth. The real-time counter designed
for MULTIPAC is expandable in increments of 12 bits. Figure 11 shows a
block diagram of a 36-bit real-time counter. Thirty=-six bits will cover a
time span of about two weeks with a precision of 15 microseconds. The
real-time counter can be implemented with only one new LSI chip type shown
on the block diagram of Figure 12 as Tncrement And Control. This circuit
allows the top shift register to increment omnce every word-time and the
bottom two shift registers to increment on the word-time following an over-
flow of the shift register immediately above. In addition, this ecircuit
will select one of the three shift registers as an output on receiving an
input command (INP instruction) from a logic unit. These input commands
select each shift register cyclically. TIf an INP instruct selects the top
shift register after the next application of the INP instruction to the
same register control, the middle shift register will be selected and then
the bottom shift register will be selected. An OUT instruction will cause
the next INP instruction to select the top shift register. The select cir-
cuityry shown as a separate block is actually packaged in the Increment And
Control LSIC.

o

The actual clock rate should be 983.04 kHz to obtain a 216-Hz word rate
if a real-time counter module is present.

29

8¢

SHIFT REGISTER

TELEMETRY BUFFER REGISTER

¥

e LOCK

DATA

|

TELEMETRY
TRANSMITTER

DECODE 0002, OR 0003

8

8

DATA >
INPUT -
TELEMETRY
UNIT
CONTROL
\Nr
1-BIT
LOGIC 4’:1 EXTENSION =3
-3
[
SET
BUFFER
CONTROL
TO1/0 TELEMETRY
CHANNEL FLAG
Figure 9.

Telemetry Unit Block Diagram

62

—< SELECT FROM COMMAND DECODER

v
1-MHz SQUARING |
OSCILLATOR CIRCUIT g
SWITCH
1-MHz SQUARING
OSCILLATCR CRCUIT [

Figure 10,

<t RESET [|4+—
COUNTER 1 !
> WS1
& SCI
la—a
ft~—— RESET :——-ﬂ
—a—] COUNTER 2 WS
& 5C2
‘-.—
— RESET fa—
Lo} COUNTER 3 l
£ \WS3
* SC3

Timing Generator Block Diagram

30

DATA lN——]—L

REGISTER
CONTROL

L INCREMENT

>4 SHIFT REGISTER

OVER -

INCREMENT |

AND CONTROL

SHIFT REGISTER

FLOW |

i
-

INCREMENT
AND CONTROL

SHIFT REGISTER

Figure 11, 36~Bit Reol-Time Counter

.| AND contrROL]
I Y p——
. vy Ny
3 OUTPUT BUFFER | DATA
e REGISTER SELECT = out
W
3 -r=e]2eon- 3
3 U U '
SLOW CLOCKS

FROM QUTPUT BUFFER OF A REGISTER

A
N]

DATA IN
L __ 12 - -4

‘\/ \\jf

REGISTER L——> [INCREMENT }[—
CONTROL AND CONTROL

SHIFT REGISTER

N
\/ y

INTERRUPT

Figure 12, Sample Rate Counter

31

Clocks slower than the 65,536-Hz MULTIPAC word rate can be generated
easlly by the addition of one or more output buffer LSI circuits to the
real-time counter, One such buffer is shown in Figure 11. This buffer is
loaded every word rate. Each stage, therefore, represents a clock fre-
quency of 21 Hz where n varies from 4 to 15 (16 Hz to 32,768 Hz). Slower
rates can be obtained by adding another buffer to the middle shift register,
These glow outputs will be used by the telemetry receiver and can also be
used by the experiment.

3.4.9 BSample Rate Counter.-- Many missions could use one or more
sample rate counters to control sampling rates of experiments. One very
obvious use of such a counter is to time out a sector from the sun pulse
generator, A 12-bit version of the sample rate counter is shownm in Figure
12, The only new LSI circuit is the same as that required for a real-time
counter (see paragraph 3.4.8), which has been designed for either use, de-
pending on external conmectlons. For count rates slower than that obtained
with 12 bits (16 Hz), these may be expanded in a manner similar to the
real-time counter or may be triggered from an overflow of a real-time
counter. The sample rate of this counter is stored in an output buffer of
another I/0 register. This count need only be read into this output buffer
with an OUT instruction once. The shift regilster is incremented contin-
uously, and everytime the shift register overflows, the 12 bits of this out-
put buffer are jammed into the shift register and counting commences from
this number. When the count overflows, an interrupt 1s also generated to
be tied into the interrupt input of the logic unit. This interrupt £lip-~
flop will be cleared when an OUT instruction occurs at this register. This
register may also be resynced with an INP instruction which reloads the
register with the starting number,

3.4.10 Magnetic tape unit (not implemented).~- It is likely that
future spaceeraft missions will have a magnetic tape unit aboard as a mass
memory. In the past, these have been operated to look very similar to the
telemetry interface. The data is transferred to the unit (and also stored)
as low-apeed serial data. If this technique continues, then a module with
characterilstics similar to those of the Command/Telemetry Unit (considered
as a whole) could be designed, oxr the Command/Telemetry Unit changed (if
needed) to accomplish both command/telemetry and magnetic tape interface.

If, on the other hand, a magnetlc tape unit is designed to take ad-
vantage of a stored program central data system, then the iInterface will
depend on the characteristics desired. The simplest interface, in terms
of hardware, 1s to use the atandard I/0 interface of MULTIPAC. To handle
reasonable transfer rates, this would require transferring 12 data bits in
parallel (i.e., using all output buffer bits of one register) and using
additional input and output channels from another register for control
channels.

The most likely magnetic tape interface would have a high-speed
serial data transfer with control of the tape to go forward or back at one
speed. However, regardless of what the interface looks like, a speecial
additional module could be designed which could commect into the MULTIPAC

32

system without change of the system, This module would use the register
control circuit used by the I/0 Register module to interface to the regis-
ter bus. The three different control codes (shift, input, and output)
could be used to'distinguish between writing, reading, and tape control
functions. For the tape control words, the 12 bits become commands to
change modes to reading, or writing, or rewind, or any other tape modes.
In essence, this special module would be a tape controller. If the tape
has a simple mechanism, this will be a simple module and may be designed so
that the command/telemetry module can use many of the same modules. The
more complicated tape functions such as counting out blocks, end-of-files,
and interrecord gaps should always be performed with software.

3.5 The I/0 System

The input/output (I/0) interface of the central processor, as de-
scribed in the final report of Phase 1 of this project,* is summarized in
Tables 1, 2, and 3 for a typical mission. The term "input" refers to sig-
nals into MULTIPAC and "output" refers to signals coming from MULTIPAC.

A typical mission requires 191 input channels and 126 output channels.
The science input lines are doubled in order to be comnected through two
different registers for path redundancy. Also, there is one output channel
added for each serial digital input and each serial command output since
these muist have additional signals to control the serial transfer.

The multiplexing system which has been devised employs each bit in
each of the registers of the machine as a bilevel input channel as well as
a bilevel output channel. Input instructions read the 12 interface signals
present at the register's input into the register and into an accumulator
of the logic unit. OQutput instructions load the register with 12 output
bits, which are then transferxred into a 12-bit output holding register.
This holding register will keep outputting the 12-bit output information
until there is another output instruction to that register. All other in-
structions use the registers as data scratch and index registers without
disturbing the interface signals.

33

TABLE 1

SCILENCE INIERFACE LINES

Magnetometer: Analog Inputs
Serial Commands

Bilevel GCommands

B2 DD o

Cosmic Ray Telescope: Analog Inputs
Serial Inputs
Bilevel Input
Bilevel Commands
Plasma Probe: 11 Analog Inputs
Serial Command

Bilevel Command

o b Ot

Radio Propagation: Analog Inputs
Serial Input

Bilevel Command

el

Neutron Detector: 19 Serial Inputs
2 Bilevel Commands

Analog Inputs
Serial Command
Bilevel Command

VLF Experiments:

Serial Inputs
Bilevel Inputs

6

1

1
Micrometeorite Detector: 2 Analog Inputs

3

3

4 Bilevel Commands

Totals: 31 Analog Inputs
28 Serial Digital Inputs
4 Bilevel Inputs
4 Serial Commands
15 Bilevel Commands

TABLE 2

ENGINEERING INTERFACE

Orientation Subsystem:

Power ~Subsystem:

RF Subsystem:

S/C Support Subsystem:

Central Data Engr. Subsystem:

Other Subsystems:

Totals:

10
i4
11
15

10

«w e

W o) D

45

1 Serial Digital Input

19
3
40

LINES

Analog ‘Inputs
Bilevel Inputs
Bilevel Commands

Analog Inputs
Bilevel Input
Bilevel Commands

Analog TInputs
Bilevel Imputs
Bilevel Commands

Analog Inputs
Bilevel Inputs
Bilevel Commands

Analog Inputs
Bilevel Commands

Serial Input
Bilevel Inputs
Serial Commands
Bilevel Commands

Analog Inputs
Bilevel Inputs

Serial Commands
Bilevel Commands

35

36

TABLE 3

I/0 CHANNELS REQUIRED

Inputs (Science lines doubled):

Analog

Serial

Bilevel

Outputs

Serial Commands

Bilevel Commands

Science
Engineering

Science
Engineering

Science
Engineering

Science
Engineering

Science
Engineering

Control Lines for
Serial Inputs

Control Lines® for
Serial Commands

62
R
107

= ol o
w @ -JpJa:

191

107

51

191

55

o1

The I/0 interfaces fall into the following categories, and the
methods for handling each of them is discussed in detail below.

Inputs:

Bilevel inputs: Two-state signals which are sampled
asychronously at the interface

Serial inputs: 2- to 17-bit words to be transferred serially
into the machine
R
Analog inputs: O0- to 5-volt analog levels to be converted
- into digital words with up to 8-bit accuracy

Outputs:

<
Bilevel commands: Single-bit commands which are held indefi-
nitely as levels at the interface. Pulsed
reset signals are alsc included here, but
they are set, then cleared, by the program.

Serial commands: Commands of two to five bits which are trans-
ferred serially to the peripheral device.

3.5.1 Bilevel inputs.-- These are simply levels which must be read
by the processor. They are present as inputs to individual stages of the
1/0 registers and are transferred into the logic unit by an input instruc-
tion addressed to the register. The input instruction (see description
of INP in Section 7) reads all 12 input lines of the addressed register
into the register and sends those input bits specified by the instruection
to an accumulator in the logic unit.

3.5.2 Serial inputs.-- Data words longer than a few bits will be
transferred in serial across the interface between the experiments and
MULTIPAC in oxrdexr to keep the amount of wire (and hence weight) to a mini-
mum.:+ A serial input data line will be commected to one of the input stages
of an I/O Register. An output line from another register (or the same
register) will be used to tell the experiment that serial transfer is to
occur. The serial data will appear as sequential bilevel inputs to this
single input channel of the I/0 Register. Each time an input instruction
addresses this I/0 Register, reading one bit of data, the register will
supply a pulse to the experiment to be used to shift the data to the next
bit,

3.5.3 Analog inputs.-- A/D conversion is accomplished by the succes-
sive approximation method, where processor software is used for the cus-
tomarily hard-wired conversion logic. Two addressable registers are
equipped as D/A converters. Their outputs are fed into a ladder network

37

and the resultant analog signals distributed through isolating amplifiers

to all devices requiring A/D signal conversion. Each such analog signal
will be connected to its own comparator, which will also receive the dis-
tributed reference signal from the D/A output. The output of the compara-
tor will then be treated as a bilevel input to one stage of an I/0 register.

This method of analog-to-digital conversion was chosen rather than
the more standard method of multiplexing the analog signals into an analog-
to~digital converter primarily to avoid sending low-level analog signals
around the spacecraft where they may be susceptible to noise. The extra
weight of shielding the wires could not be afforded. This method sends
around only one (actually two for redundancy) analog signal to each experi-
ment which, in turn, returns a digital signal. The cost trade-off is a
comparator at each experiment versus a switch at the MULTIPAGC for each
analog line,

To accomplish the conversion, the program sets a ONE in the high
order end of the D/A converter, which is a digital pnumber one-half the num-
ber range of the register, and produces an analog output equal to one-half
of the analog signal range. The comparator response indicates by its out-
put which signal is larger. This is detected by the program through test-
ing the input channel, and the high order bit in the D/A register is left
at ONE or set to ZERO according to whether the analog signal is greater or
less than half the signal range. The next highest bit is then set to ONE,
and the process is repeated to see whether the analog value is greater or
less than 1/4 or 3/4, depending on what the first bit was, and so on.
After all bits are thus determined, the converter value is read out of the
D/A register. The interface required, apart from the distribution of the
D/A converter outputs, consists of one input channel per analog signal.

3.5.4 Bilevel command outputs.-- The register module includes an
output buffer register which is loaded in parallel from the shifting
register using the word clock timing. This is a typical structure through-
out the machine. In this case, however, the buffer register will be loaded
only upon receipt of an ocutput command. The outputs of this buffer regis-
ter constitute the bilevel output channels. This arrangement provides
both an input and an output chamnel for each stage of the I/0 register, and
since the number of each is approximately equal, it effectiwvely doubles the
multiplexing.

Since there is no way of outputting data to one chamnel without af-
fecting others, and no way of transferring the contents of the output buf-
fer register back into the processor to regenerate the bits which should
not be changed, it is intended that a copy of the commands be kept in mem-
ory. Command routines would operate on the appropriate word in memory to
alter the appropriate bits, using masking instructions that leave the other
bits unaffected. Then the updated word would be transferred to the regis-
ter by an I/0 instruction.

38

3.5.5 Serial command outputs.-- Two bilevel channels are required
for serial commands; one to switch the peripheral device to its input mode
and the second to provide data levels. A shift pulse from the register
will be provided each time it receives an I/0 instruction.

3.6 External Characteristics

3.6.1 Parts count.-- Table 4 indicates the size, in terms of stan-
dard NAND gates, of the different MULTIPAC modules and the proposed parti-
tioning of them. The general level of 100 gates and less than 50 pins per
package was an assumption for the design. This level allows more than the
selected vendor (Texas Instruments) to respond to the LSI circuit develop-
ment program for this system., One LSIC where the use of Texas Instruments'
capability for very large circuits could be used effectively is the con-
trol section of the Logic Unit, Table 4 shows two alternates to the par-
titioning of the Logic Unit. Alternate 1 uses a large Texas Instruments'
13IC for all the control gating and alternate 2 uses 5 LSIC's for the
same amount of logic to keep within the gate and pin limitation. Relia-
bility estimates use alternate 2.

Using Texas Instruments' discretionary wiring approach, a much higher
level of integration is possible (see Section 4) than in other LSI tech-
niques where, to keep the pin count low, the density must be lower than
elsewhere in the system. Even so, one type, Control 5, needed 61 pins. °
To get near 40 pins, this circuit would need to be divided into three
circuits since the amount of internal connections per gate is wvery high.
One LSIC using this discretionary wiring technique could be used instead
of five different types.

Table 5 lists all the LSI circuit types and their usage. Some (e.g.,
basic shift register) have large usage and others are used only two ox
three times. The total types needed are 16 (only 13 if the Texas Imstru-
ments' control circuit is used for the Logic Unit).

As much as possible; LSI circuits were reused rather than prolificate
a new type. This is most apparent in the use of shift registers. The
basic shift register without the parallel input gating could have been
used in many places, but a new circuit type could have been required.

3.6.2 Power consumption.-- Table 6 indicates the expected power
consumption of about 16 watts for the typical system and about 32 watts
for the fully expanded system. These figures are essentially dependent on
two budgetary estimates: 1 milliwatt per logic gate and 10 milliwatts per
interface circuit. The former figure is based upon the power comnsumption
of the Fairchild LPDTuL logic used in the integrated circuit design and
other low-power logic in the same general speed/power class. (See Sec-
tion 4.} The latter estimate is based upon integrated circuit power
levels generally and has yet to be verified by specific circuit design.

39

PARTITIONING OF THE LST MULTIPAC DESIGN

TABLE 4

No. of No. of Required No. of
Circuit LSIC*'s per Gates Pins per Gates per
Iype Module per LSIC LSIC Module
Logic Unit Basic Register 5 96 432 480
(Alternate 1)
16-Way Switches 4 typ. 8 49 {312 typ.}
6 max. 468 max.
Complete Control 352 72 352
1SIC's per module: 10 typ. Total gates per 1144 typ.
12 max.| module: 1300 max.
Logic Unit Basic Register 5 96 42 480
{(Alternate 2)
16 -Way Switches 4 typ. g 42 312 typ.
6 max. 468 max.
Control 1 1 83 34 83
Control 2 1 88 40 88
Control 3 1 83 36 83
Control 4 1 33 40 33
Control 5 1 65 61 65
LSIC's per module: 14 typ.} Total gates per }1144 typ.
module:
16 max. {1300 max.

40

TABLE 4,-« Continued

We. of No. of Required Wo. of
* Circuit LSIC's per Gates Pins per Gates per
Type Module per LSIC LSIC Module
I/0 Register Basic Register 1 g6 42 96

Buffer Register 1 61 39 6l

R/M Control 1 52 18 52

LSIC's per module: 3 Total gates per

module: 209
Memory Basic Register 1 96 - 42 96

Buffer Register 1 61 39 61

R/M Control 1 52 18 52

Decoder 1 31 33 31

Bipolar-to-MOS

Interface Circuits 3 14 33 -

MOS-to-Bipolar

Interface Circuits 1 12 26 -

Memory Storage '(CMOS) 128 1880 34 -

LSIC's per module: 8 plus Total gates per 240 plus
memory module: 125 special
storage - - plus memory

storage
D/A Register Basic Register 1 96 42 96

R/M Control 1 52 18 52

D/A Switches 1 8 18 --

Analog Amplifier i 1 4 --

LSIC's per module: E:! Total gates per 145 plus

module : 9 special

41

TABLE 4.-- Continuved

No. of No. of Required No. of
Circuit LSIC's per Gates Pins per Gates per
Type Module per LSIC LSIC Module
GCommand Unit Basic Register 2 96 42 192
CMD Control 1 115 27 115
LSIC's per module: 3 Total gates
per module: 307
Telemetry Basic Register 2 96 42 192
Unit
R/M Control 1 52 18 52
™ Special 1 29 24 29
L8IC's per module: 4 Total gates
per module: 273
Timing Oscillator 2 IC's -- 3 -
Generator
Squaring Circuit 2 IC's -- 4 -
Switch 1 1IcC 4 14 --
Counter 3 34 8 102
LSIC!'s per module: 3 plus Total gates
5 IC's per module: 102 plus
5 IC's

42

£

TABLE 5

QUANITY OF CIRCULTS PER SYSTEM

No. of No. of No. of No. of
Gates Ping LSIC's per LSIC's per
Circuit per LSIC per LSIC Typ. Sys. Max. Sys.
Basic Shift Register 06 42 56 107
R/M Control 52 18 35 "6
Buffer Register 61 39 31 T2
D/A Switches 8 18 2 2
TM Special 29 24 2 2
CMD Control 115 27 2 2
Counter - 34 8 3 3
Memory Storage 1880 (MOS) 34 768 1920
Decoder 31 33 6 15
Bipolar-to- MOS Inter- 14 33 18 45
face Circuits (Special)
MOS~to-Bipolar 12 26 6 15
Interface Circuits (Special)
16 -Way Switch , 78 42 12 30

Where Used

Logic Unit, all Register
Types, Memory

Memory, I/0 Register,
D/A Register, Telemetry
Unit

Memory, I/0 Register
D/A Register

Telemetry Unit

Command Unit

Timing ngerator
Memory

Memory

Memory
Memory

Logic Unit

474

TABLE 5.-- Continued

No. of No. of No. of No. of
Gates Pins LSIC's per LSIC's per
Circuit per LSIC per LSIC Typ. Sys. Max. Sys. Where Used
Logic Unit Alter-
nate 1:
Complete Control 352 72 3 o Logic Unit Alternate
Logic Unit Alter-
nate 3:
Control 1 83 34 3 5 Logic Unit Alternate
Control 2 88 40 3 5] Logic Unit Alternate
Control 3 83 36 3 5 Logic Unit Alternate
Control 4 33 40 3 5 Logic Unit Alternate
Control b 65 61 3 5 Logic Unit Alternate
Integrated Circuits:
Analog Amplifier 1 4 2 2 D/A Register
Oscillator P 3 2 2 Timing Generator
Squaring Circuit 2 4 2 2 Timing Generator

Oseillatpr Switch 1 14 1 1 Timing Generator

Typical System:

TABLE 6

ESTIMATED POWER CONSUMPTION

No. of Logic

No. of Logic

Gates Per No. of Modules Gates Per
Module Type Module per System Svystem
Logic Unit 1144 3 3432
Register 209 25° 5225
Memory 240 6 1440
D/A Register 148 2 296
CMD Unit 307 2 614
™ Unit 273 2 446
Timing Generator 102 1 102
11,755
Internal Power Budgets
Logic (1 mw/gate) 11.755 w
Oscillator and Squaring IC's 0.200 w
D/A Switches and Amplifiers 0.600 w
Memory quiescent power (100 nw/cell 0.015 w
Memory transient power 0.0XX w
Memory Interface circuits
(10 mw/individual circuit) 3.240 w

Total

=~ 15.8 watts

45

TABLE 6.~- Continued

Maximum System:

No. of Logic No. of Logic
Gates Per No. of Modules Gates Per
Module Type Module Per System System
Logic Unit 1300 5 6500
Register 209 57 12369
Memory 240 15 3720
D/A Register 148 2 296
CMD Unit 307 2 614
™ Unit 273 -2 446
Timing Generator 102 1 102
23,371

Internal Power Budgets:

Logic (1 mw/gate) 23.3%1 w
Oscillator and Squaring IC's 0.200 w
D/A Switches and Amplifiers 0.600 w
Memory quiescent power (100 nw/cell) 0.035 w
Memory transient power 0.0XX w

Interface circuits and sence amplifiers
(10 mw/individual circuit) 8.1 w

Total = 32.3 watts

3.6.3 Sgeedf-- The clock frequency of 1.0 MHz and the consequent
instruction time of 15 microseconds are based on an anticipated propaga-
tion delay of about 50 nanoseconds for the LSI gates. This is somewhat
better than the Fairchild LPDTUL circuits, which have a typical delay of
65 nanoseconds and a worst case delay of 140 nanoseconds at -55%c. It is
felt that this can be achieved for pin-to-pin paths within an LSI circuit
considering the smaller internal capacitances and averaging of internal
delays.

The longest propagation path is 16 gate delays (see Section 4.1),
ineluding the output delay of the transmitting fiip-flop, and the preset
time of the flip-flop. At 50 nanoseconds per gate the signal requires 800
nanoseconds to propagate and has 200 nanoseconds to spare. This considers
all gates to be identical. It may be feasible to include higher powered
and, congsequently, faster gates at critical points, which could further
improve the delay margin.

3.6.4 YVolume.-- The packaging of LSI circuits of this general size
seems to require about four times the space of 1l4-lead flat packs. There-
fore, using one-quarter the volumetric density (125 LSIC's per 1b) as in
the integrated circuit MULTIPAC, the volume can be estimated as follows,

953 LSIC's < 1 1b
0.7 Space Utilization © 125 LSIC's

Typical System: = 11 1bs

2314 ISIC's - 1 1b
0.7 Space Utilization =~ 125 LSIC's

Maximum System: = 26 1bs

3.6.5 Weight.-~ Since the weight is largely a function of the
packaging rather than of the circuit itself, it may be estimated similarly
for one-quarter the density (5 LSIC's per cubic inch) of the IC model.

3
s R 953 LSIC's lin .3
Typical System: G—rgo e Urilization * 5 L8ic's = 2/8 in
2314 L8IC's 1 in3 3
Maximum System* = 668 in

0.7 Space Utilization * 5 15IC's

47

4.0 LSI CIRCUIT TECHNIQUES

A survey of integrated circuit manufacturers was made during February
and March, 1969, to determine a feasible LSI method of implementing this
design. ' Updated designs of the major modules were first worked out to
serve as a4 basis for the choice. Speed congiderations demanded a basic
logic circuit of no more than 50-nanosecond average propagation“time per
logic level. The power budget dictates a consumption of no more than
1 milliwatt per gate. -

Partitiching the preliminary designs and estlmatlng the quantlty of
systems to be built led to an estimate of approx1mate1y 15 circuit types
and procurement quantities on the order of tens t3 hundreds of each type.
This indicates. that the chosen LSI medium must lend itself to the procure-
ment of small quantities at a reasonable cost.

L

The types of circuits encountered in the survey were P-channel MOS,
complementary MOS, bipolar TTL or DTL, and complementary bipolar. LSI
media ranged from custom design by manual methods to completely automated
design from stored circuit libraries. Intermediate methods involved a
standard pattern of individual logic circuits already diffused into the
silicon to which custom metallization can then be applied. The latter, as
applied by Texas Instruments to their series 54L circuits, was judged most
practical for the MULTIPAC design within the time frame of this present
contract, although as scon as it matures the complementary MOS technique
combined with full design automation would also be very desirable for such
purposes.

4.1 Speed

i

Figure 13 shows the critical propagation path of the logic design.
it is the path from a register output through the adder in the logic unit
and back to that same register that might occur when an MSKR,lnstructlon
is being performed. .

F é

Counting the wired-or in the adder input selection gating as one gate
delay, there are 12 gate delays plus one flip-flop. The worst path through
the flip-flop is four gate delays, giving a total of 16 gate delays. A4n
arbitrary delay of 50 nanoseconds per gate is chosen as a reasonable speed
for LSI circuitry with 1-milliwatt per gate power drain. This power drain
per circuit will yield power levels for a typical MULTIPAC in the design
goal range of 10 to 20 watts. Sixteen delays at,K 50 nanoseconds is 800
nanoseconds, which means that MULTIPAC can conservatively operate at a
1-MHz clock rate. (It is clear this will have to be reevaluated when the
final eircuits are purchased and breadboarded.)

This delay is about the same as that achieved for the integrated cir-
cuit design using Fairchild 9040 circuits (see Appendix C of the MULTIPAC
Research Report2). In the integrated circuit design the maximum total
gate and flip-flop delays ranged from 760 to 1041 nanoseconds, depending

48

[TreGiSTER | }REGISTER QUTPOT

ADDRESS SWITCH
"_g ADDER |NPUT
" SELECTION

ADDER

v

ADDRESS SWITCH

» INPUT STAGE TO REGISTER

o’

Figure 13. Critical Propagation Path

49

on temperature. In addition, because D-type flip-flops were not available,
a pulse width of 350 nanoseconds had to be added to that delay for the
previous design. The delay through a D-type flip-flop is independent of
pulse width since it samples the input with the same edge of the clock
pulse with which it sets the output. Thig flip-flop avoids race condi-
tions through internal logical delays (see section 5.1).

4.2 Low-Power Logic Circuits

4.2.1 Low-power bipolar circuits.-- These constitute the low-power,
low-speed end of the wide spectrum of bipolar logic circuits on the market.
The ecircuits which are available or proposed in some LSI form are listed
below.

Power Per Typical Propagation Delay
Gate (mW) Per Gate (ns)
Fairchild Low-Powered
Micromatrix 3.0 20
Texas Instruments
(TI) 54L 1.0 33
Philco Micro-Energy
Logic 0.44 50

The propagation times quoted are typical for individual IC packaging and
should be somewhat improved on an LSI chip. Note that the circuit which
Fairchild intends to market as the low-power entry in their Micromatrix
line is not the well-known 9040 series but a faster circuit having three
times the speed and power of the latter (nominally 65 nanoseconds and

1.0 milliwatt per gate). Of these, the TI cirecuits are available in their
LST or MSI format on a custom basis and the Fairchild Low-Powered Micro-
matrix will be amnounced within a few months. Philco merely evidences an
interest in developing an LSI array using their circuit.

4.2.2 P-channel MOS.~- This is the simplest logic circuit and as
such is particularly well suited to LSI. Requiring only a single diffu-
sion and minimal area, this circuit has been the basis for the most fully
automated and largest scale fixed pattern integrated circuits.

Part of its simplicity lies in a passive pullup resistor which causes
a relatively high power consumption when the eircuit is on and a relatively
slow rise time when the circuit is turned off. Any attempt to minimize
one disadvantage aggravates the other. Dynamic two- or four-phase clock
arrangements which switch the power or ground paths minimize or eliminate
the period of time for which these load resistors appear across the supply
voltage, allowing gate capacitances to hold the data between clock pulsges.

50

The simpler two-phase system, which is the only variation easily imple-
mented in the automated circuit designs, is useful only in relatively slow
systems in which the low duty cycle of the clock pulses provides a power
saving by enabling the load resistors only a small percentage of the time.
The use of LSI's greatly improves the performance of static MOS circuits
over their use in individual IC's, however, since node capacitances on

the chip are greatly reduced and relatively high-load resistors (75-100
kilohms) can be employed at fair speeds. Some of the speed and power
figures given for such devices driving on-the-chip loads in autcmatically
designed LSI circuits follow:

Power, mW Average
(50% duty cycle) Speed, ns
Fairchild "Micromosaic" Array 0.65 mW 76
American Microsystems, Inc. 1.2 mW < 100
Texas Instruments 1 mi 100-150

Although within the same order of magnitude, these figures are still not
competitive with low-power bipolar eircuits in speed-power ratio.

