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FOREWORD 

This report presents the results of work performed by 

Lockheed's Huntsville Research & Engineering Center while 

under contract to Goddard Space Flight Center, Contract 

NAS5-l1614. This work was accomplished under Phase III 

of the Work Statement of the subject contract. The NASA 

technical coordinator for this study was Mr. Daniel Dembrow, 

of the Delta Project Office. 
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Section 1
 

INTRODUCTION AND SUMMARY
 

The accurate placing of unmanned payloads into specified orbits neces­

sitates that the velocity differential imposed on the payload fall within prede­

termined tolerances. The ability to provide a controlled velocity trim of a 

known magnitude to an orbital vehicle would enhance the possibility of success 

of such missions. The program reported on in this document had as its goal 

the research, development and design of such a velocity trim system for the 

third stage of the Delta launch vehicle. This goal has been achieved. 

A system has been designed which will accomplish the velocity trim by 

injecting an inert propellant into the Delta third stage motor after burnout. 

The heat stored in the motor case is utilized to augment the propulsive 

energy of the injected fluid. In such a system, the inert fluid is sprayed 

into the motor chamber where it either changes phase instantaneously, i.e., 

flashes, or contacts the heated surface of the motor case and subsequently 

vaporizes. The mass of inert fluid which can be vaporized by this system 

is dependent on the amount of heat which can be stored in the spent rocket 

motor case (results from Phase I of this study indicate that 33,000 Btu of 

heat will be stored in the case of the Delta third stage motor at burnout). 

The heated vapor is then expanded to ambient conditions through the 

converging-diverging nozzle of the rocket motor, yielding a useful thrust 

level. A relatively low thrust system results from this approach. 

This report presents the results of work completed during Phase III 

(design) of the planned four-phase study. The results of Phase I, Theoretical, 

and Phase II, Small Scale Testing, which form the basis for this present effort 

are reported in Ref. 1. The Phase IMI study program was divided into two sec­

tions, A and B. Section A was devoted to the development of additional design 
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information needed to complete a detailed design and included extended small­

scale testing and analytical evaluation of fluid types (Ref. 2). In Section B of 

the study a fullzscale working fluid injection velocity trim system was designed, 

The work completed during Phase IJU has resulted in the detailed design 

of a full-scale working fluid injection system for use with the TE-364-3 Delta 

third-stage propulsion system. A set of final design drawings suitable for 

fabrications by any qualifLed source has been generated. 

The description and operation of the inert fluid injection system is pre­

sented in Section Z. Sections 3 and 4 summarize the detailed design of the sys­

tem and present conclusions and recommendations. Calculations made in sup­

port of the final design are presented in Appendixes A through 1. 
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Section 2 

SYSTEM PHYSICAL AND FUNCTIONAL DESCRIPTION 

A system to provide a controlled velocity trim of a known magnitude for 

the third stage of the Delta launch vehicle has been designed. In this system 

the thrust necessary to provide such a velocity increment is obtained by the 

injection of an inert fluid into the spent Delta third stage propulsion motor (a 

TE-364-3 solid propellant rocket motor). The inert fluid is sprayed into the 

motor chamber where it either changes phase instantaneously, i.e., flashes, or 

contacts the hot internal surfaces of the rocket motor and subsequently flashes. 

Approximately 33,000 Btu of heat are available in the TE-364-3 motor case at 

burnout to vaporize the injected fluid. The heated vapor is then expanded to 

ambient conditions through the converging-diverging nozzle of the rocket 

motor, yielding a useful thrust level. The components which comprise the 

Inert Fluid Injection System (IFIS) and their functional relationships are 

described in the remainder of this section. 

Z.1 IFIS DESCRIPTION 

The IFIS, as shown in Fig. 1, has three basic component groups: 

* Inert fluid storage tank and support cone 

* Valving, plumbing and mounting structure 

* Ignition-injector assembly 

The inert fluid storage tank and support cone form the nucleus of the IFIS. The 

fluid storage tank is torus shaped; is to be constructed from Ti-6AR-4V titanium 

alloy; and has a volume of 1.5 cubic feet. Nominal dimensions of the tank are 

given in the sketch on page 5. The tank is designed for a maximum operating 

pressure of 150 psia, utilizing a four to one safety factor on the ultimate stress. 

3 
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b 

C 

a = 10.5 in. b = 3.56 in. c 0.022 in. 

A cone frustum, also constructed of Ti-6AI-4V titanium alloy, supports 

the tank. The base of the frustum flares to a ring which has the 17.6 in. diam­

eter bolt hole pattern for mounting to the forward attach surface on the TE­

364-3 motor. The cone frustum-was designed with an allowable stress of 

50,000 psiwhichis based on a one- and one-half design safety factor applied to 

the yield point stress. The forward end of the frustum is welded to the fluid 

storage tank so that tank and the cone frustum become one part at assembly. 

To support the valves and plumbing used in the IFIS, a channel section, 

fabricated from 0.040 in. titanium (Ti - 6AA-4F) alloy sheet is fastened to the 

cone frustum with blind rivet fasteners. The cone frustum is sandwiched be­

tween the valve support channel and doublers to prevent local buckling of the 

frustum. Holes are provided in the valve support channel for mounting the 

required valves and for routing of the interconnecting plumbing. 

Several types of valves are utilized in the IFIS. Figure 2 presents a 

tabulation of the type, quantity, and basic function of the valves that are 

utilized, and correlates this information with a flow diagram. Two parallel 

flow systems are provided in the IFIS design. Each system is composed of 

a quick disconnect valve; a manually operated, three position, two-way valve; 

5 
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and a pyrotechnically operated normally closed, normally open valve. The 

quick disconnect valve has self-sealing properties to prevent spillage during 

the fill or drain operation. It is to be noted that only the nipple portion of 

the quick disconnect valve is considered a part of the IFIS 

IFIS VALVING REQUIREMENTS 

No. Description Quantity Function 

1 Manual-3 position 
2-way ball valve 

2 Safe and arm valve in 
fill and drain system 

2 Normally-closed, 
Normally-opened, 
pyrotechnic valve 

I Used to initiate and 
terminate fluid flow 
to the injector 

3 Self-sealing quick 
disconnect valves 

2 Provides no-spill inter­
face for fill and drain 
operations 

0 0 

Fig. 2 Flow Diagram for Inert Fluid Injection System (IFIS) 
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A manually operated, 3-position, 2-way valve is used in each flow sys­

tem. By positioning this valve correctly the following functions can be per­

formed: fluid flows through the quick disconnect valve to the storage tank
 

during fill operation (flow is reversed during drain); fluid flows from the tank
 

to the pyrotechnic valve (when in armed position); and there is no flow when
 

the valve is in "safe" position.
 

The pyrotechnically operated valve utilized in the design is a dual-passage, 

four-squib, normally closed, normally open valve. Each passage in the valve 

contains a normally closed and a normally open squib actuated valve. During 

operation the normally closed valves in the passages are actuated simultaneously 

to initiate fluid flow to the injectors. Fluid flow is terminated by simultaneous 

actuation of the normally open valves. 

Thin wall aluminum tubing (0.25 in. o.d. ) interconnects the various valves 

with the exception of the pyrotechnic valve to injector path. A flexible hose, 

used in this location, ensures endpoint compatibility between the pyrotechnic 

valve and ignition-injector assembly. Standard type tube fittings accommodating 

37-degree flared tubing are utilized throughout the flow system. 

The remaining components of the IFIS, which comprise the ignition-in­

jection assembly, are: a modified Thiokol E19578-02 ignition case; a porous 

metal orifice sleeve; and a pyrolytic graphite orifice cover sleeve. To flow 

the quantity of fluid required to meet performance criteria, the Thiokol case 

is modified to accommodate two external bosses with three-fluid feed passage­

ways per boss (see Fig. 2). The fluid feed passageways supply an annular 

manifold which is created during assembly when the porous metal sleeve is 

fitted on the ignition case. Eight orifice (or injector) ports are located around 

the aft end of the porous sleeve. A "press" fit is utilized to hold the porous 

sleeve in place on the aluminum case. A pyrolytic graphite sleeve covers the 

orifice ports to prevent them from becoming clogged during the normal burn of 

the TE-364,3 motor. Unique properties of the pyrolytic graphite are that it has 

a high compressive strength and a low tensile strength, which allow the graphite 
to protect the orifice ports during the high temperature and pressure burn of the 
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TE-364-3 rocket motor. However, the graphite can be removed by applying 

relatively low fluid injection pressure. A retaining ring prevents any relative 

axial movement of the graphite sleeve and porous sleeve during the normal motor 
burn. Buna-N insulation is applied over the total length of the case of the igni­

tion-injector assembly to provide thermal protection during TE-364-3 burn. A 

listing of the components of the IFIS with their applicable drawing number is 

given in Table 1. 

2.2 IFIS OPERATIONAL SEQUENCE 

The functional relationship of the various components which comprise 

the IFIS is most easily understood by following a typical operation sequence. 

First, the necessary ground support equipment (GSE) is connected to the IFIS 

by means of the quick disconnect (QD) valves. The manually operated three­

position valve is placed in the FILL-DRAIN position and the inert fluid is loaded 
into the storage tank. (The fluid is either stored under its own vapor pressure 

or pressurized with dry N2 (G), depending on the fluid utilized. ) After the tank is 

filled with the proper quantity of fluid, the three-position valve is turned to the 

SAFE position and the GSE is removed. The IFIS is then installed on the 

TE-364-3 rocket motor and the flexible lines attached between the pyrotechnic 

valve and the ignition-injector assembly. At a specified time prior to launch 
the four squibs are installed in the pyrotechnic valve and the 3-position valve 

moved to the ARM position. 