4.2.3 Complementary MOS.-- This c¢ircuit type eliminates the long
rise time of a P-Channel MOS circuif by replacing its leoad resistor with
a complementary N-channel structure which actively pulls up for any logic
condition that does not cause the P-channel structure to pull down. In
this sense it is similar to the totem-pole active pullup outputs used in
most bipolar TITL circuits and achieves typical propagation delays of 50
nanoseconds even in discrete IC form. Compared to P-channel, the comple-
mentary MOS circuit has the disadvantage of requiring a second N-type dif-
fusion into a P-type "tub” and also uses almost twice as many transistors
to form the complementary pullup. Thus, it takes the same area as required
for bipolar circuits.

Since either the P-chamnel or N-channel structure is turned off (the
other being turned on to one side of the supply voltage), there is no de
path across the supply in the static state except for the leakage of the
turned-off MOS devices. This is on the order of several megohms so that
there is very little power dissipation in the quiescent state. A dynamic
power consumption (P = fCVZ) is required to charge the node capacitance at
the switching rate, which is appreciable. This component is present in
the power consumption of any circuit but it is ugually negligible compared
to the dc component. In complementary MOS, however, if the logic actually
switches at the usual clock rates, it is predominant. For the RCA cir-
cuits it amounts to 0.6 to 6.0 milliwatts per gate (depending on the par-
ticular gate and the capacitive load) at 1.0 MHz. The power consumption
in actual use is at least an order of magnitude less, since only a very

51

small percentage of the circuits in s system will switch on any given clock
pulse. This characteristic makes complementary MOS particularly useful

for memories since all but an addressed location will hold unchanging in-
formation over very long periods of time.

The greatest disadvantage of complementary M0S, at the moment, is
that the process has not yet been mastered throughout the industry. At
present, RCA is the only manufacturer except for a memory array available
from Westinghouse., Several other companies have the process under labor-
atory study and plan to put such circuits into production within the com-
ing year or so, though none have done so as yet. Typically the first pro-
ducts that are planned are memory arrays. Among the companies planning
to enter the complementary MOS field are Fairchild, Texas Instruments,
Motorola, Signetiecs, General Instruments, Radiation, Hughes, Siliconix,
and Intersil.

Presently RCA has no LSI vehicle on the market, although a simple
array of 48 two=-transistor pairs with single level metallization and dif-
fused crossunders will soon be announced. A somewhat more capable array
of about the same number of four-transistor pairs and two-level metalliza-
tion has been developed in their laboratory for NASA Electronies Research
Center but it is still considered under development and no firm specifica-
tions are obtainable at this time. 1Its scale of integration is typically
a single 4-bit counter on a clip. This is considerably less than the more
advanced schemes for either TTL or P-channel M0S, The conclusion regached
was that while complementary MOS represents the most favorable circuit
type for lowy-powered logic, it has not reached a sufficient maturity and
broad base in the industry to have paired with a suitable LSI vehicle.

4.2.4 Low-power complementary bipolar ecircuits.-- These are mentiocned
only for the sake of completeness since they are not presently available
as a product. However, there are several development programs looking
into this type of circuit which is somewhat similar to the TTL circuit
with totem-pole output, except that the internal inversion cirecuit neces-
sary to drive the pullup transistor is not necessary, thus eliminating
several resistors which consume power. GConsequently, such circuits have
speed characteristics similar to TTL but considerably lower power, though
probably not as low as complementary MOS, One of their best uses would,
in fact, be to drive large loads of complementary MOS at high speeds with
minimal power consumption.

4.3 Methods of Large-Scale Integration

The several methods of providing custom large-scale circuits have
various advantages and shortcomings involving the scale of integration
desired, the quantity to be procured, the ease of design, turnaround time,
and costs. These factors are greatly influenced by the customer service
organization the manufacturer sets up to deal with custom requirements
and the degree of automation employed to interface his requirements with
the IC design and manufacturing processes.

62

4.3.1 Custom circuits.--

4.3.1.1 GCustom circuits made by the manufacturer!'s standard produc-
tion methods:-- This method generally costs from $15,000 to $50,000 as a
one-time design fee plus $50 to 3150 per circuit and is feasible only for
large (100,000 or so) quantities. A relatively low initial cost generally
means that the manufacturer anticipates writing off the design cost over
the total procurement quantity, or expects to be able to market the design
commerically. Although it does lead to the most efficient design and lay-
out, this costly method is employed for low quantities only by small com-
panies which do not expect to manufacture a great number of different cus-
tom designs or those which have not funded the development of more ad-
vanced methods for custom LST work.

4.3.2 Hybrid packaging.--

4.3.2.1 Hybrid packaging of standard IC's on a substrate containing
customized interconnections:-- Actually the IC's so used can be more com-
plex than those which can be packaged in a 14-pin filat pack, but all func-
tionally dictated intercomnections must be made to the custom substrate
via wire-bonding, flip-chip methods, or beam-lead techniques. This is
more of a packaging technique than true LSI and is undesirable for this
design because of the indications that reliability is largely a function
of the number of intercommections and, hence, the number of monolithic
circuits employed in the design, rather than its total complexity. This
approach is commercially available, however, in the custom MEMA packages
marketed by AMELCO for about $2,500 initial fee and $100-$150 per circuit.

4.3.3 Custom metallization.--

4.3.3.1 CQCustom metallization of a standard circuit array:-- This is
one of the cheaper methods of making customized monolithic circuits, cost-
ing between $5,000 and $20,000 for the engineering design of the custom
metallization masks. Such z method is normally required for bipolar cir-
cuits since their complexity presently prohibits all the ‘masking being
laid out by computer. Instead, all the diffusion steps are standard to
the array and only the metallization is customized. The Fairchild Micro-
matrix and what Texas Instruments calls MSI are typical of such methods.
Philco evidenced some interest in producing their MEL circuits in such a
format. This is also the method used by RCA for their developmental com-
plementary MOS arrays. This method makes relatively inefficient use of
silicon area to accommodate the variety of possible interconnections and
is congequently limited to about 50-100 gates per chip for reasonable
yields. The TI method using more specialized cells offers up to 200 gates
equivalent complexity. While single layer metallization is possible in
such arrays by using diffused crossunders, the premium placed on silicon
Yreal estate' makes multilevel metallization a practical necessity and
those vehicles mentioned use two-level metal except for the simplest RCA
array.

53

4.3.4 Discretionary wiring.-- A very large scale of integration and
a high degree of automation are provided in the discretiomary wiring of
diffused circuit array, the technique which is known by the name of LSI at
Texas Instruments. Since the limitation on the size of integrated circuits
is the 1likelihood that a fault will exist somewhere in & large chip area
and render the whole chip useless, this method diffuses a very large array
of cells over an entire wafer, tests them individually, and interconnects
the good ones by a mask that is unique to that wafer,

A cell is defined as the smallest piece of circuitry which is acces-
sible for testing and subsequent interconnection. These vary in size from
a single gate to sections of logic of approximately 25-gate complexity.
Although commonly used cells are already documented, special ones can be
designed for the customer if he has a particularly recurring pattern in
his logic. The cells are diffused into the silicon and internally con-
nected by first-level metal in sufficient numbers that the expected yield
of each type of cell is more than sufficient to satisfy the expected re-
quirement. The cells are then tested by computer, the wafer characterized
by the good circuits it containg and put in inventory. When the wafer is
subsequently committed to a requirement, masks for two more layers of
metallization are generated by the computer to satisfy the interconnection

list supplied.

This method perxrmits logic structures from 200-gate to approximately
2000-gate complexity to be put on a single monolithiec wafer (for functions
requiring less than 2000 gates, TI used the fixed metallization approach,
which they call MSI). The discretionary wiring method was the most ad-
vanced found to be available for complex bipolar circuits and is among the
least expensive for large devices in quantities. TI quotes a price of
$10,000 initial fee plus $2,000 each for a minimum quantity of five for
these circuits which are better than ten times more complex than any other
bipolar array.

4.3.5 P-channel MOS technology.-- The most fully automated custom
LSI methods were found in the P-chammel MOS technology. Similar methods
exist at many companies including Fairchild, Texas Instruments, American
Micro-Systems, and General Instruments. A typical system of this type in-
corporates a circuit family or library, the diffusion masks for which are
stored on a computer tape., The design is accomplished using this library.
A list of the cirecuits used and their intercommections is then prepared in
a specific format. This list is used as input to the automated design
program which calls out the cells, places them on the chip for optimized
interconnection routing, and makes the diffusion and interconnecting metal-
ization masks automatically. Thus, if the design is specified by the
customer in the form of a card deck having the appropriate format, the
chip design and layout can be wholly automatic (though manual intervention
at some stages is also allowed). The design thus specified can also serve
as the imput to a logic simulation program to assure the customer that his
design is functiopally correct and it can also be used to generate an
optimum test sequence for the finished product. Unfortunately, this ap-
proach is not applicable to the present design since it is available only

54

for P-channel MOS c¢ircuits, which are too slow for this purpose. It seems
likely that complementary MOS designs will eventually be implemented in this
fashion, and this would be a highly desirable combination for spacecraft
logic.

4,4 Memory Circuits

The memory storage medium postulated is a modification of the 256-bit
complementary MOS memory chig under development for NASA by Westinghouse
onn Contract No. NAS-5-10243. As with the logic circuits, the chief reason
for this choice was the low power drain of this medium. TIn a £lip-flop
memory, one important consideration is the power required to maintain the
memory contents under dc conditioms. Standby power required for this MOS
circuitry is reported as typically less than 100 nanowatts per cell, which
would be approximately 2.5 milliwatts for a 2048-word, 12-bit memory.
This is negligible compared to the operating power of the one chip in
the memory- selected by the addressing logic, which is reported as 30 milli-
watts for the present device containing 16 words of 16 bits each when
cycled at a 0.5-MHz rate. If this were scaled to a2 12-bit word with a
15-microsecond cycle time, the indications are that the 2048-word memory
would consume on the order of 3 milliwatts. This power is, in turn, neg-
ligible compared to that required by the bipolar portions of the memory
module, especially the circuits interfacing the MOS chip. These would
probably require special design to minimize their power consumption.

In addition to shortening the word length to 12-bits for the present
system (or removing power from those bits not needed), two other changes
in the Westinghouse chip are needed to make its use practical in MULTIPAC
system. There are presently no clear provisions for the use of multiple
16-word chips in a larger memory. There is no method of expanding the
addressing structure except for gating the "strobe" and “write" signals
of each chip separately, and the "bit lines" are not presently such that
they can be collector ORed to form the larger memory. If both these sig-
nals from each chip have to be separately ORed or gated after leaving the
chip, it would require more interface circuits than memory chips and the
power demands would be-exhorbitant. Making these changes on the chip
would seem relatively easy, however. The change to the output circuits
to permit ORing them means gating out the active pull-up circuit as well
as the pull-down circuit from non-selected chips in a similar manner to
what is now done for writing. This leaves only the ocutput circuits from
the selected chip active to drive the bit lines. In write mode they too
are disabled, leaving only the write drivers active on these lines. 1In
addition, the addressing logic should be expanded to include two more
inputs which would gate all address decoders and appear on outside pins
to be used for x-y coordinate addressing of the chip. This would reduce
the number of interface address drivers required from 128 to 32 for a
4096 -word memory, with a corresponding saving in power. The logic dia-
gram for the memory assumes these modifications will be made.

56

4.5 S8pecial Circuits

There are several non-logical circuits required which should be es-
pecially designed for MULTIPAC, such as the memory interface circuits men-
tioned above. Such circuits are not a part of the logic design but they
do influence the parts count, power and reliability estimates. Therefore,
certain assumptions have been made concerning them as follows:

(1) Clock generator: This circuit must produce a 5-volt square
wave at 1.0 MHz., Two circuits, oscillator and squaring cir-
cuit assumed, with 100-milliwatt power consumption.

(2) Bipolar-to-MOS interface circuit (BMIC) which interfaces the
MULTIPAC logic levels to the memory. Two circuits per IC
package assumed, with 10-milliwatt power consumption per
circuit.

(3) MOS-to-bipolar interface circuit (MBIC) which interfaces memory
to the MULTIPAC logic. Two circuits per package assumed, with
10-milliwatt power consumption per circuit.

(4) Analog switch (ANSW): This cirecuit switches D/A inputs to lad-
der network. Eight circuits per package assumed, with 25-milli-
watt power consumption per circuit.

(5) Analog amplifier (ANAMP): These are isolation amplifiers which
supply the analog output to the experiments. A standard inte-
grated operational amplifier circuit could be used. One cir-
cuit per package assumed, with 100-milliwatt power consumption.

4.6 Circuit Choice

In spite of the frequent and casual use of the term in the industry,
true large-scale integration still seems to be in its infanecy. Only the
largest manufacturers (and some MOS speecialists) have any well-formulated
means of responding to customer requirements, and even these are still in
current development., Present yield considerations limit fixed-wired chips
to 100-120 mils square, and the most useful method of tailoring this area
to perform-a complex custom requirement is in automated P-channel MOS de-

"sign, but these circuits are too slow for the MULTIPAC requirement.

For MULTIPAC, the recommended technique is the bipolar circuits us-
ing the TTI method of discretionary wiring, which overcomes the limitation
on chip size. Since each wafer produced by this method requires unique
masking, it is essentially a low-volume process and is priced as such, in
keeping with the MULTIPAC requirements. Additionally, TI has a version
of the more limited fixed-wired technique which could be used for the
smaller, repetitive, and, hence, higher volume, sections of the MULTIPAG
design, such as the basic register circuit (see Figure 15).

o6

Complementary MOS as a circuit type is well suited in speed and power
to the MULTIPAC requirement, but at present there is no LSI vehicle for
it that is adequate and sufficiently well defined to permit its being used
as the basis for a design. Memory chips are presently available from two
companies, however, with several more companies planning such products for
the immediate future, and so its use in this design as the memory medium
does appear feasible. As soon as the larger IC manufacturers have estab-
lished an IC line in complementary M0OS, the circuit will no doubt appear
in their automated design LSI formats and will probably find a large usage
in spaceborne systems such as this one, but such developments camnot be
anticipated within the time frame of this contract.

a7

5.0 DETAILED DESCRIPTION OF MODULES

Al11 data transfers between modules are serial. Synchronous machine
timing is provided by two clock signals, the shift clock (SC) and the word
strobe (WS). These are generated in the timing generator and distributed
to all modules by triplicated signals driving majority wvoting gates at
each module interface, Timing consists of 14 SC pulses followed by one WS
pulse at equally spaced intervals of approximately 1 microsecond. The
machine cycle is, therefore, about 15 microseconds. (Figure 26, timing
diagram of the register and memory umits, shows these signals.) Since the
ac flip-flop design used triggers on the rising signal edge, the clock
pulses are negative going to provide trailing edge triggering and thus per-
mit the gating of clock pulses. Except for such de gating of clock pulses,
the pulse width is irrelevant. For convenience, the clock pulse width is
assumed to be 50 percent of the period.

The actual 12-bit data transfer is preceded by the transfer of a
2-bit control code on the same line. It is by the transfer of this code
that the logic unit controls the operations of the other modules with which
it communicates.

The design described in detail in this section is complete but has not
been breadboarded; consequently, it may have errors. The logic symbols used
follow MIL STD 806B per paragraph 4.3 (Basic Logic Diagram without physical
implementation). The discussion which follows is detailed enocugh to re-
place the usual logic equations. Logic equations are usually difficult to
follow, whereas the discussion leads the reader through the logic in proper
order and supplies the reasons behind the chosen implementation. Logic
designs may be simulated by a computer without equations (see Appendix B).

5.1 Flip-Flops

In the design of an L8I system, one is not limited to the "off-the-
shelf" circuits. For example, flip-flops have only those gating networks
on the input which are actually used.

For MULTTPAC we have designed three different flip-flops: (1) a set-
reset flip-flop without internal delay, (2) an AND input delay-type flip-
flop (D flip-flop) and (3) a NAND input delay-type flip-flop. These are
shown in Figures 14, 15, and 16, with symbols on the left and logic imple-
mentation on the right.

The set-reset flip-flops set the output to a ONE if the SET input is
a ONE and to a ZERQ if the RESET input is a ONE when thé clock (CLK) is
high. If both SET and REST are ONES, the final state of the flip-flop is
indeterminate. The setting is accomplished by directly forcing one of the
two cross-coupled flip-flop NAND gates to a ONE output. Since there is no
delaying action, the flip-flop's outputs cannot feed its own inputs or
that of any similar flip-flop from the same clock.

58

RESET SET

RESET SET
ClK
CLK
R 5
0 1
OuUT QUuUT T
ouT OuUT
Figure 14, Set - Reset Flip-Flop
INP 2
INP 1 INP 2 INP I
| | CLK 1
y CLK 2
—_— D —_
RESET —o 0 . p—— SET
CLK T
CLK 2 ﬁ QuUT SET 1L L——— RESET
OR
INP 1
S D P
RESET o—— SET b
o1 ouT ouT
CLK 1

CIK2 our our
Figure 15, AND Input D Flip-Flop

59

INP 2
INP 1 INP 2 - IINP]

CLK 1
CLK 2

RESET — b—— SET Y u \’ g’

A4 0 1
CLK 1/ l
OuT ouT RESET—-—l SET
CIK 2 OR 1 |
INP 1
D — i
RESET p— SET OuT ouT
CLK 1
cik 2 ©UT

Figure 16. NAND Input D Flip-Flop

The AND input D £lip-flop sets the output to the logical AND of its
inputs when the eclock goes high. While both clocks (CLKL and CLK2) are
high, the inputs are prevented from affecting the outputs. While the clock
is low, the output f£lip-flop (formed by cross-coupled NAND gates) are iso-
lated from the inputs.

The action of this AND D flip-flop is as follows. With both the
clocks low, the two NAND gates with clocks as inputs will have ONE outputs
no matter what the other inputs to these gates are. The NAND gate with the
flip-flop input signals will form the NAND of the inputs, and the gate on
the far left of the diagram will invert this, forming the AND of the inputs.
When both clocks go high, the middle gates are enabled and the NAND and AND
of the INPl and INP2 information are forced into the output flip-flop. At
the same time, this NAND and AND information is stored in two flip-flops
formed by pairs of the top four gates. If, then, the inputs change, they
will not be able to change the middle two gates. TFor the logical case
when the third input to the NAND gate with INPl and INP2 is a ZERO, no
change of states of INP1 or INPZ2 can change that NAND gate and, hence, the
outputs. If that third input to the input NAND was a ONE, then the NAND
gate for which it is an output will have a ZERO input from the top left
flip-flop, preventing any affect on it from changes of the input NAND cir-
cuit. For this same reason the top left NAND also cannot change. Thus,
the intermal logic of the flip-flop prevents changes on the inputs to af-
fect the output except at the time when the clock goes high after being
low long enough for gates to stabilize.

The NAND type input D flip-flop is identical to the AND D flip-flop
except that the labelling of the outputs is reversed. This has the effect
of forming a NAND of the inputs.

5.2 Basic Register Circuit

All shift registers in MULTIPAC may be made of the single shift regis-
ter LSI circuit shown in Figure 17.

This basic circuit will shift right when the SHIFT line is high and a
clock pulse occurs. When the INPUT line is high and a clock pulse occurs,
12 inputs (labelled INO through IN11) will be clocked into the register.
Since there is an inversion in the input gating, the inverse of the input
signals is transferred.

If the inputs are each connected to the next stage to the right, then
the register can shift left as shown in Figure 18. This connection results
in a LEFT/RIGHT shift register, where the INPUT line is a LEFT SHIFT line,
apnd the SHIFT line is really a RIGHT SHIFT line. The INO line becomes a
RIGHT DATA IN and the DATA IN a LEFT DATA IN. These comnections are used
for the two accumulators of the logic unit.

61

5.3 16-Way Switch Circuit

Another generally used LSI circuit is the 16-way switch shown in
Figure 19. This circuit is used in the logic unit for switching data to
and from memories and registers.

Sixteen of the NAND gates decode one out of 16 states of the four
jinput levels. Each of these decoded outputs feeds 32 NAND gates which gate
in and out 16 ways. The data gates also have signals for enabling all in-
put gates or all output gates. There is an input enable (INPUT SELECT) and
an output enable (OUTPUT SELECT). To keep the pin count to a minimum, the
four register inputs to be decoded are brought in single-ended and inverted
internally and the 16 gated data signals are ORed internally.

5.4 The Logic Tmit

The Logic Unit (Figure 20; see also Appendix) is connected to all
other modules in the system and controls those which it addresses. At
any one time, a module is addressed by only one logic unit, the one to
whose process it is assigned. (Use of a module by more than one processor
for purposes of intercommunication must be coordinated between the two pro-
grams concerned.) The logic unit selects one memory as its source of pro-
gram and another (although it may also be the same one) as its source of
data locations by means of two 4-bit page registers (PMR and DMR} .

5.4.1 Instruction decoding.-- The MULTIPAC instruction word usually
has the form

6 bits 6 bits

0P Code Reg Addr

where the 0P field determines the operation to perform and the R field
refers to either a register to operate on or a register to use for index-
ing. TIn this latter case, the next word following is used for the address
field, requiring two MULTIPAC words for memory reference ingtructions.

In general, the OP field is further divided as shown at the bottom of
Figure 21 into a 4-bit OPC field, a 1l-bit M field, and a 1-bit A field.
The A field specifies which of two accumulators to use and the M field
specifies whether or not memory reference (and, hence, a one- or two-word
instruction) is needed.

Figure 21 shows the Boolean truth table from which MULTIPAC was de-
signed. A few exceptions to the above generality can be noted, and each
of these are decoded separately at appropriate places in the Logic Unit.
Two M = 1 instructions, MDI and JMPR, are single-word, nommemory reference
instructions which act very much like memory reference instructions. One
M = 0 instruction, INP, is a two-word instruction which uses the second
word as a mask. Tt is coded here since it is primarily a register operatiom.

62

|
|
1
!
|

——]
INTI NG IND ENFY TN NG NS NG THES ™2 i T Ngy
|
1
NEUT i
SHIFT ; " - ' . ;
DATA 3N ’
[Q| Q] [s] r] [s)
Ril B RO RG R RO R W& ®T B =0

Figure 17. Basic Regisfer

% 63/64

D =
FOLDOUT FRAME { FOLDOUT FRAME {

SHIFT LEFT }—T—‘I‘—T—ﬁ RGHT 1o
SHIET RIGHT > t ’ ' ' ’
EFT N)
1 [
LEFT OUJT RIGHT ouT
CLOCK RIGHT CAIT

Figure 18. Basic Register Connected as Left/Right Shifting Register

3 65/66
FOLDOUT. ERAME! 2.

A

EOLDOUT FRAMQ’ L

9

=

o |k

o U=

— " Y

NN L
Y

it}
ﬂlw
| £

ﬂmim

{ S

0
”...Uo‘t#uﬁ
—&

G7/68

FOLDOUT FRAME -

FOLDOUT FRAME |

IR?, IR8
R11," IR10 00 10 11 01
00§ NOP | STPC | EQVR'| XORR
o1l sMP | NEGR | SUBR | |ORR
A=0
1 SHF | XCHR | EDAR | ANDR
101 SKP STAR |UNUSED| ADDR
10 SKP STAR | MSTP | ADDR
11 SHF { XCHR | LDAR | ANDR
A=1
01| out SKDR | SUBR { {CRR
00 INP | MSKR | EQVR | XORR
=
wl
=
it
E p—
O o
e &
[+ T
O i
"N o
r Al
X X x M
il 10 9 8 7
Figure 21,

'M‘=ﬁ

o > 0=Al/1=A2

M= 1
01 i1 10 00

XOR | JMP | MD! | XORM
|OR SUB SUBM JORM
AND LDA XCH ANDM
ADD | JMPR | STA | ADDM
ADD | IDIR | STA | ADDM
AND | DA | XCH | ANDM
|OR SUB SUBM [ORM
XOR | ADDIR | MSK | xORM

0

-

54.

L

O

Lt

[~ =4

XK X X X X X
1 0

5

4

3 2

LSt MULTIPAC Operation Codes

71

SMP, SHF and SKP are exceptions to most of the other instructions, and
the effect of decoding them appears many places in the logic unit. SHF and
SKP use the R field for further decoding of the instructions, as shown in
Figures 22 and 23, For the shift (SHF) instructions, the R field specifies -
amount, direction and control (e.g., arithmetie, logiecal, double length,
etc.) of the shift. For the skip (SKP) instruction, this field determines
the condition. For SMP, the R field is used for the value to store in
either data or program memory page registers.

5.4.2 The control codes.-- Control codes are generated by a 2-bit
shift register called the Control Code Register, which is set by the word
strobe according to the next operation to be performed and shifts this
2-bit code out through the adder to the registers and the memory units.
Information for setting the control codes is, as a rule, decoded from the
instruction shift register go that the same word strobe which dumps the
instruction into the instruction buffer register also sets the codes simul-
taneously in anticipation of that instruction. The four codes and their
effect in the register or the memory control unit can be seen by reference
to the dual-purpose register and memory control unit module. Code 00 is
treated as a No-op, 10 shifts the register or memory register, 1l results
in an output instruction or memory read, and 0l results in input instrue-
tion or memory write. Thus, for the register instructioms, the usual code
is 10, causing the register to shift.

The control codes for various instructions are shown in Table 7. The
first (rightmost) bit is made a ONE for input (INP) and output (OUT) in-
structions only; the second bit is made a ONE for all instructions except
NOP, SHF and SKP instructions which do not shift the register and INP,
which inputs the register. All of these fall in the class of nonindexed
ingtructions. If the next instruction is a memory instruction, however,
it will first call for an index cycle. In that case, the code generated
is 11, the code that will cause a memory read. At the same time, however,
the index register must be made to cycle, the code for that being 10.
Therefore, 11 is generated in the control code register, but one bit of it
is blocked on the bus leading to the registers.

The program memory must also be controlled by such control codes and,
in general, the first two bits are forced to a ONE by hard-wired logic.
This is the read code and causes the program memory constantly to read.

An exception occurs here, however, when the program memory and data memory
are the same. In this case, a level from the comparator determining this
blocks the signal, forcing it to a 00 during the execute part of the cycle.
Since the program memory bus and the data memory bus OR together, and the
program memory bus is forced to ZERO, the program memory can respond to the
code on the data memory bus and will either write or read as the instruc-
tion being executed indicates.

5.4.3 The sequence counter.-- The sequence counter is a two-stage
shift counter (8Q0 and SQl) which governs the cycles of any particular in-
struction. SQ1 shifts into SQ0 whose inverse then shifts into 8QL This

72

SKP 4

SHF 4

000

0ot

on

oK

110

11

101

100

100

101

m

Ho

010

1

001

000

100 101 4t 110
B4 85 87 86
A2>0|0>Al [0=Al|AZ=0
AZ< 0|0 <Al | 0FA| AZFD

B4 85 g | B
4 5 7 6
A2> Al A2> AL|AZ= Al A2= A
A2 < Al|AZ < AL AZ # AL | A2 £ AL
4 5 7 é
4 5 7 6
12 DINT | EINT
12 DINT | EINT
s | s 7 6
4 5 7 6
12 DINT | EiNT
12 DINT | EINT
4 5 7 6

Figure 22, R Field Coding for SHF and SKP, Part 1

010 -0l 001 000
B2 B3 iBt =0|OF =0
BIO Bl B? B3
BiG' | -BI1 B9 B8
B2 B | Bi=1]cF=
2 3 LCYCi 0
io n 8 g
10 11 8 9

2 3 LSRL 1 0

2 3 cYci 0
10 N 9 8
10 I g 3

2 3 SHRL 1-)

2 3 SHL1 0
16 X 9 8
10 11 ? 8

2 3 IsHRad 0

L]

73

000

o0

on

010

SKP <

110

nm

101

10G

100

101

11

110

SHF 1

010

-

oH

o |

0co

4

oo 001 o011 o010 e I 11 100
QF=0| Bi=0 B3 B2 B4 B7 B5 B4
B8 89 Bll | Blo Al=0|0=a2|0>A2]|A1>0
B3 B9 8il | BiD ATEO|OF A2|0cAz|AI<O
oF=1|8I=1| B3 B2 86 57 BS B4
o, {sHLI| 3 2 3 7 5 4
8 9 1 10 Al= A2 a1 =A2]a1 > A2Al > Az
8 9 n 10 Al £ AZlAl £ azlai < az)al < A2
] LSRA1 3 z 6 7 5 4
o |cver| a z s 7 5 4
8 9 n 10 EINT | DINT 12
8 9 1 10 EINT | DINT
o |swru| 3 2 6 7 5 4
o | su 3 2 8 7 5 4
8 b4 i1 10 EINT | DINT
8 9 1] EINT | BINT
o_ |sHRAT| 3 2) 7 5 4
Figure 23. R Field Coding for SHF and SKP, Part 2

TABLE 17

CONTROL CODES

MACHINE INSTRUCTION REG DM PM
STATE DECODING CODE CODE CODE
CNI ISR7 = 1 10 1 1
CNI ISR7 = 0

SKP 00 00 1
SHF 00 00 1
CNTRL 00 00 1
NOP 00 a0 ¥
ouT 1 00 1
INP o1 00 1
OTHERS 10 00 1
(CRT(IND) IR8 =1
JMP 00 00 1
JMPR 00 00 i
LDLR 00 00 1
ADDIR 00 00 1
OTHERS 00 10 11
IR§ = 01 00 00 1
(CNIND ALL 00 00 n

75

is the pattern of the shift counter. Thus, it, in general, steps through
the following states: 01, 00, 10, and 11. These may be given the four
functional titles: Index, Execute, No-op, and No-op. At some point in
this cyele, the condition is detected that the present instruction is com-
pleted, and at this point a copy next instruction (CNI) signal is generated.
This resets the sequence counter to either the index or execute state, de-
pending on the next instruction. In which of these two states the next in-
struction commences is determined by bit T of the next instruction decoded
from the instruction shift register since that will be the location of the
next instruction at that time.

If bit 7 of the instruction to be executed is a ONE, it indicates an
instruction which must be indexed and, therefore, the counter will be reset
to state 01, or the index state. If bit 7 of the instruction is ZERO, the
reset state will be 00, or the execute state. Having thus begun in either
the index or execute state, the only remaining variable in the cycle is
with what state to terminate the instruction.

The only instruction to terminate after the index cycle is the modify
instruction (MDI} command. This is decoded with the index state 01 to pro-
duce the CNI signal. WMost commonly, the CNI signal will be produced by
the next state (00 or execute) provided that one of three ORed signals is
present, One of the ORed signals represents the lack of comparison between
the program memory register and the data memory register (i.e., the program
memory and data memory are not the same).

A second condition that will terminate the instruction at this point
is an OR of the jump to register contents (JMPR), load register with 1it-
eral (LDLR), and add literal to register (ADLR) instructions because they
require no further machine cycles even if the program memory and the data
memory are the same.

The third condition which terminates the instruction is if bit 7 is
a ZERQ, i.e.,, if the instruction falls in the category of single-cycle in-
structions, one single-cyvele instruction, skip, is only conditionally single-
cycle. There is an additional iInhibit generated by the skip instruction
and the test condition which will inhibit CNI from being generated in the
execute cycle, and, therefore, the sequencer will go on to further states.

The next two states, 10 and 11 of the sequence counter, are both no
operation (NOP) states. They are used for conditions when program memory
and data memory are not the same, in which case a certain time must be con-
sumed {one or two cycles to allow memory operation) or they provide the
two-cycle skip generated by the skip instruction.

If the program memory and the data memory are the same, three cycles
are required for instructions which do not write back in memory. These
are coded with a ZERO in bit 8, and upon detecting this during the first
of the two NOP states, the CNI signal will be generated., If bit 8 is a
ONE, the iAstruction is one which writes back in memory. When data are in
the program memory, instructions require four cycles and so the sequencer

76

steps further to the second of the two NOP states. In this final sequencer
state of 11, the CNI signal, which restarts a new sequence, is always gen-~
erated.

5.4.4 TInstruction timing.-- The MULTIPAC processor operates with over-
lapped instructions such as those indicated in Table 8. 1In this table each
entry represents one cycle time of the machine, including a two-bit control
code time and a 12-bit shift. The slashes are used to indicate the contents
shifting into a register on the left and the contents shifting, out of it on
the right of the slash. The program counter increments regularly, and at
the same time its incoming contents are transferred into the program memory
data register with a control code, causing a read. The memory reads at the
first part of the cycle during the 2-bit control code time, and the contents
of that location can be read out in the 12-bit shift which follows. This
word is shifted during that time into the instruction shift register and,
with the following word strobe, is transferred into the instruction regis-
ter where it is decoded. Note that this requires a memory read time of
less than 2 microseconds (2 shift pulses).

Certain instructions have been asgumed in the figure to give an ex-
ample of the overlap and the internal timing of certain instructions. The
first instruction for address ZERO is assumed to be an add and store (ADDM)
indexed by register R. Thus, the sequencer will be initiated in an index
cycle. This will cause the contents then emerging from the program memory,
namely, the contents of location 1, to be added to the contentg of register
R and transferred into the data register of memory 2 as the effective data
address. The code used is a read, and one cycle later, the contents of
that effective address are available to be shifted out of the memory regis-
ter. In this next cycle the sequence counter has advanced to the execute
state, and during this cycle, the contents of the effective address are
summed with the contents of the accumulator and transferred to the accumu-
lator and back into the memory register with a write code. While this op-
eration is being done, the next instruction is shifting into the instruc-
tion shift register so that with the next word strobe, it is transferred
inte the instruction buffer register. Since this next instruction is not
an indexed instruction—in-the example given, the sequencer started in the
execute state. The assumed instyuction is a skip illustrating the use of
SKP and jump (JMP) together. Accumulator 2 is subtracted from Accumulator
1 and the sign determines whether or not the skip oceurs. The example as-
sumes that the skip does not occur in order to demonstrate the jump; how-
aver, the two NOP's shown in parentheses indicate what will happen if the
gkip is effective. Assuming this skip is not effective, the next instruec-
tion is a jump, causing a typical index operation. The index results are
shifted into the program counter and the program memory. The execute cycle
of the jump does nothing but wait for the contents of the jump location
to shift from the memory register into the instruction shift register.
Then, with the next word strobe, the contents of the jump address are dumped
into the instruction register. This timing is altered if the program mem-
ory and the data memory selected are the same since time for the data op-
erations mist be allowed within the program memory.

7

82

TABLE 8

INSTRUCTION TIMING

PM # DM
PC MAL MD1 MA2 | MD2 IR SEQ. OPERATION
0/- - {R:0/- - -
1/0 0 |R:1/(0) - -
2/1 1 | R:2/(1) - R:ALl/- (0) = ADDM R | TND (1) + (R) = AL =>MD2
3/2 2 [Ri3/(2) Al | wis/(AL) EX (A1) 4+ ACC = S =>ACC, MDL
4/3 3 PR:4/(3) Al (2) =skp ¢ |EX ACCl - ACC2: SIGN => TST
o/ 4 4 [R:af(4) All (3) = JMP IND(NOP){ (4) + (R) = ¢ =MD1l, PC

ol/o o |Riarl/(a) | AL EX(NOPF)

(o) = NEXT

PM = DM
PC MAL MDL IR SEQ OPERATION
0/- - [R:0/-
1/0 0 |R:1/(0)
1 1 |R:AL/(1) (0) = ADD R | IND (1) + (R) = AL = MD1
2/1 Al [R:2/(41) EX (Al) +(ACC)= S1L =>ACC
3/2 2 |R:3/(2) NOP
3 3 |[R:A2/(3) (2) = ADDM R { IND 1 (8) + (R} = A2 =>MD1
3 | A2 |W:s2/(A2) EX (A2) +(ACC)= S2 =>ACC, MD1
4/3 R:4/52 NOP
5/4 4 |R:5/(4) NOP

(4) = NEXT

All memory instructions except the jumps and literals require at least
three memory cycles when the program memory and the data memory are the
same, and for such instructions, the sequencer proceeds into its NOP states.
If the instruction only calls for a data fetch from memory, three cycles
are sufficient. However, if it calls for a store, then four cycles are
required. The example shown in the bottom half of Table 8 illustrates two
instructions, an ADD and an ADDM, using data from program memory. The add
instruction is an example requiring only a data fetch. In this case the
program counter is stalled during the index cycle, and during the execute
cycle, the 11 read code normally hard-wired to the program memory bus is
defeated to a 00 level so that the data memory bus ORing with it will in-
troduce whatever codes are appropriate to the data operation. This will
be a read code so there is no effective alteration. However, in the in-
struction following, the ADDM, the code transmitted on the data bus would
be a write code. Since the next 2-bit memory cycle time must be devoted
to writing, the earliest time at which the program counter contents can be
restored as the memory address is in the following cycle. To account for
this extra one-cycle delay, another NOP cycle is introduced and, addition-
ally, the program counter is stalled during the execute state.

5.4.5 Instruction shift register.-- The instruction shift register
uses the same typical 12-bit shift register as found in the rest of the
machine, This register normally shifts in data from the output of the
program memory switeh. On one instruction, the modify instruction command
(MDI), it switches to the output of the adder. The MDI instruction is in
the class of those that cause an index operation although it is a single-
cycle instruction. Thus, it treats the next instruction which follows as
an address, performs an index on it, and shifts it into the imstruction
shift register. On the word strobe that follows, the modified instructiion
is dumped in parallel into the instruction register, where it is decoded
and executed. .

5.4.6 The program memory switch.-- The program memory switch is used
to select the memory module which will be used as the source of the pro-
gram for the logic unit. It performs a 16-way switching of two buses, one
leading from the program counter to the memory and the other leading from
the memory to the instruction shift register. It uses the standard 1l6-way
switch configuration used in the data memory and register switching. A
4-bit register is set by the set program memory page (SPMP)} instruction
which transfers the low order four bits of that instruction into the regis-
ter. The register is fully decoded for 16 states, and the decoders operate
a pair of gates, one going to each memory from a common bus which is also
the information entering the program counter, and the other from the memory
to a common bus leading to the instruction shifting register. There are
control buses to disable the switch for the condition of interrupt when the
ZERO address must be sent to the program memory and when the returning data
from the memory must be forced to ZERO.

79

The switch must also be disabled when the command unit forces an in-
struction into the instruction shift register. In this latter case the
data from the command unit is ORed onto the bus leading to the instruction
shift register. There are connections for two separate command modules.
Each such connection includes a 4-bit decoder and data line. The codes
which are used to address the command units overriding function are dis~
tributed throughout the system and each of the 4-bit decoders must be tied
to the buses to reflect its own decoded address. The data bus from each
command module is common. When the coded lines contain a correct address,
the control level is brought up to disable the program switch, foreing its
output to ZERO and the data from the command module is enabled to be ORed
onto the bus to the instruction register.

5.4.7 The data memory and regigter select switching.-- The data mem-
ory switch is a 16-way switch identical to that of the program memory. It
is controlled by the data memory register, a 4-bit register, the contents
of which are loaded by the set data memory page {SDMP) instruction. This
loads the four low order bits of that instruction inteo the data memory
register. It is decoded to enable one of 16 two-way buses, coming from
the adder output to the memory register and from the memory register to
the B input of the adder.

Another similar switching section chooses the registers addressed in
each instruction by decoding the six low order bits of the instruction.
The register switches are of variable size in 16-bit increments. The first
four bits of the instruction are decoded in common in all sections of the
switch, while the high order two bits go through separate decoders and en-
able only one of the 16-bit sections.

The register address ZERO on the first switch section only is hard-
wired to the value ZERO to provide a register whose contents is always
ZERO, and the first two register addresses of the same switch section con-
nect to the accumulators. The register switch operates in conjunction
with the memory switch, and both are ORed together, feeding the B input of
the adder.

When IR7 is a ONE in the instruction register, it indicates a2 memory
instruection, and the memory switch is enabled. The register switcheg are
disabled by a signal called INHIBIT REGISTERS (INHR)} which enters the de-
coders of the high order selection bits and disables them. When IR7 is a
ZERO, signifying a register instrxuction, the memory switch is disabled and
the register switch is enabled. An exception occurs when IRT is a ONE
during the index portion of that instruction. In this case, half of the
memory switch is disabled, inhibiting the input from the adder, and the
register switch is allowed on that bus. The other half of the memory
switch controlling the adder input to the memory is enabled. Thus, the
register selected feeds the input to the adder while the adder output feeds
the memory. The register output is cycled back through the register switch
to the register from which it came, '

80

For instructions XCH, STA, NEG, STPC, SKDR, MSKR, and OUT, the adder
output must be transferred to the registers, the loop from the register
output back to the register input must be broken, and the register adder
output must be inserted.

The input to the switch must also be changed for the timing signal
transfer of bits 14 and 13, during which control codes must be transferred
from the output of the adder to the register. For the index operatiocnm,
the code generated is 11. The memory copies this directly, causing a read.
It is inhibited during bit 14, however, on its way to the register, sending
a 01 code to the register, or simply SHIFT.

5.4.8 Adder input switches.-- The two inputs to the adder are labeled
A and B. Each oné comes from a number of different sources. The B input
is fed by the memory/register input bus except for those instructions coded
with ZEROS in bits 7 and 8; in that case, the input from the memory/register
bus is blocked to ZER(. For these instructions, the adder does not have
to be a function of the data on this bus. Included are such instructions as
XCHR and INP, where the data is significant but it enters the accumulators
directly without going through the adder and instructions which use another
input to the B port of the adder, the inverted memory/register bus. This
inverted bus is used for the one's complement signal used in subtraction
and is switched in by the subtract (SUB) and equivalence {EQVR) instruc-
tions as well as the NEGR. Another cause of forcing the input from the
memory/register output bus to ZERO is during the multiply step when the
value of the multiplier digit tested is ZERO.

Other inputs to the B port of the adder are the inverted outputs of
the two accumulators. They are used only in certain skip instructions in
which the accumulator entering the B port of the adder is subtracted from
that entering the A port. The carry is set to ONE initially and the B in-
put is inverted to accomplish this subtraction. Some of the skip instruc-
tions in this group require that the number being subtracted is ZERO.
Since the carry is inserted as a general case, the ZERO is created by put-
ting a third gate on the bus, which forces the bus to a constant ONE.

This could be considered as a minus one and the addition of a earry to
make 1t zero.

The A input to the adder also has a number of gates ORing into it.
Primary among these are the two accumulators selected by the accumulator
bit of the instruction (IR6). During the index cycle of the sequencer,
the output of the program select switch goes into the adder, and the inputs
from the accumulators are blocked. 1In one of the index instructions, JMPR,
this gate is blocked to ZERO so that the index address from the register
alone is the effective address of the jump. TFor the STPC imstruciion, the
output of the program counter is brought into the A port of the adder.
These then are the six data signals which are introduced into the A port
of the adder: the output of either Accumulator 1 or Accumulator 2, the
program counter, the program switch, forced to all ONES, or forced to all

8L

ZEROS. The latter ocecurs in the NEGR instruction when the A port is forced
to ZERQO so that the contents of the register is subtracted from ZERO. 1In
the skip and decrement (SKDR) instruction the whole bus is forced to all
ONES so that the contents of the register are added to minus ONE.

5.4.9 The adder.-- The adder is a two-level min-term decoder of all
the min-terms of 3 variables: the A input, the B input, and the carry,
which will cause the sum to be a 1. 8imilarly, for the carry, the min-
terms which will cause carry to be a ZERQ are QRed. The two conditions of
overflow are detected from thse gates and are strobed into the overflow
flip-flop during the period the sign bit is being decoded. The two condi-
tions are both sign bits ZERO and carry present or both sign bits ONE and
no carry present. The carry flip-flop is set to ZERO with each word strobe
and is enabled only by the instructions requiring an arithmetic result,
such as ADD, SKP, MSTP, SUB, NEG, and SKDR. These instructions also enable
the overflow detection. On the subtract and the negate instructicns the
carry is set to a ONE during bit 14 of the timing counter and this, together
with the inversion of the input of the adder, provides the subtraction.

The logic functions are obtained through the min-term decoders used for
addition by forecing both C (carry) and C (not carry) to a ONE, This pro-
vides all four min-terms of A and B ORed into the adder, and the boolean
functions AND and OR are obtained by selectively enabling the correct min-~
terms. The mask instruction is obtained with the addition of one more gate.
The carry is a ZERO for this instruction, and the adder reflects an EXCLU-
SIVE OR of the two inputs A and B. One half of the EXCLUSIVE OR is dis-
abled so that the function into the adder is AB, If the accummlator is
ZERO, B will be copied; otherwise, that gate produces ZERO, A separate
gate AND's the two accumulators together, producing a ONE when the masking
accumulator and the data accumulator both contain ONE. This is ORed into
the adder on this mask instruction.

5.4.10 The accumulators.-- The logic unit has two accumulators which
serve to provide one input to the adder amd to receive its output. A
single bit, IR6 in the instruction, determines which accumulator is to be
used. The accumulators are made up of the typical 12-bit basic shift regis-
ters used throughout the machine connected as a LEFT/RIGHT shift register
{see paragraph 5.2).

The data paths are selected by one of eight gates ORed together at the
input of each accumulator. Two of these are for connection to the command
module so that it may force data into the accumulators. The other six
gates take data from wvarious places within the logic unit. 1In general, the
input is taken from the adder output. In the case of the exchange and load
accumulator instructions, this gate is blocked and another gate is enabled,
copying data from the memory/register output bus. This must be done since
in the exchange instruction the adder is copying the output of the accumu-
lator. This provides a path not through the adder but directly into the
input of the accumulator. Having once done this for the exchange instruc-
tion, it is convenient to do it for the load accumulator instructions.

82

The gating of the skip (SKP) and shift (SHF) instructions must be
treated as a pair since there are some shift instructions coded by using
certain unused codes in the SKP instruection. For these, the gate copying
the output is also disabled in addition to the gate copying the signal out
to the registers. The gate's that are enabled by SKP and SHF are those that
cycle the register upon itself and that. extend the sign, or high order, bit
leftward as the shift takes place. '

For all instructions beginning with a 10 in the high order of the
register field, the sign extended gate will be enabled. This includes the
shift right arithmetic instruction (SRA) and long shift right arithmetic
(LSRA). To create the shift right logical instruction, the cycle (CYG)
(CYC) gate need only be disabled, thus shifting a ZERO into the left end
of the register. The double length shifting instructions gate the same
functions as already described to the input of Accumulator 1. Then, both
the cycle and the sign-extended gate of Accumulator 2 are defeated and the
output of Accumulator 1 is introduced. .

The multiply step (MSTP) instruction OR's in with the long cycle in-
structions to enable the operative Accumulator 1 to feed Accumulator 2.
At the same time, a separate gate disables the adder output from going to
Accumulator 2. The output of the adder is read into Accumulator 1 and the
output of Accumulator 1 shifts into Accumulator 2.

A special case for shifting right inputs is when the accumulators are
addressed as registers, In this event, the adder output gate which would
normally be enabled at this time is disabled and the bus which goes out to
the registers is copied instead. A straight decoding of the R field regis-
ter address levels accomplishes this. Both accumulators are located on
the lowest 16-bit segment of the R field switch.

For shift left instructions, a decoding of the shift left instructions
switches the accumulator to the shift left configuration. A ZERO is shifted
into the lower order of Accumulator 2 under all conditions. The input in-
struction OR's with the shift left instruction to cause the register to
shift left. A gate is enabled, introducing the memory/register output bus
into the right end of Accumulator 1, On an input instruction, the data
shifts in from the right.

Long shifts are coded by a 10 in the first two bits of the SKP in-
gtruction, differentiating it from the short shifts coded under the shift
instruction. This 10 decoding isg used to enable a path from the left end
of Accumulator 2 into the right end of Accumulator 1 for the long shift
left.

5.4.11 Accumulator clocking.-- With one exception, the accumulators
shift on the shift clock pulges that occur during counts 12-1 of the timing
counter. Counts 14 and 13 are excluded by a bus which gates them out of
register transfers generally. This is a typical pattern throughout the
machine.

83

The exception is when the multiply step instruction causes the accumu-
lators to shift with the word strobe. Accumulator 1 is allowed to shift
with the normal 12 SC pulses plus the word strobe, which is ORed in on the
clock bus, and Accumulator 2 is allowed to shift with the word strobe only.
Thus, Accumulator 1 performs a full 12-bit ADD and then, on a 13th pulse,
the word strobe shifts out the low order bit of that sum into Accumulator
2, which also shifts once at that time on the word strobe.

The gating level controlling SC pulses comes from an OR of the control
signal from the command module and a level from the shift and skip instruc-
tions, with bits 2 and 3 in the register fieild a 10. This latter class of
instructions is the condjitional skip or arithmetic comparisons between the
two accumulators. Consequently, both accumulators must shift for these
instructions. A third such ORed level comes from a decoder: the sequencer
state 00 or execute, plus the accumilator's selection bit, which is ONE for
Accumulator 2 and ZERO for Accumulator 1. In addition, the shifting of
Accumulator 2 must be limited for certain instructions which are coded with
a ZERO in bit 6 but which do not require shifting of accumulators. These
are inhibited by two decoding eircuits; the first decoding JMP and JMPR,
the second decoding NOP, STPC, SMP, and NEGR. The only such instruction
which unconditionally inhibits Accumulator 1 is skip and decrement (SKDR).
The input (INP) and mask (MSK) instructions cause a conditional inhibiting
when the mask bit coming from the low order bit of Accumulator 1 is a ZERO.
The input and mask instructions also require the other accumulator to cycle
to provide the mask, and, therefore, one of the ORed levels permitting
shifting of Accumulator 2 comes from the decode of these instructions. The
one remaining ORed signal that permits shifting of both Accumulator 1 and 2
decodes the double length shifts which require a shifting of both accumula-
tors regardless of the accumulator bit.

Inhibiting the circuit which enables long shifts and the circuit which
enables shifting on the proper accumulator bit is a ecircuit which is in-
tended to halt shifting for shift imsttuctions when the timing counter
reaches ZFRO. This circuit decodes the instruections skip (SKP) and shift
(SHF) and a decode of ZERO from the timing counter. Actually, it is only
the shift instructions which should cause the halt. Consequently, skip
on bit set must be specifically excluded from this decoding by a separate
circuit. - The skip-on arithmetic comparison signal enters the logic in
such a position that the shift halt circuit cannot be effected, thus not
requiring this exclusion.

5.4.12 Timing counter.-- Timing of the logic unit operations is
governed by a timing counter located in it. This is a 4-bit down counter
which is initially set to the number 14 by the word strobe. It then counts
down on each shift clock pulse to the number ZERO. During the counts of
14 and 13, the registered control codes are transmitted, and during the
counts 12 through 1, the data transfers take place. In the case of shift
instructions and certain skip instructions, the count is jumped after 13
to some number taken from the register field of the instruction. It then
counts down that number of shift clock pulses and locks at the count of
ZERO. In the case of shift instructions, this leads to shift N times, and

84

in the case of skip on bit N, the count of one strobes the bit of interest
while the accumulators are allowed to shift a full 12 bits, as in other
instructions, For most instructions the accumulators are allowed to shift
for all counts other than 14 and 13 if the instruction uses them.

5.4.13 Skip.-- The skip instruction operates by performing a test
during the execute cycle and inhibiting the copy next instruction (GNI)
signal which would normally occur at the end of this cycle if the outcome
of the test warrants. 1If the copy next instruction signal is inhibited
at this point, the sequence counter will continue stepping through two no
operation (NOP) cycles before again creating the copy next instruction sig-
nal. During this time, the next two locations in program memory will have
been passed over and the third location following the skip will be copied
as the next instructiomn.

There are two basic groups of tests for skip: skip on bit N and skip
on arithmetic condition. Skip on bit W is coded with N from 1 to 12 in
the register field. This number is used to jump the logic unit timing
counter so that the count of 1 appears at the appropriate time to strobe
the bit in question and set the test flip-flop.

The general form of the arithmetic skips is to defeat the signal jump-
ing the timing counter so that the count-of-one strobe coincides as usual
with bit 12 of the transfer. The opposite accumulator from that indicated
by the accumulator bit in the instruction is then subtracted from the ac-
cumulator indicated, and the sign bit is used to set the test flip-flop.
Since it must be possible to skip on the difference of any two numbers
within the range of the machine, it is possible that the test subtraction
may yield an overflow result. The output of the test f£lip-flop is EXCLU-
SIVE ORed with the overflow flip-flop so that the effeect of the sign bit
is reversed if overflow results from the subtraction.

A third condition of skipping is provided by overriding the strobe so
that all bits of the difference are, in effect, strobed. With the test
flip-flop locking on any ONE bit detected, this detects the condition that
Accumulator 1 # Accumulator 2.

These three skip conditions are doubled by foreing the acecumulator
indicated to be ZERO and tripled to a total of nine by forcing the number
subtracted from it to be ZERO., The accumulator indicated is forced to be
ZERO by blocking the input to the adder, and the number being subtracted
from it is forced to ZERO by forcing the other input to the adder to be
all ONES. Since subtraction is accomplished by adding the two's complement
of the number being subtracted, the signal itself is inverted to form the
one's complement, and an initial ecarry is introduced into the adder.

The one remaining class of skips is skip on overflow. The overflow
conditions are detected by strobing the appropriate deccding circuits dur-
ing the time when the sign bit is present. The two conditions decoded
are: both the sign bit positive and a carry present, or both the sign bit
negative and no carry present. These represent positive overflow and nega-
tive overfiow respectively. The state of overflow flip-flop is set into
the test flip-flop as the condition for skipping.

85

In addition to the 12 jump on bit set instructions, the nine arithme-
tic conditions, and the overflow, there are also instructions to skip on
the complement of each of these conditions. Thus, there is also an instruc-
tion for skip on bit not set, a skip on no overflow, and such instructions
as skip on Accumulator 1 < Accumulator 2, which is the complement of Ac-
cumulator 1 > Accumulator 2. In total, there are two overflow skips, 24
bit skips, and 18 arithmetic skips.

5.4.14 Program counter.-- The program counter is made up of the same
typical 12-bit shifting register used throughout the machine. At its in-
put is a serial half adder with a carry flip-flop. This is used to seri-
ally add one to the program counter. The carry flip-flop is set to a ONE
with each word strobe and continues to propagate as long as there are ONES
emerging from the low order end of the register. This flip-flop is not
initialized to ONE on the word strobe when the program memory switch is
set to ZERO, preventing incrementing when the command override ig in effect.
That is, a ONE from the register and a ONE from the carry is the condition
for propagating the carry into the next bit, In addition, there ‘are gates
for steering the input to the program counter under conditions of jumping
and interrupting. A decoding of either the jump instructions plus the
level indicating an indexing state in the sequence counter will force both
halves of the half adder EXCLUSIVE OR to ZERO and enable a path from the
adder output into the program counter. The jump instructions use an index
cycle so that during the index cycle, the index result will be transferred
from the output of the adder to the program counter. During the execute
cycle of a jump, nothing takes place except waiting for the memory to re-
act. There is also a gate forcing the output of the program counter to *°
ZERO. This is used during interrupt, when it is desired to force the pro-
gram counter and the memory address to ONE. Since the interrupt forced
the previous contents of the program counter to ZERO, incrementing effec-
tively forces the new contents to ONE. Details of this operation can be
found in the discussion of the interrupt. There is also gating included
to stall the program counter while data fetch cyecles are taking place in
the program memory under the condition that the program memory and data
memory are the same. 1In this case, the shift clock to the program counter
is blocked, preventing incrementing to the next location while the program
memory is used for data.

5.4.15 The interrupt mechanism.-- Interrupt is accomplished by tak-
ing over certain control signals with a 2-bit sequencer called interrupt
zero (INTQ) and interrupt one (INT1l).' Exercise of this function is en-
abled or inhibited by a f£flip-flop called enable interrupt (EINT). Table
9 indicates the timing of the interrupt sequence. The slashes are used
to indicate the contents shifting into a register on the left and the con-
tents shifting out of it on the right of the slash. 1In this example the
last instruction to be executed before interrupt is the contents of loca-
tion 19 (LOC19). Upon occurrence of the interrupt signal, the INT1 flip-
flop is set to a ONE. The decoding of this condition creates an inhibit
signal which forces both the bus from the program counter to the memory
and the bus from memory to the instruction register to ZERO. These two
buses are not forced to ZERO until after the two control bits starting a

86

http:override.is

TABLE 9

INTERRUPT TIMING

PC MDL IR R INTL INTO EINT
20/19 20/(19) (18) - 0 0 1
91/20 07/(20) (19) LAST INST - 1 1 1
92/21 22/(0) 0" - 1 1 0
17722 1%/(22) (0) STPC R 22 0 1 0
2/1 2/(1) 0" 22 0 0 0

- - (1) INT ROUTINE 22 0 0 0

- - - 22 0 0 0

- - - 22 0 0 0
11/10 11/(10) - 22 0 0 0
12/11 12/(11) (10) EINT 22 0 0 0
20/12 20/(12) = -2 (i1) JMP R 22 0 0 1
20/12 21/(20) - (1) 0 1

' (20) NEXT INST

%
Forced by hardware

read cycle are sent to the memory. This is accomplished by gating this
inhibit level with-a timing level from the timing counter section of the
logic unit. This timing level is high for the 12 data bit times only.

This places a ZERO in the address of the memory and forces a ZERQ or NOP
instruction as the next instruction following the contents of location 19
The interrupt is gated with a copy next instruction (CNI) level so that it
can only be initiated on the last step of the previous instruction. After
one eyele, the contents of location ZERO then appear in the instruction
register. This location should contain the store program counter register
(STPC) instruction, This stores the program counter (which by this time
is larger by 2 than the correct return address) in a register. The se-
quencer is then allowed to change the program counter by foreing the pre-
vious contents of the program counter, as seen in the incrementing half-
adder, to ZERO. With the incrementing taking place, the address next
created is ONE. Another ZERO must be forced in the instruction register
to wait for the contents of location 1 to appear. Then, the contents of
location 1 appear in the instruction register and the interrupt routine

is begun.

87

In the course of sequencing through these control signals the enable
interrupt £lip-flop is cleared so that while in the interrupt routine, an
interrupt cannot be received, as this would lose the original address. The
last two instructions of the interrupt routine should be enable interrupt,
(EINT) and jump (JMP) to location minus 2 indexed by R (which contains the
return address plus 2), and this creates a correct effective return address.
The ONE in parentheses indicates the earliest time at which a new interrupt
could be received, since interrupt is gated by the copy next instruction
(CNI) level and this occurs during the second cycle of a jump instruction.