If a velocity trim is required after normal burn of the third stage motor, 

the normally closed squib operated ports in the pyrotechnic valve are opened 
by a signal, and fluid flows from the tank to the ignition-injector assem­

bly. Pressure from the fluid then causes the pyrolytic graphite orifice cover to 

fracture, thereby exposing the orifices. The inert fluid is injected into the 

motor case in a direction opposite to third-stage rotation. The fluid vaporizes 

and is expanded to ambient conditions, producing a useful level of thrust. Stor­

age tank pressure and injector orifice size regulate the flow system. After the 

desired velocity trim has been obtained, the normally open squib-operated valves 
are actuated and fluid flow is terminated. The IFIS can be used once during a 

given mission. 
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Table I 

INERT FLUID INJECTION SYSTEM APPLICABLE DRAWINGS 

Item Drawing No. Title Type Drawing 

1 R72420 Inert Fluid Injection Final Assembly 
System Assembly 

2 R 72412 Tank Structure Assembly Subassembly 

3 R72413 Ignition-Injector Assembly Subassembly 

4 R 72414 Tank-Thrust Cone Detailed Weldment 

5 R72415 Valve Support Detailed Weldment 

6 R72416 Doubler Detail 

7 R 72417 Case Detail 

8 R72418 Orifice Sleeve Detail 

9 R72419 Orifice Cover Detail 

10 R72421 Tube Clamp Detail 

10 
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Section 3
 

TECHNICAL DISCUSSION
 

The underlying philosophy of the design of the inert fluid injection system 

was dictated by: the performance goals imposed at the inception of this study; 

the results obtained from Phases I and IT; and the physical and environmental 

constraints imposed by the Delta launch vehicle. A performance goal of a 

total impulse correction of 1% of the total impulse of the TE-364-3 rocket 

motor (or about 4000 lbf-sec) was assumed at the onset of this study. 

Theoretical and experimental results obtained in Phases I and II established 

the feasibility of the fluid injection concept but indicated that a low thrust 

system could be expected, This information is summarized in Appendix A. 

A fluid selection study, conducted in support of the conceptual design indicated 

that a system capable of handling multiple fluids was desirable. Results of 

this investigation are presented in Appendix B. The physical and environ­

mental constraints imposed by the Delta launch vehicle imposed the configura­

tion limitations and structural criteria on the design. A set of design criteria 

that reflected the constraints, limitations, boundaries and results of previously 

completed studies was prepared. Detailed design of the Inert Fluid Injection 

System was based upon these criteria, which are presented in Appendix C. 

Pertinent areas in the design of the IFIS are discussed in the remainder 

of this section. Detailed calculations which support the design are presented 

in Appendixes D through I. 

3,1 MAJOR COMPONENT DESIGN 

3,1.1 Inert Fluid Storage Tank 

The inert fluid storage tank was designed under the following basic con­

straints:
 

11 
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* 	 Storage tank must fit within the boundaries of the 31 x 37 in. 
attach fitting (as defined in Ref. 3) 

* 	 Minimum empty tank weight 

* 	 Must withstand structural loads imposed with a safety factor 
of four applied to the yield point stress of the material 

* 	 Must have a minimum volume of 1.5 ft3 . 

Various tank configurations and materials were evaluated before a final selec­

tion was made. The initial optimum shape was based on minimum weight con­

siderations. Table 2 shows results of a study that considered three tank con­

figurations, each having a volume of 2,085 ft 3 , an operating pressure of 106.2 

psia, and constructed of the same titanium material. 

Table 2
 

TANK CONFIGURATION COMPARISON
 

Shape Wall Thickness (in.) Weight (lb) 

torus 0.020 5.32 

elliptical 0.072 13.22 

spherical 0.0162 2.92 

The spherical tank proved to be the most efficient shape, but it required the 

largest overall dimensions (a diameter of 19.0 inches), and thus could not 

be packaged inside the 31 x 37 attach fitting. Because of these considerations, 

the torus tank shape was selected for use in the design. 

After the tank shape was selected, candidate materials were evaluated. 

Table 3 lists the results of a comparison of the weight of a torus tank con­

structed of various materials. 

12 
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Table 3 

TANK MATERIAL COMPARISON 

Material Density Allowable Stress Thickness Weight 
(Ibm/inN) (lbf/inZ ) (in. ) (lbf) 

17-7 PH Steel 0.273 46,500 0.0135 6.19 

Modified H- 1i 
Steel 0.281 60,250 0.0103 4.88 

Ti-6AM-4V 
Titanium 0.158 31,250 0.0200 5.3Z 

5154 Aluminum 0.096 8,Z50 0.0758 12.27 

This table shows that a tank constructed of Modified H-II steel is lightest in 

weight. However, this advantage is overshadowed by the thin wall which imposes 

fabrication and handling problems. Thus, as a result of these two investiga­

tions, a torus tank constructed of Ti-6A2-4V titanium appeared to be the most 

desirable. 

An alternate method was considered to determine the optimum tank 

material. In this method the tank mass per internal volume ratio is expressed 

as a function of the material properties (density and stress) and the operating 

pressure. Tank materials are compared on the basis of the quantity K where 

K is defined by the following relation 

mass of tank materialintrnavoumeof ank= K (operating pressure)internal volume oftank 

Results of this investigation, presented in Table 4, showed that for the same 

operating pressure and internal volume, the aluminum tank would be heaviest 

and a steel tank the lightest. A titanium material was selected for the tank, 

resulting in a tank weight slightly heavier than steel in order to keep tank wall 

thicknesses large enough to be fabricated easily. 

The resultant tank design selected for use in the IFIS has the character­

istics given in Table 5. In considering these tables, it should be kept in mind 

13 
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Table 4 

ALTERNATE TANK MATERIAL COMPARISON TECHNIQUE 

Material Density Working Stress Ki
 

(Ibm/in.3 ) (lbf/in. Z)
 

17-7 PH Steel 0.276 92.5 x 103 4.475 x 10- 6 

-
x 103 3.497 x 10 60.281 120.5Modified H-1 Steel 

3.792 x 10-60.158 62.5 x 103Ti-8A1-lMo-lV Titanium 

5154 Aluminum 0.096 16.5 x 103 8.727 x 10-6 

Table 5 

IFIS TANK CHARACTERISTICS 

- a Overall Weight 5.138 lb 
1.5 ft 3 

Volume 

Wall Thickness, t 0.022 in. 

Radius "a" 3.56 in. 

b Radius "b" 10.5 in. 

that the tank fits within the 31 x37 attach fitting and does not interfere with the 

spring loaded stage separation mechanism or the safe and arm envelope that 

surrounds the ignition-injection mechanism. 

3.1.2 Gone Frustum Tank Support 

The cone frustum tank support was designed to support the loads imposed 

by the fully loaded tank, the values and associated plumbing; and to provide an 

attach surface for mating the IFIS with the TE-364-3 rocket motor. Preliminary 

analysis, Appendix D, resulted in the selection of titanium (Ti-6AM-4V) as the 

material for the support cone with a recommended wall thickness of 0.016 in. 

14
 

LOCKHEED -HUNTSVILLE RESEARCH & ENGINEERING CENTER 



LMSC/HREC D16266Z
 

3.1.3 Valving and Plumbing 

Valving and plumbing for the IFIS are all commercially available items 

requiring no special modifications. Anticipated sources for these components 

are shown on Fig. 1, List of Materials. 

3.1.4 Ignition-Injector Assembly 

Design of the injector system and of the modifications to the Thiokol 

E19578-02 ignition case presented the most challenging problems of the study. 

The injector system design requirements included: 

* 	 Ability to flow desired flow rates for the selected working 
fluids and to distribute flow over maximum area 

* 	 Ability to withstand environment imposed by the TE-364-3 
ignition and subsequent burn 

* 	 Existing ignition hardware must be used as a basis for the 
design, and it must not detract from the ability of the ignition 
hardware to accomplish its intended purpose, 

The final configuration of the ignition-injection assembly is shown in Fig. 2. 

Four modifications were made to the basic E19578-02 case configuration. The 

number of external bosses was increased from one to two to facilitate the re­

quired flow rates. The width of the 4.00 in. diameter shoulder of the case was 

increased to 0.84 in. to facilitate an increased maximum boss port diameter 

of 0.562 in. Finally, to transfer the fluid to the injection ports, three feed 

passages of 0.125 in. diameter were provided to connect each boss port to 

the fluid distribution manifold. In incorporating these design changes to the 

case, the existing minimum wall thickness was maintained at all locations. 

The fluid distribution manifold is formed by a sleeve constructed of 

porous metal. Eight injector ports are equally spaced around the periphery 

of the aft end of the sleeve. To determine the pore size of the porous material 

of the sleeve, the surface tension of the working fluids was considered along 

with their temperature and pressure characteristics, The minimum pore size 

required is 3 microns with the largest being 104 microns. Suitable materials 

15 
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possessing the required porosities are commercially available. Calculations 

for the pore sizing are to be found in Appendix D. Material pore size for butane 

is 3 microns; for water, 104 microns; and for ammonia, 3.78 microns. 

To protect the injector ports during main motor burn, a pyrolytic 

graphite sleeve was fitted over the aft end of the porous metal orifice sleeve. 