5.5 1I/0 Register

The register control logic is shown in Figure 24, the state diagram
in Figure 25 and the timing diagram in Figure 26. 1In this discussion the
register mode connections are assumed, i.e., REG=1 and MEM=0. The 2-bit
control code (CCD) transmitted by the logic unit is received in the control
register (CR). The contents of this register will be described in the
order CR2 to CRO with X's indicating "don't care" digits. The CR is pre-
loaded with the number 100 and as the control code shifts into it from the
left, the i moves to the rightmost position: XXL. The first digit of the
code (CO0) determines whether data is to be loaded from the input channels
into the shifting register or not. This transfer takes place during both
input and output operations, although the data is used only for the in-
putting operation. In the output operation, the data shifting in replaces
that loaded from the input channels, and the latter is never used. After
the second code bit (Cl) has been received, the register will shift on the
remaining 12 SC pulses for all operations except no operation (NOP). The
ONE in CR@ at this time activates the shifting gates rather than the paral-
lel inputs. This ONE also inhibits further shifting of the CR by blocking
the shift clock (SC). Thus, the control code remains in CR1 and CR2 until
the WS pulse, which is not blocked, steps the register to its next state,
which is 100 for all cases.

For the output operation, the WS pulse loads the buffer register with
the data that has just been shifted into the shifting register. For the
input or output operations, the WS pulse also sets the INPUT/WRITE or
OUTPUT/READ flip-flops respectively. These are reset in every instance by
the second SC pulse of the next operation which is gated by decoding X10
in the CR. These 2-microsecond pulses serve to signal the peripheral de-
vices that data has been input or output respectively.

5.6 Memory Unit

The basic memory storage cell uses complementary MOS circuits for low
standby power. The Memory Unit uses the I/0 register module as both the
memory address register and memory data register. Other LSI circuits are
used for address decoding and bipolar-to-MOS interface circuits. Figure 27
is a logic diagram of this unit.

88'

Feomwl EXPERIMENTS
A

W e o) W

\

|

|,
-3

e e e — —

' o
/ DOJUT
TO (oA OMNTS
FRamMm — 1=
TIMUNG
GENERATOR

e
INEVEN

OCH &

~
TO "EXPERIMENTS

% Figure 24. LSI MULTIPAC |/O Register

%

FOLDOUT FRAME FOLDOUL ERAME,

89/90

16

15T SC PULSE

2ND SC PULSE

NOTES 1,3

3RD THRU 14TH
SC PULSES

WS PULSE ———»

NOTES 1,2 P NOTES 1,2 4 NOTES 1,2

NO OPERATION SHIFT QUTPUT/READ INPUT/WRITE

NOTE 1:

NOTE |2
NOTE 2:

NOTE 3:

DIGITS IN BOXES CONSTITUTE CONTROL CODES (CCD'S) AND ARE INPUT FROM
THE DATA LINE INTO THE LEFT END OF THE THREE-BIT CONTROL REGISTER AS IT
SHIFTS RIGHT.

ENABLES CLOCK PULSES {SC) TO THE SHIFTING REGISTER IN REGISTER MODE,
ENABLES CLOCK PULSES (SC) TO THE SHIFTING REGISTER IN MEMORY MODE.

ENABLES A CLOCK PULSE{SC) TO THE SHIFTING REGISTER IN MEMORY MODE IF THE
THE INF/RD FF IS SET.

Figure 25. State Diagram of R/M Control Section

¢6

WORD STROBE (ws) | | L]
SHIFT CLOCK (5C) |||]|||||]||||||||||||||||||

Prom Loorard [Ce[a ool oiTo2osToa]os o607 o8] 09 |oio] onn]
CR2 A [!
CR1 Lol 1]ce I%
CRo o] o}, | o
SRI1 (SHIFT) 7 be | D1 | b2 | Ds [Da J 05 [De] b7 | b6 | v [o] onl
SR(INP)! v che | ick Fichz{icHa | icHa [icns [ichs] icnz [icHs Ticks JicHio]icH] pe
BUFFER REGISTER |OUTPUT/ADDRESS DATA

INP/WR? | |
ouT/RD? | |

5 NOTE 2 —ja——NOTE 4 =z
sRe>/(RD?, SHIFT) [MDo | MD1 | MD2 | MD3] MD4 [mD5 [mps | MD7 [mpe T mDs [mpro] mp11] be

\

NOTE 1: REGISTER OPERATION ONLY
NOTE 2. GATED BY CONTROL CODE {CCD) OF PREVIQUS CYCLE
NOTE 3: MEMORY OPERATION ONLY
NOTE 4: GATED BY CONTROL CODE (CCD) OF CURRENT CYCLE

Figure 26. Timing Diagram of R/M Controi Section

UT TG LOGIC UNITS

T il

o T
i 32

TE -

23

ol

@Ji

.

N

i
.
| J

A

FOLD~T FRAM_% { Bit i1 Locations 8 and 1 Shown) FOLDOUT FRAME

3

Figure 27. MULTIPAC Memory Unit (Typical Connections,

When the register portions which are the I/0 register module are used
in the memory selection, the address is transferred into the shifting reg-
ister with a READ control code which causes it to be transferred to the
address buffer. The OUTPUT/READ flip-flop is set for 2 microseconds fol-
lowing the WS pulse, and this serves the memory as a read strobe,

The MEM and REG input signals must be hard-wired to logic ONE and
logic ZERQ respectively for use of this circuitry in the memory. The
changes which occur are indicated in Figures 25 and 26, the state dia-
gram and timing diagram of the R/M Control Section. The change effected
is basically that the loading of input signals into the shifting reg-
ister is not enabled unconditionally by state 110 of the control reg-
ister (CR) as it is in loading interface signals into the I/0 Register.
Instead, it is enabled by the state X10, which oceurs in any event at
the second SC pulse, and the ONE condition of the OUTPUT/READ flip-
flop. Thus, after the read pulse has been up for 2 microseconds, the
outputs of the sense amplifiers are loaded into the register.

Writing ie accomplished by following the read operation with a trans=~
fer of data to be stored into the shifting register preceded by a WRITE
control code. This causes the OUTPUT/WRITE flip-flop to be set by the WS
pulse, and it remains up for two microseconds following the tiransfer. The
memory address is not disturbed from the previous read operation; the data
to be stored is read directly from the outputs of the shifting register
gince it is inactive during this 2-microsecond period. Thus, owing to the
control logic used, the Memory Unit as a whole operates in a read-modify-
write mode.

The modified register Logic described above may be used to interface
with any memory storage medium which can be accessed in the required
2-microsecond time. It is recommended that a 192-bit complementary MOS
memory circuit be procured. This medium is the lowest powered circuit
available, taking into account the drive circuit requirements of magnetic
storage, and it has more than adequate speed. Sixteen and 32-bit chips
are presently on the market and similar 64-, 256-, and 228-bit chips are
under development by several manufacturers. The proposed memory organiza-
tion shown in the block diagram has been derived from these sources and
adapted to the MULTIPAC requirements, but it is strictly a preliminary de-
sign to guide preliminary estimates and contacts with possible suppliers.

Since bipolar circuits are used for system logic and complementary
MOS for memory storage, interface circuits will be required. These would
be typically 5-volt to 10-volt level converters for address and data in-
puts. The method of sensing the memory will govern the type of interface
circuits from the memory to the logic, either voltage level converters or
current sense amplifiers to approximately 5-volt logic levels as shown.
Interface circuits, in general, must be carefully designed to minimize
their power consumption gince the relatively low impedances of bipolar
circuits and high logic levels of MOS could lead to excessive power re-
quirements. This problem can also be minimized by doing as much decoding
on the memory chip as possible to minimize the number of address drivers.

95

The method chosen uses a two-way coincidence of a pair of 1 of 16 decoded
levels to select a 16-word chip. The chip,in turn, decodes another 4 bits
to select a single word. This requires only 36 level converters for a
4096 -word memory. A 2048-word memory, showmn in Figure 27, needs only 28
converters.

The storage device propesed is a modification of the 256-bit comple-
mentary MOS memory chip developed by Westinghouse under NASA contract num-
ber WAS-5-~10243. The modification required consists of those measures
necessary to permit use of the 16-word, 16-bit memory, which has been de-
signed on a single chip, as a constituent part of a larger multiple~-chip
memory. Such expansion required a method of addressing a selected chip
from among others, preferably a coordinate-select method, and a method of
ORing the bit lines from each chip without extensive external cirecuitry.
Either of these functions could be carried out in external circuitry but
would require a larger number of extra gates and interface circuits to do
so0, whereas a slight modification of the chip would allow them to be ac-
complished by simple bussing interconnections of the memory chips them-
selves.

The logic diagram of the Memory Unit shows one possible such modifica-
tion requiring only four gates and two additional external connections per
chip. These modifications would permit X-Y selection of the chip in addi-
tion to the normal decoding of the word on the chip and wired OR operation
of the bit lines. The latter would be high impedance from all but the
selected chip during read, and high impedance from all chips during write.
In this condition the write drivers are enabled to drive the bit lines.

The select signal (S) of the memory is the OR of both READ and WRITE.
This signal connects the internal flip-flops for the word selected to the
bit lines. TFor the READ operation, these bit lines are gated to the out-
put level converters (MBIC). For the WRITE operation, the intermal cross-
coupling of the flip-flops of the word selected are disconnected and the
bit lines are driven to the input levels by the input level converters
(BMIC).

The memory is volatile and hence will be destroyed upon power turnoff.
If the memory is loaded prior to launch, then the spacecraft mmst be
launched with power on the memory storage cells or the program will be de-
stroyed. The power supply for the memory cells is separate from the logic
since it is a different voltage. Since the standby power of the CMOS
storage cells is extremely low, very little power will be drawn during
launch.

5.7 D/A Register

The D/A Register (shown in Figure 28) uses two of the three LSI cir-
cuits of the I/0 register: R/M Control and Shift Register. The buffer
register circuit is replaced by a set of analog switches, a ladder network,
and one or more isolation amplifiers. Only one isolation amplifier is
shown, but more could be added in parallel if protection from one experi-
ment shorting this output is desired. Some protection exists since there
are two D/A Registers.

06

B9 4 - - == 1

FROM LOGIC LTS | ;
I i
I FROM ExprRienTs b
D 3] 5] I)
[} o o 1 ! o ! | =0 TEH 1B ICHE
|
T

W =
ICHS cHT ICH ICH 3 CH4A cH CH 2 el THQ

Ll S N A
|
!
S
|
!
[
!
I
[

-1
|
|
I
|
I
I
|
|

yi /

BTN -
< | . /
g - — I - e [T e
z3 - Ej)—E ; | I—Ejmsw r[}w l—[]ANSW ans 1—[arisw l—[]A\!SW l—[:lhuswl—[] aisw | UNITS
Frow | " REFERENCE —i— :
ThING |WET _‘3 2—| VOLTAGE TT T Y fer . fem Gem| e tar . Gem imo
|
CENERNTOR)] ™ T}—I—(uuusso)
JE— R =3 R r n
s> v oo g Gt
—d

" /
Y AManaP

AHALOG OUTRUT
TR MERS TO EXPERIMENTS

[

pouT

CUT/RD IHDANR

TQ EXFPERIMENTS

%

Figure 28, MULTIPAC D/A Register

} ;\ 97/98
FOLDOUT FRAME FOUDOUT FRAME

The ladder network will most likely be discrete and the isoclation
amplifier will probably be a standard operational amplifier integrated
cirecuit.

5.8 Command Unit

The Command Unit (shown in the logic diagram of Figure 29) accepts
serial data from the Command Receiver in 16-bit words. It distinguishes
between normal commands read by the program and overriding commands by the
most significant four bits. A normal command has these four bits as all
ZEROS. For these, it simply sets an I/0 flag and holds the data until it
is read by the program.

The other 15-bit combinations of these four bits specify one of three
locations in one of five logic units. The three locations in each logic
unit are its instruction register and its two accumulators. When such an
overriding command is received, the Command Unit sends the 12 bits of data
and the 4-bit address to all logic units, where each logic unit has hard-
ware to decode the address and gate the data (if addressed) to the proper
location.

In the allocation of register addresses, only two addresses are allo-
cated for the two telemetry registers and the two command registers. If
these registers are addressed by an input instruction, the command module
is assumed; otherwise, the telemetry module is addressed. Thus, only ocne
register control section is needed for a telemetry-command combination.

No control section is shown on the Command Register logic diagram (Figure
29). It uses the INP/WR level from the control section of a telemetry reg-
ister with the same address.

Data from the Command Receiver is shifted into the upper shift reg-
ister of the Command Register with a clock supplied by the receiver. When
all 16 bits are in, the receiver signals the register with a DATA FINISHED
level. Two fiip-flops are comnected as a 2-bit shift register shifted with
the word strobe to perform asynchronous-to-synchronous conversion of this
level and obtain a one-time transfer level to gate the 16 bits into the
other shift register and command address register portions of the Command
Regigter. This level, obtained by decoding the first stage of the 2-bit
register as a ONE and the second as a ZERO, will last for one period from
one word strobe to the next. A set-reset flip-flop is then set to a ONE,
and if this was a normal command (Command Address = 0), this signal which
appears at the TI/0 interface on some input channel, may be sensed by the
program. The INP instruction will set a control flip-flop on the second
SC pulse (the first is counted out with a flip-flop) with the INP/WR signal
from the R/M Control Section of the telemetry unit with the same address,
and the following 12 pulses will shift the lower shift register. This con-
trol flip-flop and the set-reset flag flip~-flop will be reset on the first
SC pulse following the next word strobe. This clearing is performed by the
same flip-flop which counted out the SC pulse previously because this flip-
flop is cleared on every word strobe and is set to a ONE by every SC pulse.

99

When an overriding command (address # 0) appears in the command address
filip-flops, the same control flip-flop that INP set will be set and the
lower shift register will be shifted by the same 12 SC pulses. Since the
command address flip=-flop levels are connected to all logic units, hardware
at these units will decode these levels and open the correct gates, allow-
ing the 12-bit data to be shifted into the proper register. At the next
strobe, the command address register will be cleared in addition to the
control flip-flop.

The input connections from the Command Receiver also are wired to an
external input connector to facilitate loading of programs on the ground
before launch, when the Command Receiver is off.

5.9 Telemetry Unit

The Telemetry Unit interfaces with the modulator of the telemetry
transmitter which is used to transmit the spacecraft data to the ground
station. The design of this unit is highly dependent on the final design
of the telemetry modulator. (It is assumed here that the convolutional.
encoder is part of the telemetry modulator and any switch to bypass the
encoder is in the modulator also.) The design presented here assumes that
the modulator accepts data serially cone bit at a time. If, instead, the
modulator would accept 12 bits at once, then these need no special telem-
etry register. A standard I/0 Register would suffice. This pushes the
unique logic in the present telemetry register into the modulator which, of
necessity, has to be specially designed and fewer module types would be
needed for the MULTIPAC system.

The detailed logic diagram of this unit is shown in Figure 30. Two
of ite ecircuits are the same as an I/0 Register. The other two circuits
are the Telemetry Buffer Register and associated logic. The buffer regis-
ter shifts, including a 1-bit high order extension of it, on the telemetry
clock pulses. A 1-bit extension flip-flop is preset to a ONE when data is
transferred to the buffer register. Shifting fills the buffer register
from the left with ZEROS. When the ONE reaches the next-to-low-order stage,
the state 00025 or 0003g is decoded by a 12-input NAND gate. This gate
causes the next telemetry clock pulse to load a new telemetry data word in
parallel from the shift register and to preset the extension bit again.
When the extension bit is set, a set-reset flip-flop (shown as cross-
coupled NAND gates) is set to serve as a flag to the processor to advise
it that the next telemetry word should be transferred into the shifting
register. On an output (OUT) instruction, the flag flip-flop is cleared
by the word strobe to prevent ambiguity.

The telemetry clock, in the non-coherent telemetry mode, will most
likely be divided down from the basie oscillator in the Timing Generator,
not the word strobe. Thus, in both this case and in the coherent mode,
the telemetry clock will be asynchronous with the telemetry clock signals.
The flag flip-flop must be set synchronous with the word strobe so that it
camot be set during or after reading the flag and yet be automatically

100

FROM COWMAND RECEWER
——

TRk EXTERNAL MPUT CORNECTOR

= |

[DATA FIRIGHES

DATE CLOCE

! T —I
it i
i |
I |
| |
D D) D h [[[=) ° B E] I
ol e a olll i "ol 1 i Yo o [l [Tel Y P | e el P |] " L P Pl
A1/ /]
=t =t =7 T
- f LOGIE
1 ! UNITS
|
1
ey e ———— L P S e _j;i
| | O aoME o CR® CR3 TRY <Rz CRl (Rl Wy cRg
| NPT CHANEL
{ COMMAND CODES TO
i { LOGIC U™
|
| L= t
N |
1
i— FEOM TuAlNG
GENERATOR
1
P(Figure 29, MULTIPAC Command Register
B 101/102

‘FOI hoor 2
e { FQLDOUT FRAME b S

UNUSED

MODULATOR

UNUSED

11

CLOCK QUTRUT,
TO/FROM TELENETRY

A

i

——_———]

<TR

To BOME IO
IMPUT CHAMWEL

d4g - - — -} - -]

FROM
TMING
ENERATOR

|

MULTIPAC Telemetry Unit

Figure 30.

B 1037104
FOLDOUT FRAME)

o)

FOLDOUT FRAME |

cleared on an OUT instruction. Two f£flip-flops are used to convert the
asynchronous occurrence of need for more data in a manner identical to
synchronizing the DATA FINISHED signal in the Command Unit. The setting
of the extension bit to a 1 is used for the data request information since
this guarantees that the previous data is transferred to the lower regis-
ter. The word strobe majority logic is duplicated since those signals are
not available outside the R/M Control LSI circuit.

The input interface signals on this meodule cannot be used since TNP
instructions refer to the Command Unit.

Some logic in the control section and input gating to the unused input
channels could probably be eliminated, but in the interest of reducing LSI
chip types, it is identical to the I/0 Register. As in the I/0 Register,
REG and MEM must be wired to ONE and ZERO respectively.

5.10 Timing Generator

The Timing Generator, shown in the logic diagram of Figure 31, pro-
vides both the shifting clock (SC) pulses and the word strobe (WS) pulses
to all other modules. Each of these signals is supplied in triplicate
throughout the system and is decoded by majority voting gates at each
module interface. The Timing Generator is driven by 1-MHz square waves.
One of two 1-MHz oscillator and squaring circuit combinations is selected
by the Command Receiver which will switch from one to the other with a
special command.

Each of the three counters is a feedback shift register. The regis-
ter shifts right each clock pulse, with the input to the first stage equal
to the EXCLUSIVE OR of the two rightmost stages. This counter will se-
quence through the states shown in Table 10. The state 0000 (all stages
equal to zero) is not allowable for this type of feedback. In this case,
the register would normally "hang up" and continually stay in the ALL
ZEROS state. This condition is used to put all counters in synchronism.
When the left three stages of the shift register are ZEROS (states 0000
or 0001), the feedback is disabled and the counter will not continue until
at least one other counter is in the same state. When this counter and one
of the others is at 0000 or 0001, a ONE will be fed into the leftmost stage
of all three counters. At the same time ZEROS are forced into the other
three stages to guard against the possibility of failure of one counter
permanently in the 0000 or 0001 state.

In this manner a counter will hang up until one other is in synchro-
nism, and as soon as two are in synchronism, all three are forced to the
1000 state. If one counter fails, the other two will maintain synchronism,
assuming that two of the three SC and WC pulses will be correct.

105

TABLE 10

STATES OF THE TIMING COUNTER

C O MR MO O RHNO OO
= e e e = i - T i =R = I -~
I R = T - T e S S O S
e -~ T T — T R e S R S e I~ J ~ S

5.11 Real-Time Counter

The Real-Time Counter is made up of the three circuit types of the
I/0 Register and one additional special circuit entitled Increment and Con-
trol. This new LSI circuit, shown in Figure 32, will allow the shift reg-
ister to be incremented every word-time in an identical manner to that of
‘the program counter of the logic unit. If the input labelled COUNT is at
Yzero, then the flip-flop controlling the incrementing will be set to zero
at the word strobe and therefore no counting will take place. This feature
is used to expand the Real-Time Counter beyond 12 bits. To expand, we
take the output from the incrementing control flip-flop (labelled OVERFLOW
on Figure 11) and tie this signal into the COUNT signal on another Incre-
ment and Control cirecuit. This overflow signal will be a ONE when all 12
bits of the register are ONES and the word is being incremented to all
ZEROS. This is the only time that this flip-flop will be a ONE at word
strobe time, which will set a ONE into the incrementing control flip-flop,
allowing the shift register tied to this Increment and Control ecircuit to
increment once every time the preceding 12 bits overflows. The low order
12 bits of the Real-Time Counter will have the COUNT signal tied to plus
Vee so that it will count at every word-time.

1086

£S5

CULES

TS AL MODULED

1 TO ALL MO

WCL 1D AL MODULES

2 TO ALL MODULES
WE2 TO AL MODULES

wC3

— HCE TO ALL MCDUL

=1

] P
\.—f_

v '
}
\

[
!
|
L ——— —

¢ OSCSELECT
ERCM COMMANG DECODER

SQUAR NG SQUARING
CIRCUIT CIRCUIT

k ; 16 MHE
OSCILLATOR
107/108

FOLDOUT, ERAME / €
- FOLDOUT. ERAME ‘

10 MHE
CBCILLATIR,

Figure 31, MULTIPAC Timing Generator

COUNT
{From PrEVIOUS OVERFLOW- SEE TEXT)

=

FROM + UNUSED
LOGIC f L__Jf_l
UNITS | R I
UNUSED
| 1 e 5 A

|
| i
| I
I
‘ |
! [
IS< |
— [Uusin
iSc2 .
=3
—— |
W
2 i
=5 |
55 |
[—]
|
FROM TIAING i
GENERATOR
ocHE QChs ocnd f
TG TELEMETRY MODULE
AND EXAPERIMENTS]
DOUT TO LOGIC LMITS
CPTIONRL FOR,
SLrw CLOCKES
OVERFLOW,

Lsoeeter qc*?“?é —

%/ Figure 32. Real-Time Counter

. 109/110
FOLDOUT FRAME | FOLDOUT FRAME)} —

In Figure 11 an output buffer register is shown tied to the shift
register. This register is not needed for operation as a Real-Time Counter,
but its addition allows the generation of slow clock waveforms which are
binary multiples of the basic word-time. This buffer register will be
loaded once every word-time with the present state of the shift register
and will have the effect of a slowly counting register with a parallel
count output, instead of the continuous shifting of the shift register.
These siow clocks may be useful for some experiments and also for the
telemetry system when in noncoherent mode. These buffers need only be
added to those 12-bit sections for which slow cutputs are mneeded. This
will probably be only the low 12 bits of the Real-Time Counter.

When the Real-Time Counter is longer than 12 bits, which for most
applications will probably be 36 bits, a method of choosing which section
to read for an lnput instruction is degirable to save using MULTIPAC
register addressing. H

Logic is included in the Increment and Control circuit to reduce the
number of MULTIPAC register addresses needed for Real-Time Counters longer
than 12 bits. For most applications, 36 bits will be used, giving a time
scale of slightly less than 2 weeks. Rather than use three addresses to
input the three 12-bit words representing the Real-Time Counter, the hard-
ware in the Increment and Control circuit will sequence through each 12-bit
section each time an input instruction addresses the Real-Time Counter.

An output instruction will reset this sequencing logic so that the next
input imstruction will address the least gsignificant 12 bits, the second
instruction will address the second least significant 12 bits, and so forth.
This is accomplished by connecting a special flip-flop in each Increment
and Control circuit together as a ring counter. An output instruction will
set a ONE in the flip-flop of the least significant stage and ZEROS in all
other stages. Each input instruction will read that 12-bit shift register
for which the flip-flop is get to a ONE and shift the ONE to the flip-fiop
in the mext Increment and Control circuit.

5.12 Sample Rate Counter

The Sample Rate Counter (Figure 33) uses the Register Control circuit
and the shift register circuit of the I/0 Register and the Increment and
Control circuit of the Real-Time Counter. This c¢ircuit is similar to the
Real-Time Counter in that if the count input is a ONE at word strobe time,
the shift register will be incremented. Like the Real~Time Counter, the
least significant 12 bits will always count every word-time because the
count will be wired to +Vgpr and the other 12 bits sections will be con=-
trolled by the overflow of the previous 12 bits., For many applications
only one section of 12 bits will be used.

The major difference between the Sample Rate Counter and the Real-
Time Counter is that the Input signal to the shift register section, in-~
stead of being unused as in the Real-Time Counter, is tied to an output
buffer of some I/0O Register. When the overflow signal is present at word
strobe time (which only occurs when all 12 bits are one), the word strobe
will be ORed with the clock pulse of the shift register. At this time the

111

input signal will be high and shift level will be low and the 12 bits from
the output buffer will be loaded into the shift register. Thus, after all
12 bits have overflowed, the count will start at a number determined from
the bits stored in an output buffer from an I/0 Register, allowing control

of the sample rate by the program.

When the counter overflows, the overflow signal is wired to the other
flip-flop in the Increment and Control circuit to be used as an interrupt
signal to one of the logic units. This £lip-flop will be cleared by an
output instruction to this counter. Thus, the program must send an output
instruction to the Real-Time Counter after receipt of an interrupt.

In addition to the word strobe time following an overflow, the output
buffer containing the reset number will be inputted to the sample rate
counter on receipt of an input instruction in a manner similar to a normal
1/0 Register. This permits the program to resynchronize the sample rate
counter.

112

+Veoe

COUNT
UNUSED
—
FESM oI TPUT Evul:’FE'R
i aF AN I/O P_EG\E:‘,I'EP_
] l P A
! I TR0 ICH2 CHS
RN N RS [S 6 ——
| I
|i I
! l.» T T T 1 i

DouT

y o B TG
T — H LOGIC UNITS

FROM TIvIKG CcTE MEW
GENERATOE AL UhUSED

|
N S .~ S |

UHUSEDR UMUSED

Ve +Viee CUT/ED NP /we |
' |

CLEAR

ﬁ/ Figure 33, Semple Rate Counter

. 113/114
FOLC .. FRAME]| oLDOUT FRAMEY

6.0 RELIABILITY

The reliability of the MULTIPAC system depends largely on its restruc-
turability in the event of failure. Since the initial configuration makes
use of all modules in the system, such restructuring to delete failed
modules leads tc a progressively simpler machine and consequently to a
gradual degradation of the processing capability. Thus, to state the
reliability of the system, or the probability that it will be operational
after some specified period of time, one has to define the configuration
under consideration. The initial configuration has a very low probability
of lasting for the duration of a lengthy mission without requiring some
restructuring for repair purposes., There is a high probability, on the
other hand, that the minimal processing mode can still be implemented from
the surviving modules after years of system operation. Intermediate modes
of operation has probabilities of survival between these extremes according
to the module requirements, and hence, the processing capacities of such
modes .

The organization of MULTIPAC permits two basic methods of restoring
operation by reprogramming after failures occur. In the first, extra
modules not needed for the initial configuration may be included to be
used as spares should failures coeccur. In the second, the remaining
modules may be reassigned in a different counfiguration which will continue
to take care of the highest priority tasks. Such a loss in capability
can best be compensated for by accepting a reduction in the telemetry rate
or discontinuing some on-board processing tasks. This may be continued
through a number of failures and successively less powerful configurations
until the minimum operatiomnal configuration is reached.

Reliability thus becomes a function of both the modules initially
available in the system flown and the configuration for which the proba-
bility of survival is specified. Figure 34 gives the reliability model
for the typical system in its initial configuration showing only actual
spares replacing one another.

Tn addition to the number of processors which can be configured, a
gradual degradation of the multiplexed commections to the experiments is
also to be expected, and this is reflected in the probability of a certain
percentage of the I/0 lines remaining available in each of these modes.

In Figure 34 a typical comnection of the I/0 interface is assumed for
modelling purposes. Twelve of the 25 available 1/0 registers are con-
nected to 72 digital signals, each appearing redundantly at the inputs of
two different I/0 registers, for example R; and Ry. Another T2 are used
for analog conversion signals and are commected to the outputs of 72
comparators with the same redundancy, for example Rjg and R g are redundant.
The comparators comnected to input channels on Rj3 through Rjg are driven
by the reference signal from D/A 1 while those connected to Rjg through

Ros receive the reference from D/A 2. Special modules such as a sample
rate counter and a real-time counter are mot related in this model,

115

911

CLOCK
GEMERATOR

IR

m 1c3

r

-——I;LU'I‘H Lu2 l-——I L3 Mi

M2

-

= R13

ABEREVAATIONS

e
o
I
™
CM,
R
DA

TIMING COUNTER
LOGIC UNIT
MEMORY UNIT
TELEMETRY UNIT
COMMAND UNIT
1/ O REGISTER

D A REGISTER

Figure 34, Reliability Model of LS| MULTIPAC

FAWLED MCDULE

A computer program was written to calculate reliability figures for
M of N modules which shows the higher probabilities of survival attainable
for degraded operation., The series reliability given for four such modes
of operation is shown in Table 11. The program and its output is included
as Appendix A. Table 11 gives these figures for 12, 24, and 36 months and
for failure rates of 10-7, 10-6, and 10-9 per LSIC hour. It is expected
that circuits can be produced which will have a failure rate somewhare be-
tween 10-7 and 10°8, A failure rate much lower than 106 will not produce
a reliable system as can be seen from the results of a 10-5 failure rate in
Table 11. Each of the module-failure rates (except memory)} reflects the
conservatism that a single fajilure disables the entire module. Table 11
ignored the memory storage elements on the assumption that if a few failed,
encugh memory remained to continue operating with negligible reduced per-
formance. Table 12 includes the memory storage elements and assumes that
the failure of one causes the entire memory to fail. The actual reliability
figures will be somewhere betweenm these two extremes.

The memory storage elements represent 16 consecutive locations in
memory. A single failed storage element will be easy to program arocund
and is a very small percentage of storage. A large number failed at ran-
dom locations in one memory unit may be difficult to program and, in fact,
make the memory useless. It can be shown that there is a high probability
of most of the cells surviving: 0.9995 for 118 of 128 cells surviving 36
months at a failure rate of 10-%, This would destroy 160 of the 2048
storage locations and, given the proposed addressing scheme, they would,
at worst, comnsist of 10 separate blocks of sixteen words each so long as
the failures did not propagate on the data sense or addressing lines. For
the latter type of failures, some special definition of their probability
is required from the manufacturer, In Table 11 the reliability of the
storage cells is considered to approach ome for a sufficient number of
them surviving to make the module usable, and thus only the control and
addressing logic is considered in the reliability calculations,

The combination of the two oscillators, two sguaring circuits, and
the switch was assumed to have a failure rate of 0.2 of an IS5IC.

Included in Tables 11 and 12 (same in both) are the probability of a
given experimental line (digital or analog) surviving if the remainder of
the system is operable, This is looking at it from the experimenter's
viewpoint, instead of at the mission as a whole.

The formulas used in the calculations are as follows:

& = o~(BC)(FR) (730) (0)

and

X N1

NSI(N-NSI)

COMBR N-NS

]

(MR) ™ (1-04r)
NS=NMR-

117

TABLE 11

LSI MULTIPAC SYSTEM RELIABILITY

=7

Failure Rate = 10 ' LSIC's per LSIC-hour

Mission Duration = 12 months 24 months 36 months
3LU's, 6 M's, FULL I/0 .9238 .8531 L1874
2LU's, 4M's, FULL I/0 .9992 .9970 .9935
1ru, 2M, FULL I/0 .999¢6 - 9987 .9974
1LU, 1M, 83% I/0 .9998 .9995 .9991
Probability of being able to
communicate with any experiment
Analog .9998 .9994 .9986
Digital .99998 .99995 . 99987
Failure Rate = 10°° ISIC's per LSIC-hour
Mission Duration = 12 months 24 months 36 months
3LU's, 6M's, FULL I/0 4444 .1905 . 0793
21U's, 4M's, FULL I/0 .9366 .7836 5973
11U, 2M, FULL I/0 .9761 L9124 .8191
1LU, 1M, 83% I/O .9928 . 9692 .9254
Probability of being able to
communicate with any experiment
Analog .985H4 L9411 . 8048
Digital .9982 . 9910 L9770

118

TABLE 11 -- continued

Failure Rate = 10-5 ISIC's per LSIC~hour

Mission Duration =

3LU's, 6M's, FULL I/0
21U's, 4Mts, FULL I/0
1LU, 2M, FULL I/0
11U, 1M, 83% I/O

Probability of being able to
communicate with any experiment

Analog

Digital

12 months 24 months 36 months
.0001 . 0000 . 0000
.0185 .0000 . 0000
.1522 .0021 . 0000
. 3307 .0129 . 0001
.4430 .£035 . 0187
L1190 .2910 . 0849

119

TABLE 12

LSI MULTTIPAC SYSTEM RELIABILITY WITH FULL
MEMORY STORAGE

Failure Rate = 10-7 1SIC's per LSIC-hour

Mission Duration = 12 months 24 months 36 months
3LU's, 6M.s, FULL 1/0 L4721 2233 . 10565
2LU's, 4M's, FULL I/0 L9774 . 8834 .7390
1LU, 2M, FULL I/0 . 9995 . 9966 .9865
11U, 1M, 83% I/0 .9998 .9994 .9984

Probability of being able to
communicate with any experiment

Analog .9998 . 9994 .9986

Duration .99999 . 99995 .99987
Failure Rate = 10”¢ ISIC's per LSIC-hour
Mission Duration = 12 months 24 months 36 months
3LU's, 6M's, FULL I/0 .0005 2x10% .1x10°
21U's, 4M's, FULL I/0 . 0696 . 0008 6 x 107°
1LU, 2M, FULL I/0 5741 .0909 .0090
1LU, 1M, 83% I/0 .;800 .4280 .1461

Probability of being able to
communicate with any experiment

Analog .9859 .94 .8948

Digital .9981 .9910 L9770

120

where
MR = reliability of a single module

PC

parts count of LSIC's
FR = failure rate per LSIC-hour
730 = hours per month
MO = mission duration in months
N = pnumber of modules in system
NS = number of modules surviving
MNR = minimum number of modules required

COMBR

combinational religbility of at least MNR of N
modules surviving

The formula for combinational reliability is diagrammed for 2 or 3
timing counters in Figure 32. The same approach is used, though not dia-
grammed, for all other MNR of N cases. The three branches of the DA sec~
tion describe three mutually exclusive sample spaces in which some MNR of
N registers comstitute a further requirement for success. This shows the
method of analysis for the probability of at least a certain portion of
the T/0 surviving. The 83 percent figure given is based on losing one
of the six register pairs providing entirely digital I/0 and one of the
six register pairs providing the analog inputs.

121

Mnemonic

LDAL
LDA2
LDAIR
LDAZR
S5TAL
STA2
STAIR
STA2R
XCH1
XCH2
XCHIR
XCH2R
ADD1
ADDZ
ADD1M
ADD2M
ADDIR
ADD2R
SUBL
SUB2
SUB1M

SUB2M

SUBIR
SUB2R
XO0R1

X0R2

XORIM

XOR2M

122

Operation
Code

T6XX
XX
T4XK
T5XX
92XX
93XX
50XX
SIXX
T2RX
T3XX
T0XX
T1XX
46XX
4TXX
42XX
43%%
44XX
45XX
36XX
3TXX
32XX

33XX

34XX
35XX
06XX

07TXX

02xX

03XX

MULTIPAG INSTRUCTION LIST

(Per order of appearance in Section 7.0)

Operation

Load Accumulator 1 from Memory

Load Accumulator 2 from Memory

l.oad Accumulator 1 from Register
Load Accumulator 2 from Register
Store Accumulator 1 in Memory

Store Accumulator 2 in Memory

Store Accumulator 1 in Register
Store Accumulator 2 in Register
Exchange Accumulator 1 with Memory
Exchange Accumulator 2 with Memory
Exchange Accumulator 1 with Register
Exchange Accumulator 2 with Register
Add Memory to Accumulator 1

Add Memory to Accumulator 2

Add Accumulator 1 to Memory

Add Accumulator 2 to Memory

Add Register to Accumulator 1

Add Register to Accumulator 2
Subtract Memory f£rom Accumulator 1
Subtract Memory from Accumulator 2

Store Accumulator 1 Minus Memory
in Memory

Store Accumulator 2 Minus Memory

in Memory

Subtract Register from Accumulator 1
Subtract Register from Accumulator 2

EXCLUSIVE OR Accumulator 1 with
Memory

EXCLUSIVE OR Accumulator 2 with
Memoxry

EXCLUSIVE OR Accumulator 1 into
Memoxry

EXCLUSIVE OR Accumulator 2 into
Memory

135

135
136
136

137

137

137

137

MULTIPAC INSTRUCTION LIST -- continued

Operation
Mnemonic Code Operation Page
XO0RIR 04xX EXCLUSIVE OR Register with Accumulator 1 138
XOR2R 05XX EXCLUSIVE OR Register with Accumulator 2 138
AND1 66XX AND Accumulator 1 with Memory 139
AND2 6TXX AND Accumulator 2 with Memory 139
ANDIM 62XX AND Accumulator 1 with Memory into
Memory 139
ANDZM 63XX AND Accumulator 2 with Memory into
Memory 139
ANDIR 64XX AND Accumulator 1 with Register 141
AND2R 65XX AND Accumulator 2 with Register 141
IOR1 20XX INCLUSIVE OR Accumulator 1 with Memory 142
TOR2 27X INCLUSIVE OR Accumulator 2 with Memory 142
TOR1M 22%X INCLUSIVE OR Accumulator 1 into Memory 142
IOR2M 23XX INCLUSIVE OR Accumulator 1 into Memory 142
IORIR 24XX INCLUSIVE OR Accumulator 1 with
Register 144
IOR2R 25XX INCLUSIVE OR Accumulator 2 with
Register 144
EQVIR 14XX EQUIVALENCE Accumulator 1 with
Register 145
EQVZR 16XX EQUIVALENCE Accumulator 2 with
Register 145
NEGR 30XX Negate Register 146
MSTP 55XX Multiply Step 146
IDIR 57XX Load Register with Literal 148
ADLR 17XX Add Literal to Register 148
MSKM 13%X Replace Memory Through Mask 149
MSKR 11XX Replace Register through Mask 149
NOP 00XX No operation 150
INP 01X Input Through Mask 151
ouT 21XX Output Accumulator 1 152
EINT 6076 Enable Interrupt 52
DINT 6077 Disable Interrupt 152

123

Mnemonic

SDMP

SPMP

STPC
MDT
JMP
JMPR

SKDR

124

MULTIPAC INSTRUCTION LIST -- continued

Operation
Code

20XX
(XX<40)

20%X
(XX240)

10XX
12XX
16XX
56XX

31X

Operation
Select Data Memory Page

Select Program Memory Page

Store Program Counter in Register
Modify Next Instruction

Jump to Indexed Location

Jump to Register Contents

SKIP on Accumulator Condition
(Various skips)

SKIP on Decrementing Register

Various shifts and cycles

Page

153

153

153
154

155
155

156
157
158

7.0 INSTRUCTION MANUAL

The logic modules are essentially small processing units which execute
instructions from memory. Each logic unit has two 4-bit registers; one
selects the memory to be used for program memory and the other selects the
data memory. Each logic unit also has two scratch storage registers
{(called Accumulator 1 and Accumulator 2).

7.1 Instruction Formats
The instructions may use one or two words of memory, depending on
whether or not memory is referenced. In general, they are of the follow-
ing form:

Single Word Imstruction:

6 bits 6 bits

0P Code Reg Addr

Double Word Instruction:

6 bits 6 bits

I OF Code Index Reg Addr

Memory Address

12 bits
Data words are 12 bits in length and are in two's complement notation.

Usually, the least significant bit of the OP code portion of the in-
struction defines whether Accumulator 1 or 2 is to be referenced.

The Register Address Field ("R" Field) generally specifies the reg-.
ister to be used for data in one-word instructions or the index register
to be used for modifying the address field of two-word instructions.

Since register 0 contains zero, "R" Field = 0 will produce no indexing for
the latter case,

The logic unit addresses 64 register locations by the contents of the

instruction "R" Field, or six lowest order bits. The first seven such
locations are specifically assigned as follows:

125

Address Register

0 Dummy register: Contents = 0
1 Accumulator 1 of Logic Unit
2 Accumulator 2 of Logic Unit
3 Input: Command Unit 1

3 Output: Telemetry Unit 1

4 Input: Command Unit 2

4 Output: Telemetry Unit 2

5 D/A Register 1

8 D/A Register 2

The remaining addresses in the firxst addressing section are nine. Ad-
dress switching may optionally be included to expand the number of ad-
dresses in blocks of 16 to the maximum of 64. The unallocated register
locations, up to 57, will normally be assigned to I/0 vregisters, which
makes the permissible I/0 interface as large as 57 x 12 = 684 channels
each way. These registers also serve the functions of index registers
and provide scratch storage for the processor.

Accumulators 1 and 2 xefer to the logic unit decoding the instruction.
There is no way for one logic unit to address an accumulator in another
logic unit. Since the accumulators are part of the Register addressing,
they may be addressed with any of the Register Field instructions.

7.2 Arithmetic and Logical Instructions

All instructions which access memory are two-word instructions and
require two memory cycles for their execution, assuming a data memory unit
separate from that in which the program is stored. If only one memory
unit is in use, i.e., if the contents of the program paging register and
the data paging register are the same, the instruction cycle is auto-
matically altered. Instructions which access program memory storage re-
quire three cycles for execution, halting the program counter for the
necessary data access, and instructions which store in program memory re-
quire four cycles. All memory accesses are, in practice, indexed. Non-
indexed instructions reference index register zero, and the contents of
the dummy register Rf are hard-wired to present the number ZERO.

7.2,1 Instruction set:-- The available arithmetic and logical in-
structions are described in detail in the following pages.

126

LDAL Load Accumulator 1 from Memory TEXIK

LDA2 Load Accumulator 2 from Memory TIXX
Format:
11 é 5 : 0
~T T I T 1 Ll L i L 1 Fipst
T 1 1T 1 1 XX %X X X X X V\;“
! i | 1 1 1 1 l 1 | ora
Index Register Address
10" for Accumulator 1
B1% for Accumulator 2
11 0
: t ! ! ! 1 ! |] ! J Second
X X X X X X X X X X X X | Werd
1 | 1 1 1] 1 1 | 1 1

Op;c‘:nd Address

These instructions load one accumulator with the contents of the
location specified by the sum of the operand address field and the con-

tents of the index register. ILDA1l loads Accumulator 1 and LDA2Z loads
Accumulator 2.

(@ + (R))=) acc, [A=1or 2]

127

LDAIR Load Accumulator 1 from Register T4XX

LDAZ2R Load Accumulator 2 from Register T5XX

Format:

T T T T T T J i ! ! Cne~Word
1 i H 1 0 X X X X X X X |Instruction

Register Address

*O¥ for Accumulater 1
818 for Accumulator 2

LDAIR, LDAZR load accumulator with the contents of the register spec-
ified by the Register Field. The register is unchanged. LDAIR loads
Accumulator 1 and LDA2R loads Accumulator 2.

(R)::::.‘T}ACCA [A =1 or 2]

128

STAL Store Accumulator 1 in Memory H2XX

STA2 Store Accumulator 2 in Memory 53XX

Format:

. X X Fipst
1 0 1 0 1 X1 X X X X Word

Index Register Address

U0® for Accumulator 1
® 1% for Accumulator 2

Second

X X X X X X X X X X X X |Wod

Operand Address

These instructions store the contents of one accumulater in the loca-
tion of memory specified by the sum of the operand address field and the
contents of the index register. The accumulators remain unchanged. STAl

stores Accumulator 1 and STA2 stores Accumulator 2.

(ACCA)_—_>a + (R) [A=1or 2]

129

STAIR Store Accumulator 1 in Register 50XX

STA2R Store Accumulator 2 in Register H1XX

Format:

1 5 6 0

1I|li llll[_
10100xxxxxxxf§§§uﬂg’;ﬁ

i 1 | 1 2 L 1 L i

\ /
-/

Register Address

BO® for Accumulator 1
"1® for Accumulator 2

These instructions store the contents of one accumulator in the register
specified. The accumulator remains unchanged unless specified in the Regis-
ter Field. STAIR stores Accumulator 1 and STAZR stores Accumulator 2.

(AGGA)_T_>R [A=1or 2]

130

XCH1 Exchange Accumulator 1 with Memorv T2XX

XCH2 Exchange Accumulator 2 with Memory T3axX

Format:
1 6 5 0

T T I T T T ¥ I T ¥

r 1T 1T 0 1 XiIX X ¥X X X X
]

i 1 | { L 1 i i i

First
Word

\/
Index Register Address

%08 for Accumulator 1
31" for Accumulator 2

il 0

X X X X X X yx X X X X X| Second
| 1 2 L 1 1 1 | 1 1 Word

Operand Address

The contents of one accumilator and the location of memory which is

the sum of the operand address field and the contents of the index regis-
ter are interchanged. That location of memory will have the previous
contents of the accumulator and the accumulator will have the previous
contents of memory. XCHL specifies Accumulator 1 and XCH2 specifies
Accumulator 2.)

(¢ + R)):}ACCA
simaltaneously

(ACCA) = a+ () [A =1 or 2]

131

XCHIR Exchange Accumulator 1 with Register TOXX

XCH2R Exchange Accumulator 2 with Register TIXX

Format:

One~-Word

Instruction

Register Address

"0® for Accumulator 1
®1% for Accumulator 2

The contents of one accumulator and the contents of a
register are interchanged. The register contains the old value of the
accumulator and the accumulator the old value of the register. XCHIR
specifies Accumulator 1 and XCH2R specifies Accumulator 2.

(R):::%)ACQA
simultaneously

(AccA)':_—-—> R Y[A=1or 2]

132

ADD1 Add Memory to Accumalator 1 46XX

ADD2 Add Memorv to Accumulator 2 47XX

ADDIM Add Accumulator 1 to Memory 42XX

ADD2M Add Accumulateor 2 to Memory 43XX

Format:

i1 6 0
' Ll [L3 1 L T] T T .
1o 0 X 1 X|X X X X X X st
i (1 I 1 L 1]] L 1
\ /
0% ~ Result to Memoary M
#1" - Result fo Accumulator Index Register Address
#0" for Accumulator 1
71* for Aceumulator 2
11 0
1 1 I t T 1 1 L) | |4 1 Second
X X X : X X X X X X : X X X | Word
1 1 L 3 1 1 1 1 1
\ /
"4
Operand Address

The contents of the memory location addressed is added to the con-
tents of one accumulator. For ADDL and ADDZ, the result replaces the
accumulator contents, and for ADDIM and ADD2M, the result replaces the
contents 'of memory. ADDL and ADDIM reference Accumulator 1 and ADD2 and
ADD2M reference Accumulator 2,

The address of memory is the sum of the contents of the index register
and the operand address (second word).

133

ADDL or ADD2:

(ACCA) + (@ + (R))==DAccC, [A =1 or 2]
ADDIM oxr ADD2M:
(ACCA) + (o + (R));==€> ¢+ (R) [A=1or 2]

ADDIR Add Register to Accumulator 1 44¥X

ADDPR Add Register to Accumulator 3 456XX

Format:

b
T T T ! ' k ' ! ' ' One-Word
I 0 0 1 0 XX X X X X X Instruction

Register Address

50% for Accumulator 1
918 for Accumulator 2

Add the contents of the register to one accumulator, leaving the
results in the accumulator. ABDIR adds to Accumulator 1 and ADD2R adds

to Accumulator 2.

(ACCA) + (R)§1">ACCA [A =1 or 2]

134

SUBL Subtract Memory from Accumulator 1 36XX

SUB2 Subtract Memory from Accumulator 2 37XX

SUB1M Store Accumulator 1 Minus Memory in Memory 32XX

SUB2M Store Accumulator 2 Minus Memory in Memory 33xX

Format:
11 6 5 0
' ' | ! ' k ' P ' First
0 1 1 X) X X X ¥ X X X Word
{ [] i L] 11 1 L
W
50" - Result to Memory Index Register Address
B8 - Result to Accumulator
POR for Accumulator 1
1" for Accumulator 2
1] 0
T T I] | I T T T T T S d
X X X X X X X X ¥ ¥X ¥ ¥ V;:rc;n
! 1 l] ! l { ¥ 1 1 I
- 7
s
Onperand Address

Subtract the contents of memory addressed from Accumulator 1 if
SUB1 or SUBIM or Accumulator 2 if SUB2 or SUB2M. TFor SUBL or SUB2, re-
place the contents of the accumulator with the result. For SUBIM or
SUB2M, replace the contents of memory with the result.

The location of memory addressed is the sum of the operand address
and the contents of the index register.

‘135

SUB1 or SUB2

(ACGA) - (a + (R) > AcC, [A=1or 2]
SUBIM or SUBR2M
(ACCA) -{a + (R)) > a+ (R) [A =1 or 2]
SUBIR Subtract Register from Accumulator 1 34X
SUB2R Subtract Register from Accumulator 2 35%X
Format:
11 +] S 0
I L I I I 1 1 'I I I
0 1 1 1 0 XX X X X %X x|Fmst
R IO B B R TR R S Word
\ /

e
Register Address

*0® for Accumulator 1
1 for Accumulater 2

The contents of the register are subtracted from the contents of one
accumulator, with the result replacing that accumulator contents. SUBIR
references Accumulator 1 and SUB2R references Accumulator 2.

(ACCA) - (R) ==> ACG, [A =1 or 2]

136

XOR1 EXCLUSIVE OR Accumulator 1 with Memory 06XX
XORZ EXCLUSIVE OR Accumulator 2 with Memoxy 07XX
XORIM EXCLUSIVE OR Accumulator 1 into Memory 02%x%
XOR2M EXCLUSTVE OR Accumulator 2 into Memory 03XX
Format:
11 6 5 0
’ ‘ ' ! ! ' ' First
0 0 0] X X X X X X X
L 1 i 1 | 1 | Word
3\ "/ r
BO® - Result to Memory ~_ Index Register Address
914 _ Result to Accumulator
0 for Accumulator 1
*1" for Accumulator 2
11 0
A ' ' o e ! Second

X X X X | Word

Operand Address

The EXCLUSIVE OR of the contents of the memory addressed and the

contencs of one accumulator is formed.
replaces the contents of the accumulator, and for XORIM and XOR2M, the
result replaces the contents of the memory.
XORZ and XOR2M reference Accumulator 2.

Accumulator 1.

For XOR1 and XOR2, the result

XOR1 and XOR1IM reference

The memory location addressed is the sum of the operand address and
the contents of the index register.

The EXCLUSIVE OR operation ((&)) is performed on each bit position

of the data independent of other bit positions by the following truth

table.

Bit N of
Accunmulator

- O

Bit N of
Memorz

0

1
0
1

Bit N of
Result

0

1
1
0

137

XO0R1 or XOR2

(ACCA) @ (e + (R)) = 4CC, [A =1 or 2]
XORIM or XOR2M
(ACCA) G (e+ (R) S o + (R) [4 =1 or 2]
XORIR EXCLUSIVE OR Register with Accumulator 1 04xX
XOR2R EXCLUSIVE OR Register with Accumulator 2 05XX
Format:
1t 6 5 0
T T I T T 1 1 i] Ll On ""W d
c 0 0 , 1 0 X|X X X ‘ X X X Insfrucgron
1 1 1 L L] L |
\ /

Register Address

4" for Accumuiator 1
%1% for Accumulator 2

The EXCLUSIVE OR of the contents of the register and the contents of
one accumuilator replaces the contents of that accumulator. XORIR refer-
ences Accumulator 1 and XOR2R references Accumulator 2.

The EXCLUSIVE OR operation { (3))} is performed on each bit pesition °
of the data independent of other bit positions by the following truth
table.

Bit N Bit N of New Bit N
of Accumulator Memory of Accumulator
0 0 0
0 1 1
1 0 1
1 1 0

(ACCA) ® (R =>acc,

138

AND1 AND Accumulator 1 with Memory 66XX

AND2 AND Accumulator 2 with Memory 6TXX

ANDIM AND Accumulator 1 with Memory into Memory 62XX

AND2M AND Accumulator 2 with Memory into Memory 63XX

Format

First
Word

B0" - Result to Memory

#1% - Result to Accumvlator
®0Y for Accumulator 1
¥1% for Accumulator 2

n 0
L A IR R Y R R TS B B
X X X X X X "X X X X X X |decond
1 1 I k i 1 1 1] i ! Word
\ Y
'

Operand Address

The logical AND of the contents of memory and the contents of one
accumulator is formed. TFor ANDL and ANDZ, the results replace the con -
tents of the accumulator, and for ANDIM and AND2M, the results replace
the contents of memory. For AND1 and ANDIM, Accumulator 1 is referenced
and for AND2 and AND2M, Accumulator 2 is referenced.

The loaction of memory addressed is the sum of the operand address
(second word) and the contents of the index register.

The logical AND (A) is performed on each bit position of the data
independent of other bit positions by the following truth table:

Bit N Bit N Bit N
of Accumulatox of Memory of Result
0 o 0
0 1 0
1 0 0
1 1 1

139

AND1 or AND2

(ACCA) A (e + (R) "—-;_—"> ACC, [A=1or 2]
ANDIM or AND2M
(acc,) A (a+ @) = a+ ® [A=1or 2]

140

ANDiR AND Accumulator 1 with Register 64XX

AND2R AND Accumulator 2 with Register 65XX

L}

Format:

One~Word
Instruction

QY for Accumulator 1 Register Address
81" for Accumulator 2

The logical AND of the contents of the register and the contents of
one accumulator replaces the contents of that accumulator. ANDIR refer-
ences Accumulator 1 and AND2R references Accumulator 2,

The logical AND (A) is performed on each bit position of the data,
independent of other bit positions according to the following truth
table:

Bit N Bit N Bit N
of Accumulator of Register of Accumulator
)] 0 0
0 1 0
1 0 0
1 1 1
(ACCA)/\ (R):>ACCA [A =1 or 2]

141

I0R1 INCLUSIVE OR Accumulator 1 with Memory 26XX

TOR2 INCLUSIVE OR Accumulator .2 with Memory. 27XX

TIORIM TINCLUSIVE OR Accumulator 1 into Memory 22XX

TOR2M INCLUSIVE OR Accumulator 2 into Memory 23XX

Format:

1 6 5 0
L L — T T ! First
0 1 0 X 1 X|[x X X X X X/|Wod

1 1 i L] L 1 1 [1 1

\ /
V
#0* Results to Memory > Index Register Address

® ¥ Results to Accumulator

0% for Accumulator 1
918 for Accumulator 2

Second

X X X X X X X X X, X X X lwod

Operand Address

The INCLUSIVE OR of the contents of memory with the contents of one
accumulator is formed. For IOR1 and IOR2, the result.replaces the con=-
tents of the accumulator, and for IORIM and IOR2M, the result replaces
‘the contents of memory. IORL and IORIM reference Accumulator 1 and TOR2
and IOR2M reference Accumulator 2.

The location of memory addressed is the sum of the operand address
(second word) plus the contents of the index register.

142

The INCLUSIVE OR (V) is performed bit by bit on each bit position
of the data independent of the other bit pos:.tlons according to the
following truth table:

Bit N of Accumulator Bit N of Memoxry Bit N of Result

0 0 0
0 1 1
1 0 i
1 1 1
IOR1 or IOR2:
\(ACCA) V (o (R)):>ACCA [A =1 or 2]
IORIM or IOR2M:
(ACCA) V (a+ (R))=Da+ (R) [A=1or2]

143

TORIR INCLUSIVE OR Accumulator 1 with Register 24XX

10R2R INCLUSIVE OR Accumulator 2 with Register 25XX

Format:

: N ' ' ' ! ' ' One-Word

Instruction

Regisier Address

%07 for Accumulator 1
B1% for Accumulator 2

The INCLUSIVE OR of the contents of the register with the contents
of one accumulator replaces the contents of that accumulator. IORIR
references Accumulator 1 and IORZ2R references Accumulator 2.

The INCLUSIVE OR (V) is performed bit by bit on each bit position
of the data independent of the other bit positions according to the
following truth table:

Bit N of Accumulator Bit N of Register Bit N of Accumulator

0 0 0
0 1 1
1 0 1
1 1 1
(ACCA) Vv (R) j:____>ACCA [A =1 or 2]

144

EQVIR EQUIVALENCE Accumulator 1 with Register 14XX

EQV2R EQUIVALENCE Accumulator 2 with Register 15X¥

Format:

Register Address

0% for Accumulator 1
"1® for Accumulator 2

V ! I : ! ! ' | ! ! One~Word
Instruction

The EQUIVALENCE of the contents of the register with the contents

of one accumulator rép]_aces the contents of that accumulator. EQVIR
references Accumulator 1 and EQV2R references Accumulator 2.
The EQUIVALENGE () is performed bit by bit on each bit

pogition of the data, independent of other bit positions according to

the following truth table:

Bit N of Accumulator Bit N of Register New Bit N of Accumulator

0 0 1
0 1 0
1 0 0
1 1 1

e,

ACCA) O (B =>Dacc, [A =1 or 2]

145

NEGR Negate Register 30X

Format:

One-Word
Instructron

Register Address-

The contents of the register are replaced with the negation of the
initial contents of the register. The negation is the two's complement
of the initial contents.

(R).:_‘-:_-'_.->R

MSTP Multiply Step BHXX

Format;
il 6 5 0
lllll Il]ll o
P01 1o XX XX X iR
' S N SR | i1 L1

\ 7

Register Address

MSTP performs one step of the multiplication of the contents of the
register by the contents of Accumulator 2, putting the result in double
length register made up of Accumulator 1 and Accumulator 2.

146

Each MSTP consists of testing the low order bit of Accumulator 2 and
if it is a "1", adds the contents of the register to Accumulator 1. Then,
no matter what the lower order bit of Accumulator 2 is, Accumulator 1 and
Accumulator 2 are shifted right one bit as a double length register, with

the low order bit of Accumulator 1 shifting into the high order bit of
Accumulator 2.

The multiply step (MSTP) instruction provides a convenient way of
programming the multiply operation. TIwelve such instructions will multiply
the contents of a register (the multiplicand) by the contents of ACC2
(the multiplier) and leave the contents in the double-length register
formed by ACCl and ACC2. The multiplicand is treated as a signed number;
however, the multiplier must be positive in this routine. If the multi-
plier might be negative, it could be tested and both multiplier and
multiplicand negated before beginning the multiply. An alternate solu-
tion is to make a correctiom to the resultant.

Accl_—=»accl _,
ACC2 = 0: { AcCL =—==}acc2,, , 1<ngll
b\A(:i::zn--_:_-—> Acce))

(R) + (A001)':>Accl

ACCL —=> ACCl

ACC2,. = 1:) > 1 <n <11
ACCL, => ACC2,,

ACC2 | === ACC2

aThe user should consult the literature. A particularly complete refer-
ence is "The Logic of Computer Arithmetic" by Ivan Flores (Prentice-Hall,
1963).