The graphite's unique properties of high compressive strength and low tensile 

strength were utilized in this application. Compressive loads are imposed 

on the sleeve during main motor burn and tensile loading sufficient to fracture 

the graphite exposing the injector ports are imposed by the inert fluid. Cal­

culations for the preliminary sizing of the graphite sleeve are presented in 

Appendix D. 

3.2 THERMAL ANALYSIS 

The thermal analysis conducted in support of the IFIS design consisted 

of an assessment of the effect of the general thermal environment of the tank 

and structure and a detailed thermal analysis of the ignition-injector assembly. 

A review of the third-stage environment requirements indicated that the IFIS 
could function normally under these conditions. To accomplish the detailed 

analysis of the ignition-injector assembly, a two-dimensional axis ymmetric 

thermal model was constructed. Temperature distributions in the ignition­

injector assembly were calculated as a function of time, from main motor igni­

tion for a total elapsed time of 200 sec. Results of the analysis indicated that- a 

minimum of 0.040 in. thick Buna-N insulation should be used over the graphite 

sleeve for added thermal protection, and that improved thermal protection for 

regions of the porous metal sleeve notcovered by the graphite orifice cover was 

needed. Two remedies for improved thermal protectionwere proposed. The 

first involved extending the graphite cover over the entire length of the porous 

sleeve, while the second involved increasing the thickness of the Buna-N in­

sulation. The latter method was selected. Results of the thermal analysis 

are presented in Appendix F. 

16 
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3.3 STRUCTURAL ANALYSIS 

To ensure structural integrity throughout the planned mission, each 

component of IFIS was investigated individually for its respective maximum 

loading conditions. The logical system breakdown is: tank, tank support 

cone, ignition-injector assembly and the plumbing system. 

The tank and support cone were analyzed individually for their maximum 

load case. The tank maximum load occurs when vibrational loading and internal 

pressure are acting in combination. The support cone maximum load is 

experienced when the fully loaded tank vibrational loads act in a mode which 

is trying to buckle the cone. The direct axial loading of the support cone is 

minimal as compared to the critical axial load (critical axial load = 4800 lb; 

direct axial load = 900 ib). Calculations for the tank and thrust cone were 

performed manually, using standard stress equations. A mathematical model 

was constructed to evaluate the tank-thrust cone structure assembly, the purpose 

of which was to verify the hand calculations and to investigate further the weldment 

of the assembly by examining the stresses and deformations throughout the sys­

tem. 

The ignition-injector assembly was analyzed structurally for the following 

imposed conditions: 

* 	 Pressure pulse of 1254 psia applied internally to aluminum
 
injection case caused by pyrogen ignition
 

" 	 Main motor ignition pressure spike of 925 psia for 0.75 sec
 
duration (applied externally)
 

* 	 Thermal expansion caused by resulting temperature distribu­
tions. 

Pyrogen ignition produces an average pressure pulse of 1254 psia, Ref. 4, 

internal to the ignition-injector assembly. Application of the pressure causes 

the aluminum case to deflect radially. To prevent the buildup of excessive 

hoop stresses in the porous orifice sleeve, clearance is provided be­

tween the aluminum case and porous sleeve. This clearance also attenuates 

17 
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stress buildup caused by the temperature distribution and difference in coef­

ficients of thermal expansion of the aluminum and porous materials. 

Applying each of the imposed conditions to the pyrolytic graphite sleeve 

produced the following results. The pyrogen ignition pressure pulse and 

associated temperature rise did not produce stresses large enough to cause 

premature failure of the graphite. Application of the main motor pressure 

transient to the sleeve did produce stresses which could cause the graphite 

to crack prematurely; however, results of a detailed examination of this problem 

indicated that if premature cracking did occur, the pressure gradient created 

by the main motor burn and the Buna-N insulation which overlays the graphite 

will hold the graphite sleeve in place. Under normal operating conditions the 

graphite sleeve will fail in tension when a fluid pressure of 19 psia is applied 

to its internal surface. To obtain these results the graphite material was 

assumed to have properties associated with a temperature of 1886 0 F. To 

complete the structural analysis, the valves, fitting and plumbing were evaluated 

for normal operating and burst conditions. Values used were obtained from 

manufacturer's recommended data. 

A discussion of the structural analysis is presented in Appendix G. 

Table 6 summarizes the results. 

3.4 FLOW SYSTEM ANALYSIS 

The inert fluid injection system utilizes two identical and parallel fluid 

piping systems to provide flow from the fluid tank to the rocket motor chamber. 

A one-dimensional incompressible flow analysis of the piping system was con­

ducted to calculate total head loss and to size the injector ports (or orifices) 

for the three possible fluid choices. In the analysis total head loss included 

form and shear losses. Mass flow rates predicted on the basis of performance, 

see Appendix B, were used in analysis. Details of the calculation of total head 

loss are shown in Appendix E. Table 7 presents the results for the three fluids 

considered. 
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Table 6 a 

STRUCTURAL ANALYSIS DESIGN RESULTS 

Maximum Allowable Maximum Actual Design Margin Condition for Basis of 
Item Pressures Pressures Safety of Margin of 

(psia) (psia) Factor Safety Safety 

Pyrotechnic Valve 3300 0 (operating) 150.0 (operating) 4.0 4.5 Operating 
7000.0 (burst) 925.0* 4.0 1.02 Burst 

Manually Operated 3-Position 
Valve 2000.0 (operating) 150.0 (operating) 4.0 2.33 Operating 

Quick Disconnect Nipple 	 2800.0 (operating) 150.0 (operating) 4.0 3.66 Operating 
7000.0 (burst) 9z5.0* 4.0 1.02 Burst 

Flexible Hose 1500.0 (operating) 150.0 (operating) 4.0 1.5 Operating 
7000 0 (burst at high 925.0* 4.0 1.02 Burst 

temperature) 

Hard Tubing 	 1378.0 (operating) 150.0 (operating) 4 0 1.29 Operating 

'Assumes TE-364-3 Chamber Pressure felt upstream of injector. 

Table 6b 

STRUCTURAL ANALYSIS DESIGN RESULTS 

Item Maximum Allowable Maximum Actual Design Margin Conditions for Basis of 
Stress or Condition Stress or Condition Safety of Margin of 

Factor Safety Safety 

Toroidal Tank 	 150 0 (internal operating 150.0 (internal pres- 4.0 0.102 Ultimate Stress 
pressure) 	 sure)
 

0.288 

Thrust Cone (Tank Support) 	 System weight 60 lb 
Dynamic Load Applied 1.5 2.38 
15 g vertical, 3 g 

22,100.0 psi (Hoop lateral 
Orifice Sleeve Tension) 6915.0 lbf/in2 1.5 1.13 (yield stress) t 

Orifice Cover (graphite sleeve) 	 10,000 psi comp Thermal expansion 1.5 0.362 Max allowable tension 
stress 'c" direction 

500 psi tension 925.0 psia (chamber * -0.555 Max. allowable corn­
pressure) pressive stress 1a1i

direction. 

No Safety Factor applied 
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Table 7
 

FLOW SYSTEM ANALYSIS RESULTS
 

Fluid Mass Flow Rate Port Diameter Total Head Loss 
(in, ) psia 

Butane 0.564 0.090 33.54 

Water 0.0474 0.021 28.676 

Ammonia 0.067 0.031 16.93 

3.5 SYSTEM WEIGHT 

The IFIS was designed to meet a design goal of 60 lb wet weight with a 

fluid mass fraction of 0.80. The calculated total weight of the loaded IFIS 

is 59.907 lb, (see Appendix H), which includes 50 lb of inert fluid. This re­

sults in a fluid mass fraction of 0.835. The change in the fluid mass fraction 

with ullage is presented in Table 8. 

Table 8 

VARIATION IN FLUID MASS FRACTION
 
WITH CHANGE IN ULLAGE
 

Fluid Mass 
Ullage Weight Fraction

(lb) 
0 0.8346 

1 0.8316 

2 0.8289 

3 0.8259 
4 0.8277 

5 0.8195 

6 0.8162 
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The amount of ullage required for a given fluid is dependent upon the anticipated 

rise of the fluid temperature above nominal loading temperature. Graphs are 

presented in Appendix H which show the amount of ullage (in percent of total 

volume and in pounds) required as a function of loading temperature. 

3.6 MOMENT OF INERTIA 

The mass moment of inertia of the IFIS was calculated about the longi­

tudinal axis of the Delta vehicle for the fully loaded condition and for a series 

of conditions corresponding to a time history of mass remaining in the tank. 

The moment of inertia of the dry IFIS is invariant with time and was calculated 

to be 0.1604 slugs-ft . The change of mass moment of inertia as a function 

of time was calculated for three systems using butane, water and ammonia, 

respectively, and is presented in Fig. H-4. Details of these calculations are 

presented in Appendix H. 

3.7 SYSTEM PERFORMANCE 

The performance available from the IFIS was calculated as a function of 

the characteristics of the three fluids considered in this design. One-dimen­

sional isentropic compressible flow relations were used to calculate the per­

formance of each fluid. Each fluid was assumed to be 

* 	 Completely vaporized in the combustion chamber of the spent 

rocket motor
 

" Expanded to the same area ratio
 

* 	 Treated as an ideal gas, that is, constant ratio of specific 
heats. The design mass flow rate associated with each fluid 
is limited by the rate at which fluid can be vaporized. 