147

IDLR Load Register with Literal 57XX

ADIR Add Literal to Register 17XX
Format:
11 6 5 0
T T T 1 ! ro ! First

\ . { I L L L. 1 Word

Register Address

0% Add Uiteral’
%1% Load Literal

11

]] ¥ 1 L)
X X X ¥ X X X X X X % X
1 L) 1 1] 1 1 | ! 1
\ /
A4

Operand Address

Second
Word

Load (LDIR) or add (ADLR) to the contents of the register the operand
(second word),

IDIR:

148

MSEKM Replace Memory Through Mask 13XX

MSKR Replace Register Through Mask 11XX

Format:

11) & 5 0
T ' [T T T T T T First Word
0 0 1 0 X 1[|X X x % X X [(MSKRis
! i] L] one word

L { IS S
\ ; instruction)

Index Register Address

“0% Replace Register :
1% Replace Memory
1 0

! T] T T I T T | ! | Second Word
X X X X X X X X X X X X [{MSKM only)

1 1 { ; i I] 1] 1 i

Operand Address

Replace contents of memory or register with low order bits of
Accumulator 1 through mask in Accumulator 2. Accumulator 2 is scanned
from right to left (least significant bit to most significant bit).

When the first "1" is encountered, the least significant bit of Accumulator
1 is transferred to memory or register in the same bit position as the "1"
in the mask and Accumulator 1 is shifted right one bit. The scanning
continues, and for every "1" in the mask, the above process is repeated.

Tf there are N "1"'s in Accumulator 2, then the net effect of these
instructions is to replace the corresponding N bits of memory or register
with the N least significant bits of-Accumulator 1.

For MSKM, the location of memory is the sum of the operand address
and the contents of the register. MSKR is a one-word instruction, and
the contents of the register are replaced through the mask,

Example:
Accumulator 1: 600001110101
Accumulator 2: 00 OE—]_._T: 00 Oi_]:--lni‘? 0
Register of Memory: 10 050 o:lo 1 051 101
Final Register or Memory: 100:i10/01 0{%_9;151
Fingl Accumulator 1: 00000000O0O0T11

149

NOP No Operatiom 00XX

Format:

Cne-Word
Instruction

lgnered

No operation occurs with this instruction. The low order 6§ bits
are ignored.

7.3 Input/Output Instructions

The I/0 Register consists of a shift register which receives and
transmits data serially to the logic unit(s), and output buffer register
into which the shift register transfers its contents upon receipt of an
output code, and a set of parallel inputs to the shift register through
which input I/0 data is loaded upon receipt of an input code. These con-
trol codes are generated by the logic unit and are received and decoded
by the Register Control Section. The control section then gates the
register transfers as dictated by the codes. It also generates clock
pulses to the receiving or outputting I/0 devices to acknowledge the
transfer of I/0 data to or from them. In the case of serial transfers,
for example, these serve as shift pulses shifting data into or out of the
1/0 device.

The INP instruction permits inputting any random bits determined by
a mask into the low order end of ACCL where they are right-justified. The
OUT instruction permits loading data from ACCL into a register and then
directly into the output buffer register. These instructions also gen-
erate an acknowledge pulse to those I/0 devices tied to the register.. .

Output information is not available to the processor fxrom the inter-
face itself and so a memory image of this information must be maintained.
New information should, in general, be used to modify the memory image,
and then the new image should be output to the buffers. An exception is
data which is not to be retained at the interface, such as reset pulses
or serial data.

7.3.1 Instruction set:-- The available input/output instructions are
described in detail in the following pages.

150

INP Input Through Mask 01XX

Format:
11 () 5 0
0 1 0 T 0 | 0 i 0 1] x T X T X ! x T T X Firsf
X
L 1 | ! i 1 L I ') Word
LY _J
\V4
Register Addrass
11 0
T 1] I T L] 1 L] L4 ' 1 T Second
X X X X X X X X X X X X
1] 1] 1] 1 L I 1 1 WOI'd
\ /
TN
Mask

The bit or bits specified by mask (second word) of the input inter-
face of register R are inputted to the logic unit, shifting them left into
the low order end of Accumulator 1.

There are twelve input interface bilevel lines tied to each bit posi-
tion of each register. The INP instruction inputs all twelve lines at
that register intc the 12 bits of the register. Then, the new contents
of the register is masked with the second word (mask) of the instructiom,

The new contents of the register and the mask are scanned from right
to left (low order end to high order end). For each "1" in the mask, the
corresponding bit of the register is shifted left into the low order end
of Accumulator 1. For each "0", no transferring or shifting takes place.

Example:
Mask (second word) : 000 1i0i0 0 1{6’20 110}
Register after input strobe: 100 li@jl 0 0%9}0 1b£
Accumulator 1: 000000000000
New Accumulator 1: 0000000001001

151

ouT Output Accumulator 1 21XX

Format:

One-Word
0] 0 0 &] X X X X X X ne=yvor

Instruction
1 1 i]) 1] | 1 |

A4
Register Address

The contents of the register is replaced by the contents of Accu-
mulator 1 and then the new contents 0f the register is transferred to the

output buffer of the register. The 12-bit output buffer of each register
is connected to the ocutput interface.

EINT Enable Interrupt 6076
DINT Disable Interrupt 6077
Format:
11 & 5 0
1'1'o]rooo 1'1‘1T1'z’x§,’:;;§‘:$;ﬁ
L ! L 1 i

-

0" for Enable
91" for Disabie

The interrupt flip-flop is enabled (for 'EINT) or disabled (for DINT).

152

7.4 Miscellaneous Instructions

SDMP Select Data Memory Page 205X (XX < 40)
SPMP Select Program Memory Page 20XX (XX > 40)
Format :
i 5 0
' I ' ' ! ! ' One~-Word
° 1 0l 0. 0.0 X XIX‘X'X X Instruction
N /

®0® for SDMP
%1% for SPMP

Page Address

The page address is transferred to the program (for SPMP) or data

(for SDMP) memory page register.

If the page register is less than

5 bits, only the required least significant bits are transferred and

the remainder ignored.

When the program memory page register is set

to zero by SPMP instruction, the logic unit is disabled and cannot

be restarted except via the command override.

Also, when the page is

zero, the program counter (PC) is inhibited from incrementing, but it
may be set or changed with a JMP or JMPR instructiomn.

Page Address =) Page Register

STPC Store Program Counter in Register 10XX
Format:
11 & 5
' | ' ' ’ ' I ' ! Cne-Word
0 0 !I010|0 xlx‘x!xlx[xlnsf‘rucﬁon
\ /.

v

Register Address

Replace contents of register with contents of program cbunter,

153

The store program counter (STPC) instruction provides a means of
Jumping to subroutines by storing the return address in a scratech register.
Intexrrupt also uses this instruction stored in location zero. The in-
terrupt hardware forces the program address to location zero and executes
the instruction in that location before modifying the program counter.
Thus, a STPC instruction in location zero will store the return address
in a scratch register. The program counter is then forced to the number
one, and the first instruction of the interrupt routine is taken from
that location.

(PC)=—=> R
MDI Modify Next Instruction 12X¥
Format:
11 6 5 0
[4] ! 3 L3 |4] [13 I O —W d
0 01 01 0fX X X X X X o fion
1 1 1 i i 1 1 L
\ /
N

Register Address

Add the contents of the register to the next instruction before
executing it. .

The modify instruction {MDI) instruction provides a'means of
temporarily modifying the register address of an instruction during its
execution. The instruction word in program memory is unchanged. This
is useful in addressing specific I/0 registers during general routines,
operating indirectly through a register to a register. It is also use-
ful as an execute instruction, executing the.contents of the register as
indexed by the program if the operation code is actually contained in
the register, or in the case of skip conditions, if the condition code
{(register field) is in the register.

Since the register address field in shift is used for determining

number of shift pulses, this MDI instruction can be used to shift by an
amount contained in a register.

154

7.5 Branching Instructions

All jumps are unconditional and program branching is provided by the
skip (SKP)} imstructions. These may be used to conditiomally skip the
two-word jump. One jump is also indexed inasmuch as the feature is readily
available.

JMP Jump to Indexed Location 16XX

JMPR Jump to Register Contents 56XX

Format;:
11 é 5 0
T T] T T 1 T | T 1 Fil’Sf WOl'd
A0 13 1] 0§ X X X X X X [(JMPR s one word
. I] ! ! R | 1 1 Indtruction)
A\ /
A4
Register Address
H0Y for JMPR
1% for JMP °
il 0
13 1 I 13 [4 { T ¥]' T] S d Word
X X X X X X X X X X ¥ x[|peor
'] | 1 ! i 1 1 1 1 o (For JMP)
\ /

vV
Operand Address

For JMP, the next instruction is taken from the sum of the operand
address plus the contents of the register,

For JMPR, which is a one-word jump, the next instruction is taken
from the location stored in the register. This instruction allows return
from subroutines or interrupt if the program counter had been previously
stored in the register with an STPC. instruction.

155

SKIP on Accumulator Condition

Format:

i2 6 5

I One-Word |

| 0 0 o0 0 X| O Instruction

. 0
T Y T T
X X ¥ X X
] t] L]
Depends on condition ™ I T I I T T

Each of these instructions tests a condition of the two accumulators,
and if the condition is met, skips the next two locations in program
memory. If the condition is not met, the next instruction (location) is
executed,

Skip if OP Code
ACCl = AcCC2 4076 or 4077 or 4176 or 4174
ACCl > Acc2 4054 or 4055

ACCl < ACC2 4154 or 4155

AGCCL # ACC2 . 4056 or 4057 or 4156 or 4157
ACCL < ACGC2 4074 or 4075

ACCL > ACC2 4174 or 41175

ACC1 < O 4015

Acc2 £ 0 4115

ACCL > 0 4035

ACC2 > 0 4136

ACC1L > 0 4114

ACC2 > 0 4074

AcCl < 0 4134

ACC2 < 0 4034

ACCL = 0 4017 or 4116

ACC2 = 0 4117 or 4016

ACCL # 0 4037 or 4136

ACC2 # 0 4137 or 4036
Overflow 4020 or 4120

No overflow 4000 or 4100

156

Bit N of ACCL = 0 4000 + N 1 <N <14
Bit N of ACC2 = 0 4100 + N LSNCH
Bit N of ACCLl = 1 4020 + N 1<N <14
Bit N of ACC2 = 1 4120 + N 1SN-_<-14

The last four test each bit
are numbered from right to left (least significant
starting with 1.

(decimal).

of an accumulator

separately.
to most significant)
Thus, the most significant bit is 14 (octal) or 12

The bits

SKDR Skip on Decrementing Register 31XX
Format:

11 6 0

! L o One-Word
0 0 I X X X X X X Instruction

1 1 1 I i 1 '

\ ki 7
A4
Register Address

This instruction decrements the reglster, and if the result is zero,
skips the next two memory locations. The decrementing of the register
always takes place.

R) -1 —>» R
(R) - 1= 0: (®) >
(BC) + 2 =—> EC
(R) - 14 0: (R) -1 —> R
7.6 Shifting Instructions
Format:

One-Word

Instruction

| X | O

Depends on instruction

These instuctions shift one or both accumulators right or left,
arithmetically, logically or cyclicly. They can shift by 0 through 13
(octal) or 11 (decimal) shifts.

157

Mnemonic Description) 0P Code

SHRL1 Shift Accumulator 1 right logically

N bits 6060 + N
SHRL2 Shift Accumulator 2 right logically

N bits 6160 + N
SHRAL Shift Accumulator 1 right arithmetically i

N bits 6000 + N
SHRA2 Shift Accumulator 2 right arithmetically

N bits 6100 + N
SHL1 Shift Accumulator 1 left N bits 6020 + N
SHL2 Shift Accumulator 2 left N bits 6120 + N
CYCl Cycle Accumulator 1 right N bits 6040 + N
CYC2 Cycle Accumulator 2 right N bits "6140 + N
DISRL Shift Accumulators 1 and 2 together

right logically N bits 4040 + N
DLSRA Shift Accumulators 1 and 2 together

right arithmetically N bits 4140 + N
DLSHL Shift Accumulators 1 and 2 together

left N bits 4160 + N
DLCYC Cycle Accumulators 1 and 2 together

right N bits 4080 + N

When shifting right logically (SHRLLl, SHRL2, DILSRL), the new high
order bits are filled with zeros. When shifting right arithmetically
{SHRA1l, SHRA2, SIDRA), the new high order bits are filled with the sign
bit. When shifting left (SHL1, SHI2, DLSHL), the new low order bits are
filled with =zeros.

For double length shift rights (DLSRIL, DISRA) and cycle (DLCYC), the
low order bit of Accumulator 1 is shifted into the high order bit of
Accumulator 2. For double length shift left (DISHL), the high order bit
of Accumulator 2 is shifted into the long order bit of Accumulator 1.

For single length c¢ycles {CYCLl and CYC2), the low order bit of the
accumulator is shifted into the high order bit. For double length cycle
(DLCYC), the low order bit of Accumulator 2 is shifted into the high order
bit of Accumulator 1.

158

8.0 PROGRAMMING

8.1 Typical Subroutines

Several pieces of the required operating system have been coded in
order to achieve three goals: (1) develop an approximation of the tim-
ing involved, (2) discover difficulties in programming imposed by the
design, and (3) develop useful techniques for circumventing various de-
sign limitations.

These routines were first programmed using the order code of the
previous version of MULTIPAC {see MULTIPAC Research Report).1 Thoge
programs helped to point out deficiencies in the previous design which
led to the present LSI design. These routines bhave been reprogrammed
(see Tables 13, 14, and 15) using the new order codz resulting in about
a third the number of words and execution time.

8.1.1 A/D conversion subroutine.-~- Table 13 is an analog-to-digi-
tal conversion subroutine. The semicolon denotes comments and the colon
denotes a program label. Those signals of the experiments which are to
be converted are fed into an anlog comparator (difference circuit) at
the experiment, the other input of which is the output of one of the
digital-to-analog registexrs in MULTIPAC. This circuit sends a bilevel
signal to the computer telling it whether or not the signal is higher
or lower than the D/A reference signal. TUsing a binary successive ap-
proximation technique, the conversion routine determines the analog
value. First, it tests for less than or greater than half full range.
Then, it tries half the resulting range of the first test and continues
to halve the range until it obtains the value.

8.1.2 Ipputting subroutine.-- Table 14 is a subroutine for input-
ting serial data from an experiment. This simple routine first deter-
mines the address of the specific routine from a table and then, for this
case, inputs a serial stream of n bits.

8.1.3 Formatting subroutines.-- Table 15 is a subroutine for for-
matting and then outputting one 12-bit telemetry word. This routine would
be ecalled when the telemetry signals that it needs a new word. TIn con-
trast to previous assumptions, parity (or error correcting codes) is
added by the telemetry hardware. A flow chart of this routine is given
in Figure 35.

8.1.4 Timing.-- The routines chosen represent the most important
and most time consuming of the primary tasks of the CDS. Additional time
must be allotted for the executive routine and the remaining tasks. The
results for the primary tasks are summarized here.

158

160

sRINDEX
H

;RDA

; RDEV

;DSEL

TABLE 13

A/D CONVERSION ROUTINE

Register used as index register

mimber of bits to be coqverted :

one of the D/A registers

I/0 register to which experiment's comparator

returned

12-bit mask for selecting current input channel

of RDEV

: All numbers in oectal notation

LDLR

LDLR
LDA1R
out
LOOP: ADLR
MSKR
SHRL2
INP
SHL1
SKDR
JMP

N, RINDEX

600, ACC2
0

RDA

1,Accl

RDA

1

DSEL, RDEV

RINDEX
LOOP

snumber

of bits to index register

smask used for outputting

jelear accumulator 1 -

;clear D/A, signal experiment

sone to

joutput

least significant bit
two bits to D/A

;move mask for next trial

;input return from comparator

;move input bit left, 1 added at LOQP

;loop back for total at N times

jresult

Timing: Overhead = 6 cycles = 90 pus

in RDA

Loop = 10n cycles, = 150n us, where n = number of converted bits

Variable significant timing =

=]
o

t+
wn

840 ps
1290 ys

6 + 10n cycles
90 + 150n ps

TABLE 14

INPUTTING ROUTINE

;DNIMB = device number
sDEVINP = table of inputting routine addresses
;RRTN = register which contains return address to
routine which calied READ
READ: LDLR DNUMB, RX ;device pumber to index
LDA2 DEVINP, RX ;address of routine to ACC2
JMPR ACC2 ;jump to proper subroutine (DEVN)
;NBITS = number of bits to read in
:RINDEX = index register
;RDEV = 1I/0 register with desired input
; DSEL = mask for selecting proper input channel
DEVN: LDLR NBITS, RINDEX ;number of bits to index
LDALR 0 ;elear accumulator 1
DEVN1: INP DSEL;RDEV sinput bit
SKDR RINDEX ;loop back for all bits
JMP DEVHN1
JMPR RRTN sreturn with result in ACCL
Timing:
Overhead = 1l cycles
Read loop = 5n cycles sn = no, bits to read
Total time = 11 + 5n cycles
= 165 + 15n us
n= b t = 540 us
n= 8 t = 766 pus
n =12 t = 1065 ps

Range: 540 <t < 1065 pus

161

TABLE 15

OUTPUTTING ROUTINE
(Outputs one 12-bit telemetry word)

; TBUF address of data table

;OBUFI = current index into TBUF

;TBUF(OBUFI) is next data and TBUF(OBUFI + 1) is number of bits in data word
s ROBUF T
: RBLEFT

;RWDCNT = scratch register to add number of bits in data word

;

seratch register to hold OBUFI
scratch register to add number of bits left to output

;RTIM = one of the telemetry registers
sRRTN = scratch register holding return address

tall numbers in octal notation

TLMOUT- LDAl OBUFI sdata word index-to ROBUFIL
STAIR ROBUFI
LDLR RBLEFT, 14 snumber of bits to output
LDAIR 0 ;jclear accumulator:l

TLOOP: LDA2R TBUF+1, ROBUFI :bit length of next data
STA2R RWDCNT s store in RWDCNT
SUB2ZR RBLEFT sword count minus bits left
SKIP (ACC2<0) stest for too many bits...
JMP TOVER sover, go to TOVER
STA2R RELEFT sOK, update bits left

NEGR RBLEFT
LDAZ TBUF,ROBUFL ;get data word

MDI RWDCNT ;shift whole word...
DLSREL 0 sinto accumulator 1

ADLR ROBUFI,2 supdate table index...
LDA2R .ROBUFI sand store away

STA2 OBUFI

LDA2ZR RBLEFT ;check if any bits left..
SKIP (ACC2=0)

JMP TLOOR ;: ves, go back for more
JMP TEXTT ;no, go to TEXIT

162

TABLE 15, -~ Continued

CUTPUTTING ROUTINE

TOVER: 5TA2 TBUF + 1, ROBUFI ;amount over = number of bits
next time
LDA2 TBUF, ROBUFI ;get data word
MDI RBLEFT ;shift only those needed...
DLSRL 0 sinto accumulator 1
STAZ2 TﬁUF, ROBUFT ;store remainder back in table
TEXIT: CuT RTLM soutput result to telemetry
JMPR RRTN ' sreturn to calling routine
TIME: Overhead (TIMOUT up to TLOOP and TEXIT to end) = 14 cycles

each word not coverflowing (TLOOP up to TOVER) 19n cyeles,

n = no, of

It

times
last word (TLOOP thru TOVER up to TEXIT) = 13 cycles
Total time = 27 + 19n cycles
or t = 405 + 285n us
= 1 {word length averaging 12 bits) t = 696 us
n = 2 (word length averaging 8 bits) £t = 975 ps
= 8 (word length averaging 6 bits) t = 1260 us

163

ENTER

INDEX ——» ROBUFI
12, —» RBLEFT
0 —» ACCI1

I

GET NEXT DATA LENGTH

NO

DATA LENGTH
7 BITS LEFT

YES

2

BITS LEFT - DATA LENGTH—BITS LEFT

h 4

y

SHIFT WHOLE DATA WCRD
TO ACCUMULATOR 1

DATA LENGTH - BITS LEFT—= DATA LENGTH

1

¥

UPDATE INDEX INTO DATA TABLE

SHIFT DATA WORD INTO
ACCUMULATOR 1 BY BITS LEFT

¥

STORE WHAT REMALNS
iN DATA WORD

NG ~BITS LEFT=0 YES

164

?

{

L

QUTPUT TQ TELEMETRY

|

EXIT

Figure 35. Qutputting Routine Flow Chart

A/D Conversion Inputting Formatting

(psec) (usec) { ysec)

Time Evaluation 150n + 90 75n + 165 -
n =5 bits 840 540 1260
n = 8 bits 1280 765 9175
n = 12 bits 1065 690

If the above tasks of A/D conversion, input, and telemetry buffering
are the only tasks desired, then the basic time, not including intercon-
necting overhead for each device, for an average 8 bits per device (ana-
log or digital) would be 2.3 to 2.8 msec/dev (assuming 500 microseconds
used in interconnection overhead). At 2.5 msec/dev, 400 devices per
second is saturation. That results in 3200 bits/second to the telemetry.
To gain more speed, the process would have to be divided over several
logic units.

8.2 Communication Between Processes

A typical MULTIPAC central data system will be configured to operate
three processes simultaneously, i.e., one with each logic unit. The most
likely division of these three tasks will be data formatting and output
to the telemetry unit, inputting and converting data from the experi-
ments, and performing data reductions on the experimental data. Each
process will take a logic unit, two memories and one to four registers,
except for the inputting which must be able to sample all the registers
which have input information on the register input channels. Since all
three processes operate on the same data base, there must be some communi-
cation between the processes. A process may need to know when another
process has data for it or needs mew data, and when data is ready, some
means of transfering the data from one process to another must be avail-
able. The easiest way to transfer large amounts of data between processes
is to switch memories. For example, when the inputting routine has in-
putted enough data to be used by either the data reduction process or the
outputting process, it would be desirable to have some means to notify
the other process that the data is ready so that this process can switch
its data memory page to the new data. For one or two words transfers,

a transfer via a register is probably easiest since all logic units’'can
address all registers.

All methods of data transfer require some method of flagging one
process by another process. The best technique to perform this type of
communication will be to use some program specified register as a flag
register,

In MULTIPAC, when two logic units are accessing the same register,
both logie units will be able to read the register data, but the data
going back to the register is ORed. The registers, when shifted, do not
recycle their data, but the logic unit which is reading the register re-
writes the contents of the register. As long as both logic units are

165

both reading, they will be rewriting the same data. If one, or both, are
storing new data in the register, then the logical OR of the outputs of
the two logic units will result.

To circumvent this problem of simultaneous register use, the follow-
ing programming rule must be followed. If a process is writing a "Q"
into a flag register, it then must write the "0" for two consecutive in-
struction times. Except for this case of writing "0", a flag register
may not be addressed by two consecutive instructions. Since mo two con-
secutive reads are permitted to occur, the write will eventually win out.

One register would be used for the fiags of two processes. Each
process will use one-half of the flag register for its flags. One pro-
cess sets.flags at its portion of the register as signals to the other
and reads the other portions to determine what the other processes are
doing.

The basic procedure is to set a busy flag for a module if it is not
already in use by another logic unit and proceed to use it. To avoid
the conflict of two processes finding a module free and proceeding in
unison to use it, the following procedure will be followed: Let us sup-
pose processor Pl wants to use a module., Then, if R is the flag register,
Pl can proceed as follows:

(1) Read R and check if busy flag is on. If so, wait; if not,
proceed.

(2) Pause, then write R with P1 busy flag on (1 = busy).

{(3) Read R and see if P2 busy flag is now on (in case P2 read
R before Pl wrote R). A pause before reading R is needed
in case P2 is setting some other bit to zero). If P2 busy
flag is still off, then proceed to use module.

(4) If P2 busy flag is on, then Pl has two choices:

a. if P2 has priority, then wait until module is free
again;

b. If Pl has priority, then proceed because P2 will wait.
(5) When Pl is finished with module, it must turn its busy flag

off. R must be written twice with the flag = 0 because of
the P2 rewrite cycle.

The above procedure can be used between the process which is input-
ting data from experiments and the process which is formatting the data
(assuming no data reduction) and ocutputting to the telemetry register.
Two different data memories will be used to buffer the input data. The
inputting routine will use one buffer and the outputting routine will
use the other buffer. When they are both finished using their buffer,
the data memories will be swapped and the process will continue,

166

The inputting routine will set a busy flag before it £ills ome buffer.
When it is finished, it will turn off the busy flag, set a second flag to
signify the data is ready, and then, using the procedure above, will check
to see if the second buffer is free for use. The formatting routine will
read the data-ready flag set by the inputting routine to tell when the
data is ready and sets its busy flags to notify the other routine what it
is doing. Since each of the two buffers is in a different memory, then
the transfer is a simple switch of the data memory page register.

8.3 Data Reduction

Data reduction programming will have to be done by the experimeter.
To the experimenter. To the experimenter various subroutines can be made
available, such as histogram or fourier analysis. Data reduction techniques
make some assumptions about the nature of the data. Consequently, it may
be desirable to add data reduction techmiques after the spaceprobe has
gathered data. These programs can be checked out by the ground base com-
puter and then transmitted to the spacecraft via the command link.

8.3.1 Histograms or quantiles.-~ Histograms or quantiles take very
little space for program storage, probably 100 to 300 words of program
memory. Data storage, on the other hand, will most 1likely require 1000
words for each experimental line analyzed. Probability theory for normally
distributed data and single quantiles state that the square of the mean
deviation will be 1.57 divided by the number of samples, and for two quan=
tiles, 0.'7687 divided by the number of samples. Thus, 1000-samples seems a
reasonable amount to keep the error to a few percent. The determination
of the optimal quantiles requires the knowledge of the density fumction of
the underlying population whose parameters are being estimated. Thus, the
results will not be optimal when applied to populations whose densities
depart from that assumed in finding the quantiles.

8.3.2 Digital filters.-- Probably the best implementation of digital
filters is to cascade recursive filter sections using different equations.
Cascaded sections require the least accuracy of the data word and are the
simplest to implement. The canonical form of difference equations is
generally preferred in terms of ensuring against noise due to truncation
and round off effects. Recursive filters require very little program
storage and data storage. A very complicated cascaded filter camn proba-
bly be implemented in a few hundred words of program storage and 10 to 20
data words.

8.3.3 Spectral analysis.~- The most generally useful program tech-
nique for spectral analysis is the fast fourier transform (FFT) which can
be programmed in less than a thousand words of program space. The data
space is a function of the size of the transform and is approximately

167

twice the number of points in the transform. Half the data storage is fox
the data points themselves, a quarter for the cosine table and the remain-

der for miscellaneous constants. For example, a 512-point transform will
take about a thousand words of data storage. A 512-point transform can be
considered as 512 simple single-pole filterxs spread evenly across the band-
width over a time span of 512 consecutive samples.

Reliable spectral estimates are possible only if the experimenter
has a rough idea of the actual spectrum being estimated. Such knowledge
will then enable an intelligent choice of the number of samples and the
bandwidth of the bandpass filter preceding the transform. The sampling
frequency must be high enough to minimize possible aliasing errors, a
selection that demands the knowledge of the spectrum shape. Quite often
the spacecraft instruments have a well-defined bandwidth so that the
selection of the necessary sampling rate (Nyquist rate) is straightforward.

8.83.4 Usage of data reduction techmniques.-- During the first year of
this study, some analysis was made of what experiments might use these data
reduction algorithms. The advantage of a computer in!achieving data com-
pression has been a primary concern. 2

8.3.4.1 Neutron detector,=-- The interface between the neutron detec-
tor and the (DS is shown in Figure 36. The bit requirement for the
measurements alone, exclusive of timing information, amounts to 208 bits
per second for the nmeutron detector. One way of reducing this requirement
is to accumulate data over only a few hours during a day or to sample less
frequently, thereby lowering the average bit rate. This may be undesirable
since it sacrifices what might be valuable information. Use of logarithmic
counters would immediately reduce the bit rate.

Processing alternatives:

(1) The simplest processing uses zero-order thresholding
of the count accumulations in the successive one-second measurement inter-
vals. Thus, the gamma ray count for interval k + 1 is not transmitted
unless it varies by more than, say, T units from the previous transmitted
value. The disadvantage of such a scheme is that, during periods of
rapidly fluctuating counts and for low telemetry rates, the thresholding
method may offer almost no data compression. Further, it can require
frequent formatting change and can put severe demands on the control of
the buffer queue.

(2) The accumulation of histograms for each measurement
over some interval, large compared to the one-second counting time, offers
several possibilities for data compression. From the histogram, the CDS
can readily compute the mean, variance, and other statistical quantities
of interest as well as giving the maximum and minimum counts and their
relative frequencies and the count having highest frequency (the mode).
Furthermore, these statistics can themselves be thresholded so that they
are transmitted only when they change by more than some fixed percentage
from the previously transmitted values.