The vaporization rate, which is indicative of the heat transfer rate, is, in turn, 

a function of various fluid characteristics and wall surface conditions. Thus 

the performance obtainable from each fluid is a direct function of heat transfer 

process. A detailed discussion of the performance analysis can be found in 

Ref.2, and in Appendix B of this document. Figure 10 of Appendix B presents 
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a plot of total impulse available from the IFIS as a function of injection time 

for butane, water and ammonia. The total mass injected as a function of 

injection time for each of the fluids is shown in Fig. 11 of Appendix B. An 

additional definition of the system performance is presented in Table 9. 

3.8 CHECKOUT AND HANDLING PROCEDURES 

The procedures written for the IFIS fall into three basic categories: 

assembly, leak checks, and fill and drain operations. Associated with the 

procedures is the definition of specialized servicing equipment or fixtures 

(GSE and GHE). In general, the procedures, presented in Appendix I, are 

composed of step-by-step instructions supplemented by the appropriate 

schematics and diagrams. The specific procedures which are provided are 

(1) environmental temperature constraints; (2) IFIS/TE-364-3 assembly pro­

cedure; (3) leak check and functional testing procedure; and (4) fill and drain 

procedure.
 

Only one piece of specialized hardware is specified by the procedures 

for handling the IFIS, A fixture to hold the tank in the proper position during 

fill and drain operation is needed. The remainder of the required GSE can be 

constructed of standard valves and plumbing. GSE requirements are specified 

in each procedure. 
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Table 9 

SYSTEM PERFORMANCE PARAMETERS 

Item Ammonia Butane Water 
(NH3 ) (C 4 H1 0 ) (H O) 

Molecular Weight 17.03 58.12 18.016 

Ratio of Specific Heats 1.3 1.11 1.33 

Conditions in Motor Chamber 
Initial (t, = 1.0 sec) 

Chamber Pressure, psia 0.324 1.835 0.305 

Chamber Temperature, 'R 315.0 411.8 5.0 

t 160.0 sec 
Chamber Pressure, psia 0.270 1.028 0.214 

Chamber Temperature, 0R 309.5 394.5 515.0 

Mass Flow Rate, ibm/sec 

Initial, T1 = 1.0 sec 0.0673 0.564 

t, = 160.0 see 00.0563 0.332 0.035 

Thrust 
=Initial, t1 1.0 sec 5.397 34.4 5.013 

t, = 160.0 sec 4.50 19.17 3.51 

Specific Impulse, lbf-sec/lbm 

Initial, t i = 1.0 see 80.2 61.0 100.53 

t = 160.0 sec 80.4 57.8 99.34 

Total Impulse Produced at 

t, = 160.0 sec 784.7 4014.3 666.9 

(lbf-sec) 

Z3
 

LOCKHEED- HUNTSVILLE RESEARCH & ENGINEERING CENTER 



LMSC/HREC D162662
 

Section 4 

CONCLUSIONS AND RECOMMENDATIONS 

As a result of the effort expended on this contract, a full-scale inert 

fluid injection system (IFIS) was designed. The IFIS, designed for use with 

the TE-364-3 solid propellant rocket motor, will provide a velocity trim 

capability for the third stage of the Delta vehicle that is independent of vehicle 

payload. The IFIS design is configured for use with three basic fluids, butane-n, 

water or ammonia, and it could be adapted with reasonable ease to use other 
inert or active fluids, if required. The resulting system is light weight and 

has a fully loaded fluid mass fraction of 0.83. Application of this concept 

results in a velocity trim system that requires no additional combustion cham­

bers or expansion nozzles in order to produce a usable level of performance. 

In addition, with the exception of the storage tank, support cone, and ignition­

injection assembly all components external to the TE-364-3 are "off-the­

shelf" items, requiring no re-design. Thus the IFIS represents an effective 

and economical means to achieve desired velocity trim. 

It is therefore recommended that a full scale IFIS be constructed and 

evaluated. The IFIS could be evaluated as a non-critical part of a Delta mission, 
or suitable facilities exist at the Arnold Engineering Development Center for 

ground tests of the system. 
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Appendix A
 

RESULTS OF EXPERIMENTAL INVESTIGATION CONDUCTED
 
WITH SCALED SIMULATED ROCKET MOTORS
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Appendix A 

The experimental phase of this study (Phase UI) was conducted to con­

firm the concepts of an inert fluid injection system that were evolved from 

theoretical considerations. To accomplish this task, a set of experimental 

hardware was developed and a test program conducted. Two test model con­

figurations were designed and fabricated for these tests. The baseline model 

(Fig. A-i) was spherical, and was dimensionally similar (one-fourth dimen­

sional scale) to the TE-364-3 rocket motor now being used as the propulsion 

unit on the third stage of the Delta vehicle. No attempt was made, however, 

to design the model to be a dimensionally or thermally "scaled" model of the 

TE-364-3 rocket motor. The second configuration of the model was created 

to determine the effect of length-to-diameter ratio on system efficiency. This 

configuration consisted of a cylindrical insert placed between the forward and 

aft hemispherical domes of the baseline mod~l. fBoth model configurations 

had provisions for varying and measuring the required test parameters. De­

tails of the model design and fabrication and test stand hardware can be found 

in Ref. A- i. 

The test program conducted during this study was primarily concerned 

with demonstrating the feasibility of generating a usable level of propulsive 

work by the injection of water into a heated chamber. To accomplish this ob­

jective a series of tests was conducted to evaluate variations in inert fluid flow 

rates, injector spray distribution and drop size, mode of fluid injection, model 

length-to/diameter ratio and initial amount of residual heat stored in the test 

model. Inert fluid flow rates were varied by controlling the pressure differ­

ential on the injector. Spray distribution and drop size were varied by utilizing 

injector nozzles of different diameters and arrangements for a specified range 

of fluid injector pressure drop. Injection was controlled manually, and con­

sisted of continuous fluid injection and pulsed injection. The amount of 

residual heat stored in the model was controlled by the length of time the 

A-i 
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All dimensions are 
in inches 

T/C Typ 4 equally spaced - 8 

T/C Typ 2 equally spaced - 44 

Total-Gas Temp. Probe - 3 
Pressure Probes - 2 

57 8.0 

Insert: Graph-I-Tite 
Total Temperature 
Probe (Typ) 

I 0.08 Pressure 

BurnerBurner/Impac 0.06Probe andt 
Injector Temperatu: 

Probe 

-0.82 dian. 5.0 diam. 

8.520 i.d. (Case)
Pressure ort (Ty) 

Case 1/8-thick 316 Cres Stainless Steel 

NOTE: 	 All liner material is 
Hi-Silica glass cloth 

Fig. A-i - Basic Dimensions of Spherical Subscale Motor
Used in Experimental Test 
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pro-heat burner was permitted to operate. The heating process was limited 

by the burner flame temperature and the heating value of the fuel-oxidizer 

combination that was used. The effect of changes in model length-to-diameter 

ratio was evaluated using the cylindrical model configuration. Test data re­

corded on each run included: detailed temperature distribution time histories, 

model chamber pressure, water mass-flow-rate into model, and total tem­

perature at model exit plane. A discussion of utilization of the temperature 

data to evaluate the analytical heat transfer results is presented in Ref.A-l. 

Representative performance results from tests conducted with the 

spherical and cylindrical test models are shown in Figs. A-Z and A-3. Data 

from runs I through 6 of Test 12 conducted with the spherical model are pre­

sented in conjunction with data from test runs 3A-3, 7B-1, 7D-l and 9B-I 

conducted with the cylindrical configuration. 

Sonic specific impulse as a function of measured mass flow rate is pre­

sented in Fig. A-2. The specific impulse values were calculated using the 

following equation and corrected experimental values of total temperature. 

I = 2.45 T 
sp 

In calculating the specific impulse by this method, it is implied that mass­

flow-in is equal to mass-flow-out, but this is not necessarily true for these 

tests. When mass is not conserved (A.nin > h out), the problem becomes much 

more complex in that mass is accumulating within the model chamber, i.e., 
"puddling" occurs. In this case specific impulse calculated using the above 

equation represents an upper limit for a given chamber temperature. 

Thus, to interpret the data plotted in Fig. A-2 properly, it must be 

known if mass is conserved for the test condition. Figure A-3 presents a 

plot of test model chamber pressure as a function of measured mass-flow­

rate-in that aids in determining if hin does equal A~nout. Data presented in 

Fig. A-3, are shown relative to a curve corresponding to the vapor pressure 

A-3 
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Fig. A-Z - Specific Impulse as a Function of Mass Flow Rate from 
Experimental Data (Test 12) Using Subscale Spherical
and Cylindrical Models 

A-4 

LOCKHEED- HUNTSVILLE RESEARCH & ENGINEERING CENTER 



LMSC/HREC D162662
 

.} t.t [.....
8 -4
8 Sa. Run 1ES I 4f 1 it; -T­

0 ' Subscripts indicate time measured ,
_from initiation of 2 0 injection 

3 - 1=30 sec 

4 i 3 = 100 sec 
46 

Hz0 injected at 15-sec * - 4­
b pulses at 30-sec intervals 

V -I- Corresponds to Vapor"-'-­
101-- :I_ Pressure Curve forH. 

W •it:- H O 
3.4 

L) 44" - z" 

blsindi Dt 
F g --.- C P a a F i n os R at o. 

. I INOE:Suscrpt_- 3A-3 o"sli 

2 - U LESR I 
_ - A9 - 7B­- 9B-1 

_iNTE: Subscripts on solid 

0 0 
I 

I it Iseconds measured from 
lnection initiation 

104 3 4 5 6 7 8 9 10- 3 2 3 4 5 6 
M~easured Mass Flow Rate, H20 Injected into MVodel Chamber, r i (b m/sec ) 

Fig. A%-3 - Chamber Pressure as a Function Of Mass Flow Rate from 
Experimental Data (Test 12) Using Subscale Spherical and 
Cylindrical Models 

A%-5
 
LOCKHEED -HUNTSVILLE RESEARCH & ENGINEERING CENTER 



LMSC/HREC D162662
 

curve for water. Points lying on the "vapor pressure" curve represent con­

ditions where the indicated mass flowing into the system is being totally 

vaporized at the associated pressure and corresponding vaporization tem­

perature and expelled through a specified throat. When puddling occurs, all 

of the mass flowing into a system is not being vaporized and expelled and it 

therefore does not contribute to the chamber pressure. Points corresponding 

to these conditions will fall to the right of the "vapor pressure" curve. When 

superheating of the vapor occurs, the chamber pressure corresponding to a 

given mass flow rate increases. Data points representative of these conditions 

fall to the left of the vapor pressure curve. 

It was concluded from these test results and the associated analytical 

study that the concept of trinning the velocity of an orbital vehicle by pro­

ducing a usable level of propulsive work by the recovery of the residual heat 

stored in a spent solid rocket motor is feasible provided that sufficient heat is 
available. Using a 700F reference temperature, it was determined that ap­

proximately 33,000 Btu are available in the TE-364-3 motor case at burnout 

for conversion into propulsion energy. 

Appendix A 
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Appendix B*
 

FLUID SELECTION AND PERFORMANCE
 
CALCULATIONS
 

Work accomplished under Task 2 of the Work Statement of Contract NAS5-11614. 
The report is included here as Appendix B as a convenience to the reader. 

LOCKHEED -HUNTSVILLE RESEARCH & ENGINEERING CENTER 



HREC 1164-3
 
LMSC/HREC D162373 

LOCKHEED MISSILES & SPACE COMPANY 

HUNTSVILLE RESEARCH & ENGINEERING CENTER 

HUNTSVILLE RESEARCH'PARK 

4800 BRADFORD DRIVE, HUNTSVILLE, ALABAMA 

FLUID SELECTION STUDY FOR
 
AN INERT FLUID INJECTION
 

PROPULSION SYSTEM
 

June 1970
 

Contract NASS-11614
 

Prepared for NASA-Goddard Space Flight Center
 
Greenbelt, Maryland
 

by 
L.R. Baker, Jr. 

APPROVED: <oc - -' ! -
J.W. 	Benefield, Supervisor 

Propulsion Section 

G.omeanagepM 
Aeromechanics Dept 

S5. Warrior 

a ident Director 



LMSC/HREC D162373
 

FOREWORD
 

This report presents the results of work performed by 

Lockheed's Huntsville Research & Engineering Center while 

under contract to Goddard Space Flight Center, Contract 

NAS5-11614. This work was accomplished under Task 2 of 

the Work Statement of the subject contract. The NASA tech­

nical coordinator for this study is Mr. Daniel Dembrow, of 

the Delta Project Office. 
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INTRODUCTION AND SUMMARY 

A study is being performed to design a propulsion system which will 

provide an orbital velocity trim capability for the Delta rocket launch vehicle. 

A system is being designed which will accomplish the velocity trim by inject­

ing an inert propellant into the Delta third-stage motor after burnout and using 

the heat stored in the motor case to obtain or augment the propulsive energy 

of the injected fluid. A relatively low thrust system results from this approach 

This report presents the results from an evaluation of several can­

didate fluids for use in the inert fluid injection system. The need for 

this study became apparent after analytical and experimental results for water 

revealed that, using water, the desired total impulse could not be produced in 

a time interval commensurate with the intended application. The inert fluid 

selection criteria presented in Ref. 1 was utilized with the boundary conditions 

presented in this report to evaluate the candidate fluids. 

The results of the present study show that there are fluids which have 

properties consistent with the required objectives of the problem. Several 

potentially acceptable fluids were found using screening criteria involving: 

low latent heat of formation; low molecular weight; low specific heats; high 

vapor pressure; and high heat transfer coefficient between the wall and the 

fluid. Six of these fluids were studied in detail to evaluate performance char­

acteristics of the system. Of the six - ammonia, butane, Freon 12, propane, 

ethane and sulfur dioxide - butane and Freon 12 were found to provide good 

performance. The remaining fluids were eliminated because the desired 

total impulse could not be generated in a time span consistent with application 

requirements. 

Using butane as a working fluid, the nominal characteristics of the sys­

tem were calculated to be: 
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Thrust 

tI = 1.0 sec 34.4 lbf 

t I = 160 sec 19.17 lbf 

Installed specific impulse z 56.07 lbf-sec/lbm 

Fluid mass fraction 0.97 

Amount of fluid for 

4000 lbs-sec total impulse 68.0 lbM 

Time increment for achieving 

4000 lbf-sec impulse 160.0 sec 

In the study, the rate at which heat was transferred from the motor case to 

the fluid was assumed to be limited by the heat transfer coefficient of the 

fluid. A detailed analysis was made of the conduction of heat through the 

motor case to the internal surface. This analysis indicates that the heat con­

duction rate to the surface is approximately equal to the heat transfer rate 

needed to support the vaporization rates associated with the heat transfer 

coefficients used in this study. 
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DISCUSSION 

Candidate fluids for use in the fluid injection velocity trim system 

were evaluated using criteria presented in Ref. I and a prescribed set of 

boundary conditions. The boundary conditions applied to the selection 

criteria reflect limitations imposed by the system application and the phys­

ical phenomena being considered. These boundary conditions are: 

1. 	 A minimum of 4000 lbf-sec total impulse is required. 

Z. 	 A maximum fluid injection time of ZOO sec can be used 
to obtain the total impulse. 

3. 	 A fluid mass fraction of 0.8 or larger is desired. 

4. 	 The injection mass flow rate must not exceed the flow 
rate that can be supported by the heat transfer process. 

5. 	 The fluid must be storable under its own vapor pressure 
at launch pad conditions. 

After an initial screening, the following 13 fluids were considered for use in 

the fluid injection velocity trim system: 

Ammonia 

Butane 

Ethane 

Ethylmethyl Ether 

Freon i1 

Freon 1Z 

Freon 13 

Freon ZZ 
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Hydrogen Cyanide 

Hydrogen Sulfide 

Methylamine 

Propane
 

Sulfur Dioxide 

Further evaluation of the fluids on this list resulted in the elimination of 

seven fluids prior to the detailed study. Hydrogen sulfide (HZS) and hydrogen 

cyanide (HC) were eliminated from consideration because of high melting 

points. Ethylmethyl ether and melthylamine were dropped from contention 

due to lack of adequate property data on which to base a detailed study. 

Fluids with similar properties were studied. Freon 1i, Freon 13, and Freon 

ZZ were not considered in the detailed study because their properties were 

quite similar to those of Freon 1Z which was studied. 

The candidate fluids considered in detail in this study are: ammonia, 
0NH 3 ; butane (ni), C4 H 1 0 ; ethane, C2 H 6 ; Freon 1Z, Cc ZFZ; propane, C 3 H 8 ; 

and sulfur dioxide, SO. The thermodynamic properties of these fluids as 

a function of fluid state (vapor pressure and temperature) are presented in 

Table 1. References 2 through 6 were consulted to obtain the data presented 

in this table. 

To determine if the candidate fluids satisfied the system boundary con­

ditions, performance and heat transfer data for each of the fluids were calcu­

lated. In order to simplify the analysis and provide a realistic basis for 

evaluation of the fluids, the rocket motor was assumed to have a bulk tem­

perature of 1340.00F at the time fluid injection was initiated. The TE-364-3 

rocket motor was utilized in this study and is briefly described by the infor­

mation presented in Table Z. The effect of vehicle stabilization spin on the 

performance of the system was neglected in this analysis. 
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Heat transfer coefficients, h, were calculated at various states on the 

vapor pro i ',- cuirvo o each of the candidate fluids. 'The equation used for 

h is a t onipLux relation, involving the dimensions of the heated surface and 

This relation was used in determining heat transferproperties of the fluid. 


coefficients on the forward and aft shells of the spherical test model (Ref. 1,
 

page 9, Eq. (2.4)). Figure I shows h for each of the fluids plotted as a func­

tion of the temperature of the fluid. Values of h were utilized to calculate
 

representative heat transfer rates to the fluid for each of the fluid states
 

using the following relation:
 

=4 hAAT (Btu/sec) 

where 
area (A = 3225 in ) 

A is the heat transfer surface 

AT is the temperature differential between the rocket 
case and the fluid. 

An estimate of the rate at which a fluid could be vaporized was then obtained 

from the following equation: 

HT = - (lb /sec) 
v 

where 

Ahv is the latent heat of vaporization of the fluid at the 
v fluid state being considered. 