168

FOLDOUT ERAME |

Aman_un s um

TVTATE

137 s i enon ey

beoes + aanas

e

SRR TT

U,

Lz

Ry T

" - = -iStanford Redio Propagation Experiment

Il 4 R o Lt xR

saicns + dbrs g n e,

B at = S Ly ey

e

sy,

¥ nsasn i ¥ cramand

P o rar s g
T | oo mren E v

e . o
PN T] ey miue - ot s TWe e TR
T S T e =

w bl e

D oo v o o w5

o T e
TR e —
s .20 120 s, o e s

TR & M7 ATEA R 3 B

Neutron Detector

(< 0.5 AU)

wace mamamc

FrgRt

s

-
e
”‘,p"

k1
S
i = ‘*".
VLF Experimant 1

ramen pescamag. %
o |y recousune s raesn pant
OO AR) 5 bl 2

L 4 Mumro\.’ L
bt

o ST e

it

mmm e m e mm s ——

Figure 36. Overall System Block Diagram

FOLBOUT FRAME?ELV

169/170

Compression of the histogram data can also be achieved by use of sample
quantiles. It has been shown that as few as four sample quantiles are
sufficient to give efficiencies exceeding 90 percent and 73 percent, re-
spectively, for estimates of the mean and variance from a normal population.
The disadvantage of using quantiles is that, for severely nonnormal popu-
lations, the estimate of the variance can be substantially in error. Use
of more than four quantiles will give improved results, but obviously at
the expense of reducing the compression ratio.

8.3.4.2 VLF experiment:-- The instrument schematic is given in
Figure 38. The six lines marked Exj1, ..., My denote the interface with
the CDS. The programmable filter has a bandwidth that is 10 percent
of the center frequency. This means that, for the center frequencies of
16 Hz and higher, the sample rate of one sample per second is likely to
result in aliasing. For each center frequency, the data output is repre-
sented by 39 bits, assuming 6 bits for each of the six lines and 3 bits to
identify the center frequency (1 out of 7) used. If the center frequency
is always stepped through the same cyclic order, then only ome bit is
needed to identify the start of the cycle.

Processing alternatives:
(1) Simple thresholding as in paragraph 8.3.4.1, (1),

(2) At low telemetry rates, each measurement can be stored
over a number of sample periods and the mean, variance, and other quanti-~
ties periodically computed and tramsmitted. These quantities can be
thresholded as in paragraph 8.3.4.1,(2).

(3) Each measurement can be sampled at rates greater than
one sample per second and digital filtering used to determine the spectral
content of the signals. This spectral information can be used either to
control the rate at which samples are transmitted (providing the telemetry
rate allows for such leeway) or to provide indication to the ground of the
data activity. In the former case, the CDS would have the concomitant
task of altering the data flow from the other experiments, under some
priority schedule, to permit the increased data rate.

(4) Orthogonal polymomials or Fourier series expansions
for each measurement over a number of intervals. Such expansions result
in best least squares approximations to the data, and a sufficient number
of terms can be computed so as to give an error term less than some desired
amount. Thus, the possibility exists that M coefficients can be trans-
mitted in place of N data samples, where M < N; and, hence compression
can be achieved. This method will be suitable for those measurements
having lower precision requirements and where the ground station proces-
sing is likely to use least squares techniques.

171

8.3.4.3 Cosmic ray experiment:-~ The instrument arrangement is shown
in Figure 36. The bit requirement is 67 bits per sector. The sector
sampled is advanced each spacecraft revolution. As with the neutron de-
tector, logarithmic counters offer a way of reducing the bit rate.

Processing alternatives: Same as for neutron detector,
paragraph 8.3.4.1,

8.3.4.4 Plasma probe:-- Figure 36 showed the schematic arrangement
of the instrument and the interface specifications. The instrument is
programmed to cycle through a speclific measurement pattern; and, as long
as thig pattern is in force, it is a simple matter to reduce the bit rate
with no additional processing. Consider the scan mode data word: 3 bits
are used to describe which of 8 channels is selected; 4 bits to give the
sector (1 out of 15); 7 bits for the flux measurement; and 1 bit to
specify the energy level (analyzer plate voltage) cycle. It is clean that
the channel and sector bits are superfluous if the channels are selected
in fixed cyclic order and the sectors sampled sequentially. Even at low
telemetry rates when some of the sectors are omitted, the ordering is
still fixed. Oececasionally, it is desirable to transmit the channel and
sector information as a check on proper instrument performance. In the
maximum mode, channel identification is superfluous because of the fixed
order of channel selection. The calibration signals need be sent only
if they differ by more than some allowable tolerance from the desired
values, a check easily implemented by the CDS. The CDS can also be used
to perform the maximum mode functions that are currently shown in Figure 36
as being done within the instrument. As with all other instruments, the
easiest way to reduce the average bit rate is simply to restrict the
operating periocd of the instrument.

Processing alternatives:

(1) Simple thresholding as in paragraph 8.3.4.1, (1). 1In
the scan mode, successive samples of the same measurement (i.e., same
energy level, channel, and sector} occur omnce every 384 spacecraft revo~
lutions. Thresholding of measurements for adjacent sectors for the same
channel and energy level and for adjacent channels for the same sector and
energy level should also be considered as a means of obtaining compression.
Similarly, thresholding can be used in the maximum mode.

(2) Histogram compilation and analysis as in paragraph
8.3.4.1, (2), for both the scan mode and maximum mode. A modification of
the instrument sampling format might be considered whereby the measurement
period could be reduced from the current value of 384 revolutions. This
would produce more samples per unit time and would make the histogram
analysis more meaningful by reducing the time needed to acquire an appro-
priately large number of samples. In order to do this, it would be neces-
sary to multiplex all eight channels, in effect, sample them all in each
of the 15 sectors.

172

8.3.4.5 Triaxial fluxgate magnetometer:-- The basic instrument
schematic and interface is given in Figure 36. A realistic approach to
data processing reguires that the low-pass filter for each axis have a
cutoff frequency sufficliently high to pass all desired information. For
all three gates combined, a single data sample specifies either implicitly
or explicitly 32 bits: 8 bits for each flux measurement; 2 bits for the sun
aspect sensor position; 2 bits for the dynamic range position; 3 bits for
the dc offset position; and 1 bit for the fluxgate physical orientation.
This assumes that sampling is done four times per revolution. Here, as
with the plasma probe, some savings can be made if the same sampling
arrangement is always used. However, it may be desirable to sample more
frequently in order to determine the spectral characteristics of the sensor
outputs. This spectral information can be used to determine an appropriate
sampling rate or to govern the rate at which measured samples are trans-
mitted. All processing, including spectral analysis and compensation for
the spin effect of the spacecraft on the magnetic field measurements, can
be performed digitally.

Processing alternatives:
(1) Simple thresholding as in paragraph 8.8.4.1, (1).

(2} Histogram compilation and analysis as in paragraph
8.3.4.1, (2).

(3) Spectral analysis of sensor outputs. If the analysis
indicates that signal frequency content is higher than can be handled by
the available telemetry rate, then some points of the spectral distri-
bution can be transmitted.

8.3.4.6 Stanford radio propagation experiment:-- Figure 36 shows
the schematic arrangement of the instrument and notes the appropriate
interface points. The most substantial bit requirement occurs on line Sg.
We can assume that the CDS determines the maximum and minimum values
(6-bit precision) of Sy once per revolution from 36 or 128 samples. Line
S1 accumulates counts; and, therefore, histogram methods are applicable,

Procesging alternatives:

(1) Simple thresholding as in paragraph 8.3.4.1, (1) --
applicable to all lines.

(2) Histogram analysis as in paragraph 8.3.4.1, (2) --
appliceble to all lines, particularly Sq.

(3) Orthogonal polynomials as in paragraph 8.3.4.2, (4) --
applicable to all lines except 57.

173

8.3.4.7 Conclusions:~- Several points are clear as regards effective
use of the CDS in handling the variety of signals generated by the instru-
ments. In general, it seems better to employ averaging methods (e.g.,
computation of mean, variance, and spectral distribution) rather than omit
data samples when the data bandwidth exceeds the available telemetry rate.
In this way, the CDS is being used to effect compression; and aliasing
errors due to insufficient sampling rates are minimized.

It is also clear that a variety of algorithms could be stored by the
CDS so that, by monitoring the data from each instrument, the appropriate
algorithm can be selected, This "tailoring" of the processing to each
channel is a distinct advantage possessed by a digital computer.

8.4 Addition of Magnetic Tape Storage

The flexibility of a stored program central data system such as
MULTIPAC allows the addition of a mass memory unit, such as magnetic tape,
to the system for storate of output data at times the telemetry link is
not in use. The program technique used for this type of unit will depend
entirely on the sophistication of this unit. A very unsophisticated unit
could be used which simply stores data on a long loop of tape to be trans-
mitted later. ¥or such a unit, the programmer can consider it another tele-
metry unit. It is strongly recommended that the unit be interfaced with a
medule very similar to the command/telemetry unit. In addition to trans-
mitting data to this unit, the program need only start and stop the unit.
The start and stop commands will be given very seldom, and the data will be
sent to the unit at the slow telemetry rate.

A more powerful implementation would be to design the tape unit to run
at higher speeds and put the data on the tape in blocks separately by record
gaps. In this case the formatting and outputting routine will be more effi-
cient since a block of words can be cutputted each time the routine is
entered. A simple subroutine can be used to time out the record gaps for
start and stop. Later when the telemetry link is active, MULTIPAC can read
a block of data at a time into memory and output to the telemetry at the
telemetry rate. .

If, in addition, the tape has the capability of fast forward and re-
wind, programs which are seldom used, such as diagnostics or backup pro-
grams, can be stored on the tape. This will result in a great deal more
diagnostic capability while the spacecraft is out of contact with the Earth.

174

9.0 REPROGRAMMING AROUND FAILURES

The reliability of the MULTIPAC system is achieved through its ability
to reprogram around failures. This section describes some of the techmiques
uged to accomplish this reprogramming,

It does not seem feasible at this time to fly enough memory to perform
a1l the diagnostics and automatic reprogramming. A more realistic approach
is to diagnose the error through the command and telemetry links; to re-
agsemble the program on a ground-based computer; and then transmit the new
program to the spacecraft. In general, it will not be mecessary to repro-
gram all of the memory.

A typical system will have three logic units and enough memories to
have three complete processors operating simultaneously. A processor is
defined here to mean enough programmable units to program one or more of
the CDS tasks. The most likely division of work into these three processors
will be: one responsible for inputting and outputting data; another re-
sponsible for telemetry buffering; and the third responsible for data re-
duction processing.

The discussion will be divided into failures of various units (e.g.,
registers, logic units, etc.).

9.1 Complete Failure of a Register

Most failures in a register will cause complete register failure.
Data is moved in and out of the register serially. A failure in a £lip-
flop, input gating or output gating will cause all bits of the word to
fail,

The major consequence of a register failure is the loss of the 12
input lines and 12 output lines. If these lines are mot redundantly
connected to another register, then this represents a permanent loss of
data. In general, it is expected that enough resisters exist so that
science lines can be redundantly comnected to two registers. Thus, the
loss of a single register will not cause the loss of any science data.

In the case of those lines connected redundantly to another register,
the I1/0 tables in the I/0 processor are simply changed to reflect the
alternate register for the connection of the devices concerned. This pro-
gramming task could be included in the I/0 processing routines so that only
a simple command to update these tables is necessary. However, since it
takes very little time to update the tables directly from the command link,
this latter approach is preferable to keep the CDS programs as simple as
possible.

175

In addition to use as I/0 interfacing, the regilsters are used as
scratch and indexing by programs. The ground~based computer should keep
a table of register usage for each of the programs and should reassemble
those programs using a failed register. As long as the number of failures
is small, there should be spare registers for this purpose. If this is
not the case, then the programs will have to be reassembled using fewer
registers. Frequently, there exists a reprogramming solution to accomplish
a process without relying so heavily upon available registers. Xeeping
process parameters in registers is usually the most efficient in time.
Most often a loop which keeps constants in registers can be reoriented to
retrieve from program {(not data) memory each time they are needed at a
slight loss in processing speed.

9.2 Complete Failure of a Logic Unit

Any failure of a logic unit is likely to cause assoclative failure
(due to failed logic), and some diagnostics should be attempted on a logic
unit to determine to what use, if any, this unit can be assigned. 1In this
discussion we will consider only the complete failure of the logiec unit.

The failure of a single logic unit out of the three will primarily
affect throughput. Two logic units should be able to supply more than
the minimum required processing load of the central data system. It is
the extra tasks, such as data reduction, which will be affected. Since
initially all logic units will be working, it is reasonable to assume that
as many data reduction tasks as possible will be added to the CDS program
requirements to use up the MULTIPAC processing capability. 1In the event of
a logic wunit failure, a cutback would then be made in the amount of data
reduction, particularly at high telemetry rates. At low telemetry rates
it is likely that no degradation in performance will occur.

This reduction to two logic units will require reprogramming the en~
tire mission. Thus, it is imperative that this be done ahead of time in
case such a failure should occur.

8.3 Memory Failures

There are very few single failures in a memory which will cause a
complete memory failure. However, multiple failures particularly three
or more, will tend to make it very difficult to use the memory. For
example, programming around loss of every other word and one of the middle
bits in every word may be more trouble than it is worth. In this case one
would consider the memory totally fajled., Complete failures and some of
the more likely partial failures will be discussed in following paragraphs.

176

9.3.1 Complete failure.-- If more than six memory units are initially
available, there will be very Jldittle overall effect, except for those data
reduction algorithms which need large data stores. The computer on the
ground will have to go over all programs which reference this memory and
realiocate the storage. If this memory contains programs, these programs
will now have to be read into another memory and the program memory paging
changed.

If the failure brings the total number of memories below two per logic
unit, then the processing throughput will decrease. When the programs and
data are in the same memory, an extra memory cycle time is required on all
instructions referencing memory. This extra time is due to the loss of
data fetch and instruction fetch overlapping which results from using two
memories. Assuming equal memory reference and register reference instruc-
tions, this will decrease the speed for this one process by one-third.

Enough memory failures will have £o occur to bring the CDS below four
operating memories before memory failures will prevent operating two pro-
cessors simultaneously. However, once the system is reduced to four working
memoties, the amount of data reduction processing capability will be seri-
ocugly limited since most of these algorithms tend to use large amounts of
memory space.

9.3.2 Partial failures.--

9.3.2.1 Complete loss of the memory register:-- If this register
section i1s completely failed, then the memory unit is completely failed..

9.3.2.2 Partial loss of addressable words:~- This can occur due to
bits of the memory address register failing or an x ot y decoder failing.
If conveniently addressable segments remain, such as halves or fourths of
fiemory, then the unit really behaves as a smaller memory. If the useful
words are scattered throughout memory, then the memory can only be used as
random tempory storage or for constants. 1In this latter case, its effect
is very similar to the complete memory failures described above.

9.3.2.3 Loss of a bit:-- The memory cannot be used for programs since
there is no way to mask the effect. The use as data memory is limited, es-
pecially 1if the failure is intermittent or in the low order bits.

If the failure is in one of the high order bits, the unit could be used
to store small data with some extra programming to mask off this bit, I£
the bit fails to a zero, only mask negative numbers are needed and vice
versa for a failure £o a one., If the failure is in the low order bits, it
is necessary to shift the data word on every access to memory, which proba-
bly precludes widespread use.

17

9.3.2.4 Loss of a single word:-- This is a trivial problem for either
program or data storage and can be easily taken care of by the assembler in
the ground-based computer.

9.4 Command Override Procedure

The uplink commands are 16 bits in length. The last four bits (the
four most significant bits) are used to distinguish between normal commands
and command override commands. When these four bits are ail 0, a normal
command is assumed. The other 15 combinations of these four bits are used
for command override. Each of these 15 address 15 different locatioms in
the MULTIPAC system: three to each of 5 logic units. When less than 5
logic units are in the MULTIPAC system, the unused commands will act like
command override without performing any command override function. In
other words, these unused commands will be treated like override commands,
but will be sent to nowhere.

The three addresses within a logic unit addressed by the command
override feature are the two accumulators and the instruction shift reg-
ister. A command sent to the instruction shift register will override any
other instruction entering the instruction shift register and this new in-
struction will be performed as if it came from the program memory.

When overtaking the MULTIPAC system, the first procedure, normally, is
to turn off all logic units. A logic unit is turned off with an override
command instruction to set the program memory page to "0". Since there is
no program memory whose address is "0", this will effectively send zeros
continuously to the instruction shift register. Zeros are treated as NOP
instructions by the MULTIPAC logic unit.

The procedure to turn off all logic units is to send the instruction
SPMP (set program memory page) "0" to each of the logic units in turn.
SPMP "Q" will set the program memory page of each logic unit to "0". After
all logie units have been disabled, the procedure is either to enable some
program stored in a known good memory or else to bootstrap in a program
from the ground into a memory.

To start the program at some program memory N at address A, first the
command to load Accumulator 1 with the Address A is sent. The instructions
JMPR ACCL are then sent to the instruction shift register. This jump
through register instruction will set the program counter to the address
in Accumulator 1. Since the program memory page is still "0", the program
counter will not increment and the address A will remain in the program
counter until the program memory page changes. Next, the instruction SPMP N
is sent to the instruction shift register, and when this instruction is
performed, the program memory page will switch to the requested memory and
the instructions will begin to be performed from the address stored in the
program counter.

178

To bootstrap in a program into memory, the data memory switch of a
logic unit is set to the proper memory with a SDMP instruction and then
the following three commands can be used to load each word into memory.
First, the addreSs is loaded into Accumulator 1, and second, the data is
sent to Accumulator 2. The third command is the instruction STA2 indexed
by Accumulator 1. Commands from command override portion of the second
unit are sent to the imstruction shift register as one word followed by
many words of all zeros. Thus, if a first word of a two-word instruction
is sent to the instruction shift register, the second word will be all
zeros. The STAZ indexed by Accumulator 1 instruction will have an address
of "0" indexed by Accumulator 1, or, in other words, the address will be
that of Accumulator 1. This will send Accumulator 2 to this address in
memory. This procedure can be repeated over and over again until enough
words are scored in memory to load programs with normal command words. Be-~
for this loading program is entered, the diagnostic procedures of the next
section should be followed to determine what modules are working properly,

9.5 Reprogramming Methods

Reprogramming may be accomplished from the ground by simply sending
up a new section of code. Given any failure, the next most efficient pro-
gram usually involves a complete reorganization. This entails approximately
1000 words being sent up. . At 10 bits per second, this requires less than
one~half hour to tramsmit. Total reprogramming (-6000 words) would take
only 3 hours to accomplish. On the other hand, reprogramming from within
simply cannot cope with this kind of reorganization. Specifically, any
reprogramming requires changing code, hence a reassembly.

A relabeling process is possible for register failures only. Any
failure other than a register will require a total reorganization of some
routine to prevent inefficiency of rumning time and memory storage uti-
lization. There seems to be no real use for reprogramming which can be
accomplished on-board so that the command link transmission speed is the
factor which determines the amount of reprogramming done in a given time.

A very critical area is the problem of determining "what" has failed
whenever it becomes apparent that "something" has failed. A great deal of
the failure detection is going to occur on the ground. It does not seem
practical to put sophisticated detection programs on~board, since these
generally take a great amount of running time and memory, During the period
when the spacecraft is not transmitting to ground, a reasonable amount of
failure detecting can be run, but this does. not detect failures that occur
during the transmission period.

179

There seems to be no useful diagnostics which could be run on-board,
gince these are far more complex than failure detection. Consequently,
the discussion in this section is concerned with how to diagnose from the
ground once the failure is apparent on the ground. In most cases all
activity will have to be stopped and all modules cleared so that they will
not conflict with the diagnosing process.

“9.5,1 Diagnostic tests.-- These diagnostics should not be very ex-
tensive, Rather, they should be a short sequence of tests which are opti-
mal for the length of the sequence. The main purpose of these diagnostics
is to get some confidence quickly in most of the units which are not defi-
nitely known to be bad. If these tests fail to reveal trouble, then some
more extensive tests may be run. There is a reasonable chance that the
simple echo and register tests could be included in every memory unit.

The remaining tests will probably be too large. However, they might be
stored on a tape. The time estimates involve transmitting everything from
the ground, but tape could be used for such things. It is encouraging
that even the worst case of numerous duplicate transmissions from the
ground is not exorbitant in time. As units fail, the search is reduced
because the unit no longer has to be considered. Looking at the problem
in this light, it seems clear that the bootstrap test can always be done
in quite reasonable time unless a large number of failures occur at once.

9.5,1.1 A gimple echo:~~ The simplest possible program which generates
feedback is necessary. This would probably consist of a sequence of words
being sent back via telemetry, for example, *

TEST : LDAL WORD1
ouT TEL1
INP) MASK,RFLAG
SKP1 NEZ .
JMP O
LDAL WCED2
JMP TEST

where the code is repeated for each word to be sent back. 1In this program
the word to be tested is read into Accumulator 1 and is outputted to a

180

telemetry register. The flag is then inputted from that telemetry register,
which is tied to some input interface channel as specified by MASK and
RFIAG, This flag is loop tested until another word is needed and then the
processing is continued. This program uses one memory, one logic unit and
one telemetry register, If the desired sequence comes back some specified
number of times, then a basic processor has been located. Otherwise, the
program must be reassembled and retransmitted using some other combination
of the three units. This can be done in an optimal mammer with some analy-
sis.

A program such as the simple echo routine should include a frame
synchronization (FS8) code. This would assure at least one word having
the high correlation properties of a Barker code and thereby form a very
simple frame format to make the ground synchronization and decommutation
problem easier. One word could be echoed which contains a 7-bit Barker
code plus 5 bits of data.

9.9.1.2 Register test:-- The next step is check out all registers
A basice processor exists but cannot be very useful unless a reasonable
number of registers are alive. In addition, checking registers is at
least logically simple. The program would be very similar to that above
except that the words to be transmitted would be first copied into a
register, then into the telemetry. This is a very basic test and can test
all registers with one simple program.

9.5.1.3 Creating a full processor:-- The next two steps are to per-
form an instruction test for all the modules used up to now and then to
search for a good data memory. A full processor needs two memories, a
logic unit, and probably one to four registers. The search for a good
data memory can be performed on-board, since we have already determined
through the instruction test that the selected modules work properly.
This program should interact often with the ground sc that unforeseen
problems may be detected. At this time it will be more efficient to test
all memories rather than just to look for a good one.

9.5.1.4 Test of remaining logic units:-- When the above 1s completed,
the system is known to have at least one full processor plus a number of
available memories and registers. The next test should be the complete
checkout of the other logic units. This can be done completely on~board
by the good processor monitoring the output of a standard program residing
in a good memory. As soon as one unit checks out, it is turned off and
the other unit is set to execute from the same test program (same memory
unit) .

181

9.5.1.5 1I/0 test:-- The final test is to check out all the I/0
devices and generate a device number-to-register map for use by the I/0
programs. Absolutely failed units should be reported to ground, although
reprogramming would not usually be requiréd., The otlier telemetry unit
should be tested at this time if not tested previously.

]

9.5.2 Timing.-- Overall time for a complete set of diagnostics where
everything is tramsmitted from the ground is on the order of 1-2 hours.
This assumes an unlikely 2000 words of transmission and one hour of analysis.
Running diagnostics from an on-bcard tape unit might appreciably reduce
this time by reducing transmission time and allowing more lengthy self-
checking routines to be run. Thus, it looks like the bad failure situation
might take two hours of diagnosis and three hours of reprogramming. If
very definitive diagnostics are desired, then the time increases, simply
because they must be run for long periods of time. It is clear that inter-
mittent failures will cause either long periods of diagnosis or living with
intermittentliy bad data.

9.6 Ground Software

Ground-based software must emphasize the ability to diagnose and re-
program in the shortest possible time. This primarily implies a large
collection of preassembled routines using all the combinations of availa-
ble hardware. This is, or course, impractical. What really is needed is:
1} a diagnostic generator which uses failure history to reduce its output,
and 2) various organizations determined by sets of available units of the
running software which are abstract in the actual units utilized. This
latter means assuming some subset of units being available and writing
the most efficient code for the situation. Parameters to each such en-
coding would be the actual unit numbers (switch addresses). This ability
implies an assembler of only moderate complexity with relatively simple
macro features.

No time should be wasted on any kind of compiler. Code simply must
be as efficient as possible, which means only machine language coding.

A computer must be available at all times for reassembling programs,
Some on«board problems, such as failures, will be solved only by having
a programmer generate more code in real time. If possible, the computer
should take care of transmission to the on-board system. Extremely de-
sirable would be a diagnostic generator {as above) which checks out the
system automatically when needed. There is probably no meed of human
analysis most of the time. This is more true of diagnostics than repro-
gramming.,

182

10.0 CONCLUSIONS AND FUTURE RECOMMENDATIONS

This contract began as a study of data formatting and data system
organizations for lightweight deep space probes. The first year of this
study, which has been reported previously, recommended that the central
data system use stored program computer concepts, that data formatting
should be very flexible, and that data reduction algorithms should be used
whenever possible. The initial contract was extended to develop the mul-
tiple pooled central data system concept described in this report.

MULTIPAC is a central data system using stored program computer con-
cepts which would give future spacecraft extensive data processing capa-
bility for wvariable data formatting, sampling and converting analog in-
formation from experiments, and performing data reduction on experimental
data to improve information transfer on a limited telemetry bandwidth. An
organization consisting of pools of modules organized by the program is
used to achieve an extremely high reliability for extended deep space
probes. 1In the event of a failure, this multiple pooled organization
allows reprogramming around the failed modules, permitting the surviving
modules to be utllized optimally.

In addition to the ability to recover from failures, this multiple
pool organization replaces the current technique of designing a new data
system for each probe, with a standard "off the shelf" central data system,
which is programmed by software to perform as a flexible data management
system. One typical organization was used as an example throughout this
report. This typical MULTIPAC configuration, a 16-watt system, including
12,288 words of memory, can handle about 200 science and engineering input
lines and 200 output lines. This typical system could simultaneously
schedule sampling of the experiments, perform needed analog-to-digital con-
versionsg, reduce data using histograms or other data reduction techniques,
and then format the data for transmission by the telemetry subsystem.

Since a computer organization is used, wide variations in formatting, sam-
pling schedule, and other data management tasks are easily accommodated.
These changes can be made later in flight from the ground after the data
has been analyzed. It is at this time that data reduction techniques are
quite powerful, since after the flight has been in progress for some time,
enough may be known about the data to effectively perform data reductions
on the raw data. In addition, if an experiment has failed, the part of the
data format transmitted to earth from that failed experiment can be used by
other experiments.

The above system has an extremely high probability of surviving 36
months (the longest mlSSlon considered). However, with the very pessi-
mistic failure rate of 10-% ISI circuits per ISIC-hour {1 percent per
1000 hours), the probab111ty of s¥stem survival is 0,0001l. For more real-
istic failure rates of 10~% or 10- , the corresponding figures are (.92
and 0.999, respectively. These failure rates are for a minimum operable
configuration of one processor, 2048 words of memory and 83 percent of

183

the input-output interface lines working properly. This configuration

is more than enough to perform scheduling and sampling of the science and
engineering lines and data formatting which is the capability of present-
day fixed format central data systems.

The present design is expandable to five processors and 32,768 words
of storage. Each of these processors will act as a computer with an in-
struction rate of 15 microseconds. These limits are arbitrary and simple
changes to the system design can be made if greater memory storage and/or
computers are needed. This fully expanded MULTIPAC system will require
32 watts of power, and will handle an extensive input-output interface
to the experiments, many times greater than that of present day space probes.
The generality of the design is such that it can easily handle input/output
devices not included in this design with existing modules or with the ad-
dition of new modules. These new modules are easy to interface, require
very few interconnections, and may be directly addressable by the programs.

As this design moves into hardware implementation, it is probable that
some changes will be made due to further analyses of the system's require-
ments. Before final implementation, it is recommended that a typical mis-
sion be programmed, and that diagnostics be written to determine whether
they ought to be transmitted from the ground (the most likely), or stored
in memory. These programming tasks may result in recommendations for some
changes in the owerall design. It is expected that such design changes
will be limited to change of instruction repertoire, in which case only
the design of the logic unit need be affected. The register and memory
can remain exactly the same, and the ISIC's of these modules may be re-
leased before programming is done. Programming a typical mission will give
a closer estimate of memory requirements and the amount of data reduction
processing capability available to the experimenter.

These programming tasks may be accomplished while a breadboard is
being built. Breadboarding costs agbout the same (assuming integrated
circuits are used in place of the ISI circuits) as performing a computer
simulation and is a far more accurate representation of the final system.

Without a mass storage device aboard the spacecraft, reprogramming
from the ground will require a command link capability of at least 10 bits
per second. Even at that rate it is possible that a failure could put a
spacecraft out of contact with earth for omne to two hours. If this is an
unacceptable delay, it may be desirable to add a simple commutator under
control of the command decoder which will bypass the central data system,
This bypass, which would be used while reprogramming, could simply trans-
mit the raw data with frame syncs and parity in a fixed sampling sequence,

In conclusion, a very low power, extremely flexible central data
system has been described which can be reprogrammed from the ground to
either change its characteristics or to program around failed components.
This design can be used for all (or most) future deep space probes re-
placing the present data systems which are specifically designed for each
flight.

184

1.

REFERENCES

A Study to Determine an Efficient Data Format and Data System for a

Lightweight, Deep Space Probe., WNASA CR-7321L, Contract No. NAS2-3255;
February 1968.

MULTIPAC, A Multiple Pool Processor and Computer for a Spacecraft
Central Data System. Research Report No. NASA CR-T73262; March 1969.

Cricchi, J.R; Lancaster, E; and Strull, G; A Large~Scale Complementary

MOS Memory. Supplement to IEEE Transactions on Aerospace and Elec-
tronic Systems, Vol. AES-3, No. 6; November L967.

185

=1,
¢ BLANK NOT FILME

gRECEDING PAC

APPENDIX A

RELIABILITY PROGRAM

The results tabulated in Section 6.0 using the general model of
Figure 31 of that section, was written on a time-sharing terminal using
a language called TELCOMP. This is typical JOSS language (simplified ALGOL)
gimilar to CAL, a more generally known language. The program is shown in
Table Al and its output upon the command "DO PART 6" is shown in Table A2.