Since it is desirable to vaporize all of the fluid being injected, the vaporiza­

tion rate can be taken as the maximum acceptable mass flow rate for system 

The mass flow rate required to obtain choked flow in the rocketoperation. 


motor throat for each of the fluid states was calculated by the relation
 

A t gPc 
=i * (lb /ec) 

whe re 
Pc is the operating chamber pressure (fluid vapor pressure) 

At is the area of rocket throat 

C is the characteristic velocity and is a function of temperature. 
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Values of -xHT and imc were calculated for a series of states on the 

vapor pressure curves of the candidate fluids for each value of the bulk tem­

perature of the rocket motor case. Results of these calculations for the 

initial fluid injection condition (Twall = 1340 0 F) are presented in Figs. 2 

through 8. The point on each graph where xiHT crosses Aic represents the 

maximum choking mass flow rate that the heat transfer rate can support at 

that wall temperature. The motor chamber operating conditions as a func­

tion of time are determined from the mass flow rate pertaining to each of 

these points. Figure 9 shows the variation in maximum choking mass flow 

rate as a function of wall temperature for each of the candidate fluids. 

The performance of each of the fluids was calculated using one­

dimensional isentropic compressible flow relations. Each fluid was assumed 

to be expanded to the same area ratio and was treated as an ideal gas, that 

is, constant ratio of specific heats. A summary of the results of the per­

formance calculations is presented in Table 3. The predicted total impulse 

generated as a function of injection time for each of the candidate fluids is 

shown in Fig. 10. An associated plot of weight of fluid required as a function 

of injection time for the candidate fluids is presented in Fig. 11. 

In order to apply the selection criteria, an estimate of the system 

weight was obtained. For the storage tank weight the fluids were considered 

to be stored under their own vapor pressure at 70 0 F. Estimates of tank 

weights were made for a system design that would accommodate the total 

amount of each candidate fluid that could be utilized in 160 sec. Two possible 

tank materials were considered (titanium and Vascomax). The method used 

to estimate tank weight essentially follows the technique used in Ref. 7. Tank 

weight was obtained from the relation 

WT = vp K 1 

where 

v is the volume required to store mass of fluid to be used. 

p is the storage pressure 

K1 is the constant determined from tank material properties 
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(K = 3 (material density) 
1 (working stress) 

Estimates of the tank weight for the conditions considered are presented in 

Table 5. 

In order to evaluate the candidate fluids in terms of the velocity differ­

ential inparted to the vehicle, representative values were assumed for the 

payload and system hardware weights (Table 4). The velocity differential 

which could be imparted to the vehicle by each candidate fluid and the velo­

city differential penalty for carrying the inert fluid system onboard were 

calculated and are presented in Table 5. 

The following relations (Ref. 8) were used to calculate the velocity 

differential values considered in the study: 

Third-Stage Velocity Increment Due to Main Motor (TE-364-3) 

spIng o.without fluid system AV m 

with fluid system on board - AV' , I ~ ll-+(~ ~ 

Velocity Increment Due to Trim System 

b.. +cop +0H +WT +0fld;V =I gIn
Ts spg \ b 0. + 

Velocity Differential Penalty 

AVp = AV m - AV'n + AVTs 

Definition of the parameters used in the above relations can be found 

in Tables Z through 4 along with the values utilized in the calculations. 
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RESULTS 

Utilizing the data presented in the attached tables and figures, the 

boundary conditions and selection criteria can be applied to the candidate 

fluids. Considering the boundary conditions (page 3) first, examination of 

Figs. 10 and 11 and Table 3 reveals that of the candidate fluids considered 

only two, butane and Freon IZ, satisfy all boundary conditions. Ammonia, 

ethane, propane, sulfur dioxide, and water were eliminated on the basis of 

boundary conditions 1 and 2. 

Considering the maximization of the installed specific impulse, that is: 

(installed specific impulse) = (specific impulse) (fluid mass fraction) 

butane emerges as the better of the two systems (Table 3, Item 15). If max­

imization of the velocity differential imparted to the representative vehicle 

by the inert fluid system (Item 12) is considered, the butane has an edge over 

the Freon 12. Extension of the AV criteria to include the velocity differential 

penalty imposed on the stage propulsion system by carrying the inert fluid in­

jection system onboard and ultimately using all the fluid indicates that butane 

is the obvious choice of the two fluids. Thus, based on the boundary condi­

tions and criteria imposed, butane is most suitable for use as the working 

fluid in the fluid injection system. 

Applying the selection criteria with boundary condition Z removed 

makes ammonia and water more attractive as possible working fluids because 

of their relatively high specific impulse. 

The hardware concepts considered during this study lend themselves 

to the development of a versatile system capable of handling serveral different 
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types of fluids. Thus, even though butane best satisfies the applied boundary 

conditions and criteria, ammonia or water could also be utilized in the same 

system when alternate constraints are applied. A "growth" version of the 

system utilizing hydrazine or some other monopropellant is also well within 

the realm of possibility with this system. 

9 
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CONCLUSIONS 

The 	conclusions obtained from this study are: 

1. 	 Based on the boundary conditions and selection criteria 

applied to the candidate fluids, butane is the optimum 

choice of a working fluid for a fluid injection velocity 

trim system. 

2. 	 The hardware concepts utilized in the study lend them­

selves to the utilization of any of several fluids without 

system modification. 

3. 	 "Growth" versions of the system using an active pro­

pellant are within the realm of possibility. 

1O
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Table 1 
THERMODYNAMIC PROPERTIES OF THE CANDIDATE FLUIDS 

Fluid 

VaporTempor 
Temperatire 

R) 

pr 

Pressure
(psia) 

Thermal 
Conductivity 

Btu 

\hr-ft-°R/ 

Specific 
Heat, C LatentHeat of 

mu ) Vaporzaton
b (Btu/Ibm) 

Dest 
Liquid Phase 

(Ibm/ft 

Dniy 

Vapor Phase 

( ) 
Vscosty 

(bmlftseC) 

Ammonia 538.3 
500.2 
458 4 

146.9 
73.48 
29.392 

0.0142 
0.0129 
0 01135 

0.7575 
0.665 
0 5865 

501.2 
536.2 
570.0 

37.65 
39.49 
41 40 

0.4827 
0.2518 
0.1060 

6.7869 x i0-6 
6.2493 x 10 6 

5 7789 x 10 ­ 6 

431 5 
409.68 

14.696 
7 736 

0 0103 
0.0094 

0 5425 
0.510 

589.3 
604.0 

42 56 
43.47 

0.05555 
0.03066 

5.5102 x io - 6 
5 1742 . 10 - 6 

368.28
353.0 

1.934
0.912 

0.00775
0.0071 

0 445
0.425 

629.0
640.0 

45 08
45.80 

0 00836
0.00413 

4.7709 . 10 - 6
4.5694 x 10 

Butane 590.0 
560.0 

80.83 
51.37 

0.01 
0.0092 

0.43 
0.425 

141.5 
150.5 

33.52 
34.83 

0 8598 
0.5531 

5 5438 x 106 
5 Z078 x 10 - 6 

530.0 
491.1 

31.2 
14.696 

0.0085 
0.00775 

0 405 
0.380 

157.5 
165 5 

36 05 
37 57 

0.3415 
0 1690 

4.9389 . 10 - 6 
4.603 x 10 ­6 

470 0 9.21 0.0074 0.365 169.5 38.26 0.1105 4 4014 x 10 - 6 
435.8 
412.4 

3.868 
1.934 

0.0069 
0 0066 

0 340 
0.325 

175.5 
129.5 

39.40 
40.20 

0.0600 
0.0400 

4.3133 x 10_6 
3.9646 x 10 - 6 

385.6 0 7736 0.00625 0.305 183.0 41.00 0.0250 3.763 x 10 - 6 
351.96 
337.7 

0.1934 
0.0967 

0 0059 
0.00575 

0.Z80 
0.270 

188.5 
190.0 

42.00 
42.50 

0.01250 
0.0050 

3.5278 
3 4Z7 

x 10 . 6 
x t0 6 

Ethane 530.0 
500.0 
460.0 
400.0 
332.44 
310.0 
280.0 
260.0 

563.3 
388 10 
220.80 

77.37 
14.696 
7.14 
Z.20 
0.85 

0.0119 
0.01085 
0.0096 
0.00765 
0 00552 
0.0049 
0.00395 
0.00335 

0.700 
0.6875 
0.6710 
0.6465 
0.6190 
0.6100 
0.5975 
0.5890 

87.00 
123.3 
153.9 
1843 
209.4 
217.1 
225.6 
231 0 

21.62 
25 30 
28 01 
31.26 
34.12 
34.95 
36.05 
36.76 

5.571 
3.306 
1.746 
0.612 
0.128 
0.06623 
0.0227 
0.09276 

6 13 
5.8 
5.36 
4.74 
4.10 
3.91 
3 675 
3 54 

x i0 6 

x 10 - 6 

x 106 
x 10-6 
x 10-6 
x 10-6 
x 10­
x 10 ­ 6 

Freon 12 530.0 
500.0 
460.0 
438.4 
420.0 
370.0 
360.0 

84 80 
51.667 
23.$49 
14.696 
9.3076 
2.0509 
1.428 

0.00547 
0.00495 
0.00425 
0.00387 
0,00355 
0.00268 
0.0025 

0.1732 
0.1729 
0.1721 
0.1718 
0.1715 
0.1707 
0 1705 

60.309 
64 163 
68 75 
71.00 
72 913 
77 764 
78.714 

82 717 
86.296 
90.659 
92.80 
94 66 
99.274 

100.15 

0 0451 
0 0632 
0.2581 
0.394 
0.622 
1.2927 
2.0913 

8.17 x - 6 

7 9628 x 10 - 6 

7.56 . 10 -

7.33 x 106 
7.0893 x 10 ­ 6 
6.48 a 106 
6.3165 x 10 ­ 6 

Propane 530.0 
500.0 

124.68 
78.521 

0.01005 
0.0087 

0.395 
0 377 

145.71 
156.743 

31.2351 
32.734 

1.1716 
0.74168 

5.4 
5.08 

x 0 ­6 

x 106 

460.0 
416.27 

38.3443 
14.696 

0.0076 
0 0060 

0.355 
0 327 

169 607 
- T19.97 

34.7671 
36.36 

0.33977 
0.15181 

4.675 
4.17 

x 10 - 6 

x 10 ­ 6 

360.0 2.8814 0.0040 0.291 196 Z0Z 38.4634 0.03339 3.675 x 10.6 
340.0 1.444 0.0033 0.280 201.3 39.10 0.0185 3.48 x 10 6 
300.0 
280.0 
260.0 