Abbreviations used:

CG - Clock Generator (oscillator + squaring)
TC - Timing Countexr

TC20F3 - 2 of 3 TC!s

LU - Logic Unit

M - Memory Unit

MS - Memory Storage Element

R - Register

™ - Telemetry Unit

M - GCommand Unit

RP - Register Pair (redundantly connected 1/0)
DA - D/A Register

RATYP -~ Typical Analog Comparator Return Reliability

(must have one D/A and corresponding I/0

register)
RADGR - Typical Digital Input Reliability
LITYP, LZTYP - Partial calculations of RATYP
LIDGR, L2DGR - Partial calculations of RADGR

187

TABLE Al

PROGRAM FOR RELTABILITY

1.01 DU PART 2 FOR MNR=l FOR N=1 FOR PC=,2
1.02 CG=zrs
1.03 DO PART 2 FOR MNR=2 FOR N=3 FOR PC=i
1.04 TC20F3=prs
1.05 DD PART 2 FOR MNR=3 FOR N=3 FOR PC=14
1.06 LUSUF3=P3
1.07 P0 PART 2 FQOR MNR=} FOR N=3 FOR PC=14
1.08 LULQOF3=P3
1.09 DO PART 2 FOR MNR=6€ FOR N=6 FOR PC=8
1.10 MEOF&=r
l.!l DO PART 2 FGOR MiWR=1 FOR N=6 FOR PC=8
1.12 #]0F&=pP5
1.13 DO PART 2 FOR MNR=1 FOR N:zZ FOR PC=3
1,151 RpPzPs
i.l15 CM10OF2=Ps
& DO PART 2 FOR MNR=1 FOR Nz=2 FOR PC=4
1 Ml OF2=pPs
8 DO PART 2 FOR MNR=6 FOR N=6 FOR PC=3
9 RE0F6&=PS
0O DO PART 2 FOR MNR=5 FOR N=6 FOR PC=3
1.21 RSOF&=P,s
1.22 DD PART 2,04 FOR MWR=6 FOR MR=RP FOQOR N
.23 RPEOF6=PS
l.24 DO PART 2,04 FOR MNR=5 FOR MR=RP FOR N=6
1 .25 RPS0F6=Po
i.26 DO PART 2 FOR MNR=1 FOR N=! FOR PC=z=4
1.27 DA=r3
1.28 DO PART 2 FOR MNR=2 FQR N=3 FOR PC=14
1,29 LU2OF3=P>
1.30 DO PART 2 FOR MNR=4 FOR N=6 FOR PC=8
.31 MaOF6=rs
1.32 PO PART 2 FOR MNR=2 FOR N=6 FOR PC=8B
1,33 M20F6=prs
l.34 DD PART 2 FOR MNR=2 FOR N=6 FOR PCZ=13§
1.35 Mo20F6=P5
1.36 DO PART 2 FOR MNR=4 FOR N=6 FOR PC=z]36
| +37 Ms 40F6=pP3
138 DO PART 2 FOR MNR=6 FOR N=6 FQR PC=136¢"
1 .39 M360F6=r> .
1.40 DO PART 2 FOR MNR=1 FOR N=6 FOR PC=z=l136
l.4] M310F6=P5
1.60 TYPE #,#,#
1,70 TYPE MO,FR IN FORM 6
.71 TYPE #,C6,TC20F3,LUS0F3,LU20F3,LUL0F3,M60F6,M40F6, M20F6,M1 OF6
L7115 TYPE MSGOFG,M540F6,MS20F6, M3 OF8
1.72 TYPE TMiOFZ,CMI0F2 ,R60F&,R50F6,RP ,RP50F6,kP60F6, DA #
1.91 DO PART 4
1.92 DO PART S

11
o

2.03 MR =EXP (-PC*FR*730%M0)

2.04 N5=N,P520

2,05 SET NF=N-NS

2.06 DO PART 3 FOR J=H,NS ,NF

2407 SET PRB=FCTIN]I/(FCTINS J%FCT[NF1)*MR tNS# (1-]R) 1 NF
2..09 P5=P5+PRB

2410 N5=NS -}

2.11 TO STEP 2,05 1IF NS>=MNR

188

TABLE Al.-- Continued

. PROGRAM FOR RELTABILITY
§.,0 5T FCTIJ]1=]
Se1 FCTIJI=FCT(JI*I FOR I=ltlzd

4,01 LITYP=DA*(1-DA)*REOFS

4,02 L2TYP =DAT2%RP 60F &

4.93 RATYP=ExLITYP+L2 TYH

4,04 LIDGR=DAXx(l-DA)*xR50F6

4.05 L2DGR=DA2%RP 50F6&

4,06 RADGR=2*L|DGR+L2 DGR

4.31 TYpPE LITYP,L2TYP ,RATYP,L1DGR ,L2 DGR ,RADGR ,#,#

5,01 REL3X=CGxTC20F 3xLUBOF3*TH10F2*CM!I OF2
5,02 RELS=REL3X#M60F 65RP60F6#RATYP
5,05 REL3A=REL3X*RP 50F 6xRADGR*160F6
5.04 REL3M=REL3X*#S560F6*RPSOF 6%RATY P
5.05 REL31A=REL3XxM>60F6%RP S0 F6%RADGR
5,06 REL2X=Cl* TC20F3* LUZOF3*TM1OF2*CM1QF2
5,07 RELZ=RELZX*MAOF 6xRP6OFE*RATYP
5.08 REL2A =REL2X*MA40F6*RP S0F6%RADGR
5.09 REL2# =REL2X*[3 40F 6%RP60F 6%RATY P
5.10 REL2MA=REL2X*MS 40F 6xRP 50F 6¥RADGR
5.11 RELIX=CG*TC2O0F3*LU10F3* TM10F2*CML0F2
5,12 RELI=REL1X*2 OF §RPSOFS*RATYP
5,13 REL1A=REL1X*M20F 6+RP 50F6*RADGR
5.14 RELIM=REL |X*#io20F 6*RP6OF §%RATY?
5415 RELINASRELIX*M320F&*RP 50F 6%RADGR
5.16 RELOXZCG*TC20F3xLUIOF3*TMIOF2*CH10F2
5.17 RELOSRELOX*M1OF6*RP60F6+RATY P
5,15 RELOA=RELOX*MN! OF6%RP50F6*RADGR
5.19 RELONM=RELOX*Ms 1 OF 6%RPSOFEXRATYP
5,20 RELOMA RELOX*MS | OF6%RP 50F 6xRADGR
5,85 TYPk FORM |
5,84 LINE
5.85 TYPE RLL3,REL2,REL1,RELC IN FORM 2
5.86 LINE
5.87 TYPE REL3A, REL2A,RELIA,RELOA IN FURN 3
5,88 LINE
5.89 TYPE REL3M,REL2M,RELIM,RELOK IN FORM 4
5,90 LINE
5.91 1YPr REL3MA,REL2 #A,RELIMA,RELOMA IN FORM 5
5.92 TYPE #,#

6.0 02U PART 1 FOR MO=12:12:36 FOR FR=101-7
6,1 DO PART | FOR MO=12:12:36 FOR FR=10t-6
§.,2 DO PART 1 FOR MO=12:12:3§ FOR FR=1017-3

FORM 1
REL: 3LU,6M 2 LU, 4M 1LY,2H 1LY, 1¥
FORN 2
FULL I/0 R FEEE FHEF R22 1
FoR# 3
837 1/0 FHEF AR Y SEFH
FURA 4 .
FULL I/0 Ck Ms) o#F## 1T HEFFTTT SHEFETTT FEFETTT
FORN 5
8372 1/0 (W M3) NTTTINE HERETLT SEFF LD RYTTRYY)
FOR A §

SOLAR PROBE ## MONTH RELIABILITY FOR FAILURE RATE= #.,#t11

189

TABLE A2

OUTFUT OF FPROGRAM

S0LAR PROBE 12 MONTH RELIABILITY FOR FAILURE RATE= 1,0-07

Cé= 999824815
TC20F3:= «999997701
LU3OF3= 9683876601
LU20F3= . 399557898
LUILOF3= «999559818%
MeOF 6= « 958823756
WA0F 6= « 999993255
M20Fe= 1
MIOF6&= i
M3 60F 6= LAB9282131
S 40F 6= 3782022717
M320F6= +99950281
Msl0F6= L9599997593
MiIQF2 = + 999987765
CM10F2= .9998531 12
R60OF &= 984355664
R50F &= L9995897397
RP =z » 959593112
RPS50FG= 2995995999
RP6OF 6= «599958671
Da= « 396502132
LI1TYP= 34431102T7T%10t -3
L2 Trp= «352375458
RATYP:= .999837664
L1DGR = 3. 4852 7548%101 =3
L2 DGR = «993016498
RADGR = +99998T045
REL: 3LU,6M 2LU,4M 1LU,2u 1LU, 1M
FULL 1/0 <9238 « 3992 _— R « 9956
83% 170 «32 40 « 9993 23998 «9598
FULL 1/0 (W ¥Ms) «4714+00 « 3 T774F00 «9995+00 «9996+00
837 1/0 (w Mb) «4715+00 «S7176+00 «9997+00 . 9998+00

190

TABLE A2.-- Continued

OUTPUT OF PROGRAM

SOLAR PROBE 24 MONTH RELIASILITY FOR FAILURE RATE= 1.0-07

CG=
TC20F3=
LU3OF 3=
LU20UF 3=
LJIOF3=

MEYF &=
H40F 6=
20K 6=
wioFe=
o 60F 6=
vio 40F 6=
M320F6=
s 10F 6z
TMl0F2 =
CilOF2=
REOF &=
R50F 6=

RP =
RPS0F &=
RPEQFE=

DA =

LiTYP=
12TYr=
RATYP =
LIDGR=
LZ2DGR =
RADGR=

FULL 170
837 1/0

FUuLL 170 (W M)
837% 1/0 (W M3)

«595649661
599550818
+925058102
+ 998267224
« 999985775
«915342995
999947746
+ 5995585597

23393357004
+B8581 1874
+ 997883875
« 599509185
2999551231
599972519
+968956074
+ 999593517
«359572519
v 955595583
999835126
« 333016459

6,71945054%10t -3

.985919%188
.999358089

6.951913%101 -3

986081756
959545582
REL: 3LU,6M
8531
.8537
2221400
«2223+00

2LJ, 4l
« 5970
9977
«8832+00
«8858+00

1LU,2H
9987
9995
.9966+00

+9974+00

1LY, 13
9987
9995
<9987+00

#5955 4+00

191

192

TABLE A2.--~ Continued

QUTIPUT OF PROGRAM

SOLAR PROBE 36 MONTH RELIABILITY FOR FAILURE RATE= 1.0-07

ca= «995474538
TC20F3= + 999979371
LUa0F3= «895497365
LU20F3= « 9968179575
LULOF3= « 999552863

1MeQF 6= « 881487903
M40F 6= + 999828185
MZ0Fe: « 995999977
M10F6= 1
AS60F6= 117132676
5 40F 6= + 743359332
Ns20F6= +«9BESTT748
Hol0F6= 2999263489
IMIOFas= 9839890652
. CMIOFZ2= + 99993833
RE0OF &= + 953757399
R50F 6= +95820%4] 56

RP= « 99593833
RP 50F &= 9999959943
RP&80OF 6= « 999630039

DA= + 985543058

L1TYP= 9.B6950861%10% -3
L2 TYP= «S78833199

RATYP = 9985722147

L1DGR = .0103382211
L2ZDGR = + 379195408

RADGR = « 99587185

REL: 31U,6H

FULL 1/8 « 1874
837 1/0 0 71887
FULL /0 (W o) «1046+00
B3Z 1/0 (W M3) «1048+00

21U, 4
«9335
«9952
« 1387+00
« 1359+00

1LU,2M
«5974
«3551
+9864+00
«9881+00

1LU, N
« 9974
9591
«9967+00
«9984+00

TABLE A2.-- Continued

OUTPUT OF PROGRAM

SOLAR PROBE 12 MONTH RELIABILITY FOR FAILURE RATRE= 1.0-06

2LU, 44
<9566
9526

«8924-01

"CG= 1998249534
TCauFd= «99877312
Ludurd= 592172553
LJ2uF3= «963111128
LULGF3= 958462483

HeuF Gz 656731513
#aUF 6= «99469357
AZ UF 6= 39999196
MioF6= « 999599904
s 6UF 6= 7.8630956%1{01 -4
Mo 40F6= 0735338386
Ao20F 6= 588015711
Uo'l 0k 6= +BBE13502 4
THIuFa= 998814354
CM10F2= 999327236
RE0F6= «B34123057
RO0F&= 990586456
RP = 999327236
RP 50F 6= «5995583223
RP 60F 6= »535970201
DA = « 965566793
LITYy = .0283975088
Lz Tye= 3285621173
RATYP = « 38535719
LIDGR = 0329345841
LZDGR = «932312513
RADGR = .998182081
RELs 3LU,6H
FuLL 1/0 4444
83%4 1/0 #4520
FULL 1/0 (W fin3 «5321-03
8372 1/0 (w M) +5412-03

. 7042-01

1LU,2H
\91761
9928

«5740+00
«5838+00

Lhu, 1%
.5761
9528
.8650+00

.8798+00

193

194

TABLE A2.-- Continued

OUTPUT OF PROGRAM

JLAR PROME 24 MONTH RELIABILITY FOR FAILURE KATez 1,0-06

6= .996502132
TC2OF3 = 995105595
LU OF3 = . 479102843
LUZOF3 = .8786445171
LUIOF3= .98970882
M6OF 6= 43125628
N4OF 6= 967100241
MZOF 62 .99979547
W1 0F 6= 999994996
11> 60F 6= 6.18282726%10T =7
N240F6= 9,34050436%101 -4
A520F 6= 0994429334
M>10F6= . 440685136
THioF2= 995419313
CH10F2 2 .997378293
RGOF 6= . 129526197
R50F 6= .965742979
RP = 997376293
RP 50F 63 999897618
RP 60F 6= (984372497
DA= .932319231
LITYP = .046033163..
L2TYP = 855635425
RATYr = 947701751
L1Dak = .0609384613
L2DGR = .869130157
RADGR = .95100708
REL: 3LU,6N
FULL 1/0 1905
832 1/0 2024
FULL 1/0 (W M3) .2732-06
837 1/0 (W MS) .2901-06

2LU, 4t
. 7836
.8323
. 7568-03
.8038-03

1LU,2N
.9i24
.9692
+9075-01
.9640~01

1LU, M

»9126
«9654
«4022+00
4272400

TABLE A2.-~ Continued

OUTPUT OF PROGRAM

SOLAR PROBE 36 MONTH RELIABILITY FOR FAILURE RATE= 1.0-06

CG= +954757789
TC20F3= 59801 6609
LU30F3= 331621838
LU20F3= 174064853
LUIOF3= 370830968
MEOF &= 283245858
M40F 6= + 913468973
M20F&6= 958761864
MioF6= . 999595353
Mo GOF 6= 4,86161615%10t ~10
NS 4OF&= B8.86300495%101 -6
Mo20F6= 0109400836
WS 10F&= 156884438
TM1OF2= 950043251
cMiora= 994252508
RE6OF 6= .6231051 48
R50F&= » 925789461
RP = + 994252508
RP50F 6= « 999512041
RPSOF &= « 966006677
DA= «90021649
LiTYP = .0559715171
LZTYP = «TBZ2841965
RATYP = « 894784999
LIDGR = 0835199757
L2 DGR = - 8099594292
RADGR = .877034243
REL: 3LU,6H 2LU, 4l 1LU,2H0
FULL 1I/0 0793 + 3973 . B191
837 1/0 0836 6748 9254
FULL I/0 (w M3) «1362-09 «5795-05 L8972-02
8372 1/0 (W M5 + 155509 +6547-05 +1014-01

1LU, 1N
8200
.9265
1287400
1 454+00

195

TABLE A2.-- Continued

OUTPUT OF PROGRAM

SOLAR PROBE 12 MONTH RELIABILITY FOR FAILURE RATE= |,0-05

ca= «582632583
TCZ0F3= «980076116
LUSOF3= 02524316135
LU20F3= 207670585
LUI0OF3= 647126436
MEOF &= 0149237705
N40F €= 2336630383
nzZore= 887010425
N10F 6= « 9836463525
M5 e0F 6= 9.03515412%10t =32
M3 40F6= 3,02025525%101 -20
Ms20F 6= 6.73072773%10t ~10
NslOFé&= 4,01514096%10T -5
MiQF2= «P12624347
cM10F2= +$46590784
R60F 6= 206635274
R50F &= .57928122
Rps= 946590784
RPS50F6= 96295007
RPGOF 6= 719405293
Da= « 704406271
LITYP= 0430251993
La1yp= 356960416
RATYP= 443010815
LIDGR= 1206816821
L2 DGR = «477804456
RADGR= .7190380595%
REL: 3LU,6M 2LU,4M
FULL I/0 000! +0185
83% 1/0 0002 +0403
FULL 1/0 (W MS) «8047-33 «1663-20
83%Z I/0 (w MS) o1314-32 «3615-20

196

1LU,2H

1522 ¢

« 3307
.1155-09%

«2509~05

1LU, 1N
+» 1688
WI667
«6856-05

»1498-04

TABLE A2.-- Continued

OUTPUT OF PROGRAM

SULAR PROBE 24 MONTH RELIABILITY FOR FAILURE RATE= 1.0-05

Caz +565566793
TCeuFd= «350817737
LU30F3= 6.,37217192*101 -4
LUZ20F3= + 0205405619
LUIOF3= 256579128
neuFs= 2.22718927%101 -4
M40F 6= «0356304994
M20F &= +457030994
M10F6= +816545917
N3 60F 6= B8.163401*0% =63
Mo 40F 62 6.08142487%101 =4}
M520F &= 3,02028762%101 =20
M310F&= 2.65233919%101 ~10Q
TMiOF2= + 146173665
CrMloFas= 8528829995
RGOF6= +042 6981365
R50F€&= 219845897
Rp= .8528829599
Re 50F 6= . 735685382
RP&OF &= «333813568
DAz «496188154
LITYP= +0106739137
LeIYe= +0821858035%
RATYP= 03533637
L1DGR = 05495828
12DGR = -»18112873
RADGK = 29104529
REL: 3LU,6HM 2LU, 44 1LU,2H
FuLL 170 .0000 .0000 0021
83% 170 +0000 +0001 0129
FULL 170 (w M3) »1004-66 +2438-43 $1379-21
BSZ 1/0 (W iis) «6221-66 1523-42 «8546-2]

ILU, 1M

0037
0231
L1230~} 1

.7618-11

197

TABLE A2.-- Continued

OUTPUT OF PROGRAM

SOLAR PROBE 36 MONTH RELIABILITY FOR FAILURE RATE=z |,0~05

CG= JS4BT5T7391
TC20F 3= «864458556
LU3OF3= 1.60853763%101
LU20F 3= 1.87548082%101
LUIQF3= +0738338177

MG&OF6&= 3.32380616%(01
M40F &= 2.72103028%1i01
MEeoFé= «160317302

Ml OF6= « 242402511
MS60F 6= T37575859% 101
MS 40F 6= 1.22451015%101
MS20F6= 1 43552 T7T312%101
MSI0F6= [,80351199%10t
TMiOF2= « 3716873268
CMI0F2= « 702507782
R&OF6&= B.B22%4115%107t
R50F&= «0723414373

RP= « 102507782
RP 50F6= «A25610167
RPGOF &= «120200656

DA= «34951807¢

LITYP= 2.005541 4710

L2TYP = 0146840589

RATYP = «01869554i8

L1DGR= +0164472013

L2DGR = «0519937659

RADGR = 0848881684
ERROR AT STEP 5.04

NUMBER OUT OF RANGE

~3ET MS60F6 = 0O
«G0

REL: 31H,6N

FULL 1/0
837Z 1/0

FULL 170 (W Ms)

837% 1/0 (w MS)

198

0000

.0000

+00G0+01

+0000+01

-5
-3

-5
-3

-94°

-6l
-30
=15

1
(4]

)
(]

2LU, 4N

«1719-668

iLU,2H
0000
0001
»1475-34

.1202-32

1LU, 1N
.0000
.0005
.9947-19
.1599-17

APPENDIX B

LOGIC DESIGN SIMULATION

This appendix will describe one of many different ways of simulating
a logic design once the logic drawings exist. Many organizations per-
forming digital logic design use simulators similar to the one described
in this appendix. The particular one described has the primary advantages
of ease of writing the simulation software and no requirement to input
Boolean equations.

The simulator described here is a version of the present-day simu-
lator used at the Applied Research Laboratory. Experience on this simu-
lator has shown wus that no logic design knowledge is necessary to produce
the input information. Experience has shown that a secretary with less
than one-half hour training can produce input cards from a logic drawing.

However, an engineer is meeded to debug any errors in the logic design or
the input process.

B.1 General Description
To input a design, the user inputs equations of the form:
A = NAND(B,C,D)
XYZ = ANDNOR(A,B,C,D,AA,BB,CGC,DD)
L = FFD(XYZ,ZZ,W,A,B,C,D,E,$,CP1)

with one equation per line or card. The first equation is a three-input
NAND gate whose inputs are B,C,D, and cutput is A. The second equation
represents a SUHL ANDNOR which has two 4~input AND gates feeding a NOR
gate. The third equation represents a D-type f£lip-flop made by Transitron.
The commas devide the various input gating levels of this-flip-flop, the
last field being the clock pulse input., The simulation clock pulses are
represented by the letters CP followed by a one- or two-digit number. A
normal logic level may appear at this position if the user does not want
the flip-flop to be triggered by the simulation clock pulse. Note that
the next to last field contains a zero instead of a name of a signal.

The above discussion may be clarified with an example. The logic

diagram of Figure 37 represents a three-stage feedback shift register.
The input to the first stage of this shift register is the exclusive OR
of the second and third stage. The register shifts whenever the logic

level SHIFT is a "1" and will have a repeating pattern of length 7. In
case the register starts with all stages a zero, .this state is decoded
{(ZEROA) and a 1 is fed to the first stage. In addition, the register
may be loaded by setting LOAD to a 1 and the register will hold its
current value when neither LOAD noxr SHIFT is a 1.

199

008

FaSA

Y INT Y N 2 VAINE
. LOAD
HOLD SHIFT
it e i e i i e J‘C“
|]]| ' |
l ! | | |
| ! } | (]
| []| i1 | NSHIFT
| ! | 1 |
| D-Tvee | D-Type | || o-Tvee - |
| FLP-FLOP | | FLIP-FLOP | :FLIP-FLOP I
| ! !
| l AN I
| 0) I 0 1 L 0 1 |
| L] X1 |
[B e N L] L\
NAJ Al - N A2 N A3 A3
—
(-
ZERO A . -

RETURN C_ R3
R2 (

Figure 37. An Example of « Three-Stage Feedback Shift Register

N

This logic would be entered with the following equations:

Al = FFD(RETURN, 1, SHIFT,IN1,1,LOAD,ZEROA, SHIFT,HOLD,CP1)
A2 = FFD(Al,1,SHIFT,1,IN2,L0AD,1,#,HOLD,CP1)
A8 = FFD(A2,1,SHIFT,1,IN3,LOAD,1,#,HOLD,CP1)

HOLD = AND2(NLOAD,NSHIFT)
NLOAD = NAND1({LOAD)

NSHIFT = NANDL1(SHIFT)

n

RETURN

I

NAND(R1,R2)

R1

]

NAND2(A2,R3)

R2 = NAND2({A3,R3)

R3 = NAND2(AZ2,A3)

ZERQOA = AND3(NAL,NA2,NA3)

B.2 Method of Simulation

Three general approaches to simulating MULTTPAC are possible. The
best long-term solution would be to have a general purpose simulatox
written which would accept the equations as input. This then allows the
simulator to be used on many projects, including the digital portions of
the experiments surrounding MULTIPAC. A second solution is to use a
general purpose simulator available on a commercial time-sharing service.
As an example, a firm, RAPIDATA, supplies a terminal service which in-
cludes a digital logic simulator whose input format is of the general
form shown here.

If neither of the first two methods of simulation are desirable,
then a simulator for MULTIPAG only could be written to simulate the
MULTIPAC design.

B.3 Writing a Simulator for MULTIPAC

The above format simplifies the writing of a simulator for a speci-
fic system to be simulated. It will be noted that the format of the logic
ig that of a Fortran statement where the output equals a function of a
number of inputs. Thus, if a Fortranm function is written for each of the
required gates or flip-flops such that the proper Boolean function is per-
formed and the Boolean answer is returned, then the statement could be
entered as part of a Fortran program. The various size NAND gates need
different function names since Fortran is incapable of accepting a vary-
ing number of arguments to a function.

201

Since Fortran functions only return a single value, then an addi-
tional equation would have to be added for every f£lip-flop. These
equations will be for the zexo output side of the f£lip-flop. For the
example shown, equations of the following form would have to be added:

NAL = INV(AL)
NAZ = INV(A2)
NA3 = INV(A3)

and the function INV would have to be written, which would simply in-
vert the signal (i.e., ZEROS would become ONES and ONES would become
ZEROS) .

Thus, a Fortran function must be written for every different cir-
cuit type. For the above equations, functions must be written for FFD,
INV, AND2, AND3, NAND1, and NAND2, Many will be vexy short functions.
The NAND2 function will simply form the Boolean NAND of its two argu-
ments by using Fortran IV Boolean functions, or a machine ldnguage
routine. Each time the program containing the logic equations calls
NAND2, it will return the NAND of the two inputs. For example, when the
program executes the RETURN equation, it will perform the function NAND2
on the values of R1 and R2 at that time and set RETURN to the NAND of
those values.

These equations would have to be surrounded by a Fortran program
which creates clock pulses, prints outputs, and otherwise exercises the
the design. The first part of the program would initialize all the sig-
nals, and set up a Fortran DO loop which contains the equations above
as the main part of the loop. Each time the loop is entered, the clock
pulses and the input signals would be varied according to some pre-
determined test pattern. On every exit from the loop the stares of
those signals traced would be printed on the line printer. The print=-
out would be of the form shown below.

Al A2 A3 RETURN ZEROA
g @ g @ 1
1 @ g @ ¢
p 1 p 1 i)
1 9 1 1 g
1 1 ¢ 1 @
1 1 1] g
4] 1 1 4]]
4 ¢ 1 1 8
1 ¢ 7 p g

202

Most logic equations will produce a single bit of information
(¢ or 1). Allowance could be made for multiple bit operatioms. For
example, a new function, REG, could be written to form a "register" of
signals for purposes of printout. If the equation

7 = REG(A1l, A2, A3)

were included and Z traced instead of Al, A2 and A3, the printout of the
above ezample would be;

Z RETURN ZEROA
) @ 1
4) g
2 1 ¢
5 1. 9
6 1 9
T g ¢
3 p ¢
1 1 9
4 ¢ ¢

where AL, A2, A3 are now the three bits of "register" Z.

203

INCLASSTETIED
Sacudty Clagsl th;a tion

DOCUMENT COMTROL DATA-R&D

{Securlly classiicatian of titie, body of abstract and Indaxing annctation must be enlered wion the overalf sopot! Is clossified)

1 ORIGCINATING ACTIVITY (Catporale author) Applied Res. 1.ab ‘s 28. REPORT SECURITY CLASSIFICATION
Sylvania FElectronic Systems, An Operating tlnclassified i
Group_of Sylvania Electric Products Ine. b araup

40 Sylvan Road, Waltham, Mass., 02154 N/A

3 REPORT TITLE

MULTIPAC, A Multiple Pool Processor and Computer for a Spacecraft
Central Data System ‘

4 DESCRIPTIVE NOTES (Type of réport end inclusive dates)

Final Report Phase IT

£ AUTHOALS! (Firet name, middle Inilial, Tast nome)

Thomas E. Baker; Robert L. South
Gene A. Cummings;

6 REPORT DATE 7a TOTAL NO OF PAGES 26 NO OF REFS
October 1969
3a CONTRACT OR GRANT HO 98 ORIGCINATOR'S REPORT NUMBERIS)
NAS2-3255 F-T159-1
b PROJECT, TASK, AND WORK UNIT NO
¢ DOD ELEMENRT K 95 OTHER REPORT NOIS) (Any other numbars that may be assigaed
\ thrs repost)
¢ DOD SUBELEMENT NASA CR-73348

10 RISTRIAUTION STATEMENT

Distribution of this report is provided in the interest of information
exchange. Responsibility for the contents resides in the author or
organization that prepared it.

11 SOPPLEMENTARY NOTES 12 SPONSQRING MILITARY ACTIVITY

National Aeronautics and

Space Administration, Ames Res.
Center, Moffett Fld,, Calif.

13 ABSTRACT

This report contains a detailed description of a large-scale
integrated circuit version of a central data system for deep space
probes which is made up of pools of identical modules which are inter-|
connected by programs to form one or more computers. These modules
are then reconfigured after a module failure by reprogramming via the
command and telemetry links.

DD %1473 . . UNCLASS ITFIED

Security Classification

UNCLASSTIFIED

Security Clasaification

KEY WORDS

LINK A

LINK B

LiNg ©

ROLE WT

ROLE wT

ROLE

wWT

Computer Logic

Computers

Data Processing Systems
Digital Computers
Special Purpose Computers
Space Probes

Spacecraft

UNCLASSIFIED

Secunity Classification