0.3472 
0.1701 
0.08333 

0.0029 
0.0012 
0.0005 

0.255 
0.Z43 
0.230 

211.2 
216.0 
221.0 

40.50 
41.50 
42.10 

0.0053
0.00285 
0.0015 

3.08
2.88 
2.70 

x 106 
x 10 ­ 6 
x 10 - 6 

Sulfur
Dioxide 

560.0
520.0 

84.10 
40.30 

0.0057 
0 0053 

0.15 
0.1475 

148.2 
157 8 

83 0565 
87.03219 

0.9804 
0.4878 

8.601 
8 064 

x j0 ­ 6 

x 10-6 
500.0 
460 0 
420.0 

26.60 
10.26 
3.120 

0.0051 
0.00475 
0.0044 

0.146 
0.1435 
0.1405 

162.2 
170.3 
178.4 

88.8888 
92.4214 
95.7854 

0 3311 
0.1360 
0.04504 

7.795 
7 324 
6.653 

x 106 
x 10 ­ 6 

. 10 6 

400.0 1.550 0.00425 0.1395 182.3 97.5609 0.02347 6.384 x 106 
360.0 0.294 0.00395 0.135 190.1 101.461 0.004885 5.879 x 106 

Water 672.0 
6600 

14.696 
11.526 

0.0139 
0.0135 

0.4515 
0.4510 

920.33 
977.91 

59.8 
60.132 

0.0373 
0.0297 

8.399 
8 131 

x 10.6 
x 10 ­ 6 

620.0 4.741 0.0122 0.4495 1002.31 61.0128 0.01293 7.593 . 10 ­ 6 
560.0 0.9492 0.01055 0.4465 1037.23 61 996 0.00285 6 787 x 10 _ 6 

540.0 0.5069 0.0101 0.4460 1048.58 62 189 0.00158 6.585 x 10.6 
520.0 
500.0 

0.2563 
0.12170 

0.0097 
0.0093 

0.4451 
0.4445 

1059.94 
1071 25 

6Z 344 
62.421 

0.00083 
0 000409 

6 317 
6 048 

x 106 
x 10 - 6 

492.0 0.08854 0 0092 0.4441 1075.80 62.421 0.000302 5.913 x 10 
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Table Z 

CHARACTERISTICS OF TE-364-3 

Prefire Weight of Motor (wn ) 

Post-fire Weight of Motor (wb.o.) 

Nozzle Throat Area (post-fire) 

Area Ratio (post-fire) 

Specific Impulse (experimental) 

Motor Case Diameter 

Motor data taken from Ref. 3 

ROCKET MOTOR* 

1575.0 lb n 

122.0 lb 

9.24 in2 

49.43 

288.0 b 
m 

36.8 in. 
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Table 3
 

COMPARISON OF CANDIDATE FLUIDS
 

Item 
Ammonia 

NH 3 

Butane (R) 
C4 HI0 

Ethane 
CZH 6 

Freon 12 
CCI 2 F2 

Propane 
C3 H S8 

Sulfur Dioxide 
so 

Water 
H20 

Molecular Weight 17.03 58.12 3007 120 0 44.0 64.06 18.016 

Ratio of Specific Heats 1 3 1 11 1.139 1.14 1.29 1 33 

Conditions in Motor Chamber 
Initial (t, = 1 0 sec) 

Chamber Pressure 

Chamber Temperature 

psia 

OR 

0 324 

315.0 

1 835 

411.8 

0 631 

250.0 

1 344 

358 5 

0 492 

305.5 

0.773 

383 3 

0 305 

5250 

t= = 160 0 sec 

Chamber Pressure 

Chamber Temperature 

psia 

OR 

0.270 

309 5 

1 028 

394 5 

0 489 

243.5 

1.064 

351.8 

0 387 

298.0 

0.560 

375.5 

0 214 

515 0 

Mass Flow Rate (Ibm/see) 

Initial (t, = 1.0 sac) 

t 160.0 sec 

0 06732 

00563 

0 564 

0.332 

0.188 

0.148 

0.66Z 

0 530 

0 159 

0.126 

0 280 

0.205 0.035 

Thrust 

Initial (t I = 1 0 .ec) 

= 160.0 sec 

5.397 

4.50 

344 

19.17 

11.16 

8 64 

Z4.55 

19.44 

8.98 

7 06 

1Z.93 

9.37 

5 013 

3 51 

Specific Impulse - 1b.-sec/lb i 

utial (ti 1.0 sac) 

t I = 160.0 sec 

80,177 

80.43 

61 0 

57 8 

59.Z9 

58 64 

37 06 

36.71 

56 5 

56 0 

46.ZZ 

45.6 

100.53 

99.34 

Total Impulse Produced at 

t, o 160 0 sec 

(Ibf ­ sec) 

784.7 40143 1548.0 3456.0 1264 5 1741.4 666.9 

Total Impulse Produced at 

t[ = 200.0 sec 

(lbf - sc) 
921.26 4580 5 1809.7 4048 38 1479.56 2026.8 772 8 

Amount of Fluid Utilized at 

i = 160 sec 9.75 68 65 Z631 93 66 22 42 37.9Z 6 7 

Fluid Storage Conditions 

Storage Pressure psia 

Storage Temperature OR 

121 63 

528.0 

3047 

530.0 

540 8 

528.0 

82 05 

528.0 

121 83 

5Z8.0 

[ 

49 34 

530.0 

0 363 

530.0 

Ideal Tank Weight Using
Vasconax Material for 
Fluid at t1 = 160 sec 

br) 
0.1354 0 254 2.810 0 397 0.342 0.092 0.17 x 10 - 3 

Velocity Increment (AV)
Available from the Trim 
System (ft/see) 58 87 278 39 112.88 235 6 97 71 125 77 50.14 

Velocity Penalty Imposed by 
Carrying Trim System on 
Primary Vehicle and Using 
All the Fluid (ft/sec) 

System Mass Fraction 

137 6 

0 83 

826 2 

0 97 

389.3 

0 85 

1192.3 

0.977 

309 58 

0.913 

513.7 

0.953 

91 32 

0 79 

Installed Specific Impulse 
(lb-sec) 

6676 56 07 49 84 
I 

35 86 
_ I 

51 13 36.14 78.300 
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Table 4
 

REPRESENTATIVE SYSTEM WEIGHTS
 

Payload and Vehicle Structual Weight - wp = 

Weight of Fluid Injection System Hardware, ' H 

Fluid Vent Valve (1) -

Fluid Charging Valve (1) = 

Squib Valves (2) -

Check Valve (1) = 

Lines and Brackets -

300 lbIn 

0.12 lb rn 

0.1Z lbIn 

0.70 lb 

0.11 lb 

0.75 lbm 

1.8 lb 

Z6 
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Appendix C
 

DESIGN CRITERIA FOR INERT FLUID INJECTION
 
SYSTEM FOR VELOCITY TRIM APPLICATIONS
 

Work accomplished under Task 3 of the Work Statement of Contract NAS5-11614. 
The report is included here as Appendix C as a convenience to the reader. 
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FOREWORD
 

This report presents the results of work performed by 

Lockheed's Huntsville Research & Engineering Center while 

under contract to Goddard Space Flight Center, Contract NASS­

11614. This work was accomplished under Task 3 of the Work 

Statement of the subject contract. The NASA technical coordi­

nator for this study is Mr. Daniel Dembrow of the Delta Project 

Office. 
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Section 1
 

SUMMARY AND INTRODUCTION
 

An Inert Fluid Injection System (IFIS) is being designed for use with 

the Delta rocket launch vehicle. The IFIS will provide an orbital velocity 

trim capability for the third stage of the Delta vehicle. 

To ensure capability of the IFIS and the Delta vehicle, a Design Criteria 

for the Inert Fluid Injection System, Section 2, has been prepared. These 

criteria, which establish the requirements for the design of the IFIS, include 

consideration of: IFIS concepts, operation and performance; IFIS design con­

straints imposed by the Delta vehicle configuration and environment; and IFIS 

design constraints imposed by safety requirements. These criteria, together 

with the layout of the Inert Fluid Injection System (Lockheed Drawing No. 

R72411), constitute the results of Task 3 (Conceptual Design) of the Work 

Statement. 

iii 
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Section Z 

TECHNICAL DISCUSSION 

2.1 SCOPE 

These criteria establish the requirements for the design of an Inert 
Fluid Injection System (IFtS). The IFIS is to be used as a velocity trim 
control by utilizing the latent heat in the expended Delta third-stage motor 
(Thiokol TE-364-3) to vaporize the injected inert fluid. This vaporization 
with subsequent expulsion through the rocket nozzle results in a relatively 
low thrust augmentation. The IFIS will consist of three major components: 
the tankage for inert fluid storage; the valving and plumbing for on-off con­
trol; and the injector for spraying the fluid into the spent rocket chamber. 

2.2 APPLICABLE DOCUMENTS 

The documents listed below form a part of this design criteria to the 
extent specified herein. In the event of conflict between documents here and 
other detailed content of Section Z.5, the detailed requirements of Section 2.5 
will be considered a superseding requirement. 

Specifications 

NASA 
S-3Z0-G-I General Environmental Test for Spacecraft 

and Components using Launch Environments 
Dictated by Delta, Centaur, Agena, and 
Scout Launch Vehicles (Preliminary super­
sedes Delta Specification S-320-D-2) 

MIL-D-941ZD Data for Aerospace Ground Equipment 

MSFC Spec Z79 Electromagnetic Compatibility, 
dated June 1, 1964 

Standards 

MIL-STD-803 	 Human Engineering Design Criteria for 
Aerospace Systems and Equipment. Part I, 
Aerospace Systems Ground Equipment 

MIL-STD-810B 	 Environmental Test Methods 

MS 3540 	 General Practices for Safety Wiring and 
Cotter Pinning 
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Repoarts 

AFETRM 127-1 	 Safety ... Range Safety Manual, 1 November 
1966, USAF 

DAC-61687 	 Delta Spacecraft Design Restraint, October 
1968, Douglas Report 

LMSC/HREC D162373 	 "Fluid Selection Study for an Inert Fluid 
Injection Propulsion System," June 1970 

Z.3 SYSTEM REQUIREMENTS 

* Concept 

The Inert Fluid Injection System as shown in Fig. 1 shall consist of three 
major items: inert fluid storage tank; valving and plumbing; and the injector. 
Flow regulation of the system will be provided by the vapor pressure of the 
inert fluids and sizing of the injector orifices. The tank shall have a volume 
of 1.5 ft3 and will be designed for a 150 psia maximum operating pressure. 
Sequence valves for the system are to be redundant pyrotechnic on-off normally 
open, normally closed type. Fill and drain valves for the tank and system 
mounting brackets shall be provided. The operating fluid shall be one of the 
following: ammonia (NH3 ), butane (C4 H 1 0 ), or water (HzO) as determined by 
mission requirements (refer LMSC/HREC D162373). 

* Operation 

Upon command, the normally closed pyrotechnic valve will be opened, 
allowing the pressurized inert fluid to inject into the rocket chamber. Again, 
upon command, the normally open pyrotechnic valve will be closed to shut 
off the system. 

o Performance 

The IFIS will provide usable propulsive energy for the trimming of 
the third stage velocity or a suitable means for quenching of the TE-364-3 
rocket motor. Flow rate control shall be provided by means of the vapor 
pressure of the inert fluid and the injector orifice size. The nominal mass 
flow rate for the inert fluids is listed in the chart below. 

Fluid Tank Pressure Fluid Temp. Mass Flow, rh 

(psia) (OF) (lbm/sec) 

Butane (C 4 H1 0 ) 30.47 70 0.564 

Ammonia (N 3 H) IZ1.63 68 0.0673
 

Water (H2 0) 14.70 70 0.0475
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Fig. I - Inert Fluid Injection System Concept a, 
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Maximum operating time shall be the time required for total depletion of all 
the fluid in the IFIS tank. Minimum time will depend upon flight program 
requirements, with an absolute minimum being a function of the pyrotechnic
valves. Time between command to operate and actual flow conditions shall 
be! acc:ountabJ e. 

2.4 SYSTEM DESIGN 

a Weight 

The IFIS shall maintain as low a weight as practicable and still maintain 
structural integrity. As a design goal the weight (loaded) shall not exceed 
60 lb, with a ratio of inert fluid to total system weight of 0.80. 

Balance 

The static unbalance for the system, with reference to the vehicle 
longitudinal axis, shall be within +0.03W (gm-in.), where W is s stern 
weight in grains. Dynamic unbalance shall not exceed 800 1 (gm-in), where 
I is the IFIS moment of inertia about the spacecraft spin axis (slugs-fr2 ), 
per NASA specification S-320-G-1. The values are for the prototype con­
figurations with the final balance of flight hardware being one-half these 
values. In addition, the change in moment-of-inertia due to fluid depletion 
shall be provided. 

Flight Hardware 

Wherever possible, hardware for the IFIS shall be flight-qualified
hardware. Flight-qualified hardware is defined as those equipment having 
proved their capabilities while being subjected to actual or simulated Delta 
flight conditions and deemed acceptable for use in launch hardware. Proof 
of qualified flight hardware shall be provided. 

Interface 

Lockwire shall be used where threaded fasteners are utilized per 
MS 3540. 

Vehicle (Launch) 

The IFIS is to be used on the Delta M launch vehicle. The payload 
attach fitting to be used is the 37x 31-in. fitting, Douglas Aircraft Company 
Drawing No. iDO1068; Fitting, Spacecraft. Those areas designated as 
restricted for spring separation shall be avoided (Fig. Z). Other interference 
areas arising from a particular flight shall be provided by the Delta Project
Manager; i.e., each flight has its own particular third-stage instrumentation 
and tracking system modifications. No cognizance for this task is assumed 
by LMSC. Relocation of existing access holes shall be performed so that 
access to the Safe and Arm mechanism of the initiator can be made per Mil­
Std-803 requirements. 

4 
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/ Payload\
/2 \.75 

Section A-A 

in. diam. (4 places).
Separation springs on 
32.500 in. diam. basic 
restricted area 

65 in. o.d. 

-57 in. diam. 

Spacecraft I 
Separation
Plane I 
-17 6.070-__- - _06 905 
-174.8Z0 - 642.155 

A }A 

II 
-

3 7 x 31 in. fitting. 

I I 
Douglas Aircraft 
Co. Dwg. No. 1DO1068 

-108.950 -718.150 

-99.500, _ -_ - - -727A75 

Fig. 2 - Payload Envelope, TE-364-3, 37 x 31-Inch Fitting 
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Motor 

The motor to be used is the Thiokol solid propellant motor designated
TE-364-3, per Douglas Delta Spacecraft Design Restraints DAC-61687. Theforward sholder of the TE-364-3 rocket motor (17.60-in, diameter bolt circle)
shall be used for mounting the IFIS hardware. No modifications are to be 
performed on the motor casing. Maximum steady-state loads on the forward
 
sholder are shown in Fig. 3.
 

Ignition Assembly 

The Ignition Assembly for the motor shall utilize the Thiokol E19578-0Z
 
case. Modifications to this case 
shall be such that neither the structural i­tegrity nor function are diminished so as to require qualification firing tests. 

Electrical 

The electrical interface between the IFIS and third stage shall be at the 
connectors on the valve. The electrical firing circuit shall be under the 
cognizance of NASA-GSFC Delta Projects Office. 

Pyrotechnics 

All pyrotechnics shall be in a disarmed condition at all times except
while undergoing tests, checks or flight. Circuit continuity checks shall be
made by use of currents and voltages as specified by the pyrotechnic manu­
facturer. Nominal initiator resistance shall be 1.0 ohms, with a 1.0 amp,1 watt no fire. The entire pyrotechnic valve shall be conductive and any
connecting or surrounding metal parts shall be permanently grounded together
and to the TE-364-3 motor. Any electrical firing circuit interruption point
shall be accessible so that connection can be made on or later than flight minus 
one day. Ordnance and arm techniques shall be as specified by NASA-Goddard 
Delta Projects Office 

Safe-Arm Valve 

The safe-arm valves shall provide for mechanical disruption of fluid flow 
and shall be accessible for arming on or later than flight minus one day. 

s. Loads Criteria 

All structural support members shall maintain structural integrity when the
largest loadings are applied. Any system pressure vessel must have a ratio
of burst-to-operating pressure of 4 to 1 and undergo proof tests of 1.5 times
operating pressure. Maximum operating pressure shall be 150 psia. The 
more stringent safety requirements for a pressure vessel with a safety factor 
of less than 4 to 1 shall be met if needed per DAC-61687. 

6
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Steady State 

The IFIS structure (less pressure vessels) shall be capable of withstanding 
the following steady-state loads. Safety factor shall be 1.15, based on yield 
strength, and 1.50, based on ultimate strength (applied simultaneously). 

Thrust +15 g (based on minimum Delta payload wt. =700 lb) 

Lateral +3 g 

Dynamic 

The IFIS shall be capable of withstanding the design qualification tests 
as set out in Sectiol\ 2.5. These tests are more stringent than flight acceptance. 

Spin 

The IFIS shall be capable of withstanding a spin rate of 120 rpm, which 
is the maximum launch or orbital rate, for a minimum of 10 minutes without 
any material yield. The IFIS shall also withstand the angular acceleration 
caused by spin-up (120 rpm in one sec). 

Installation 

The IFIS shall become part of the TE-364-3 rocket motor once assembled; 
i.e., the IFIS must be assembled to the motor prior to payload attach fitting. 

2.5 ENVIRONMENT 

The following environmental conditions shall apply for the design of the 
IFIS. The environmental test methods of MIL-STD-810, where applicable, 
shall be specified. 

Temperature and Humidity 

The temperature design criteria, with no fluid in the tank, fall into two 
categories: storage and operational. For storage the IFIS shall be capable 
of withstanding six hours at -30oC and 600C. Under operational temperature 
the time duration is again six hours, but the temperatures are + 100C of the 
predicted flight temperatures. The IFIS shall be capable of withstanding 
24 hours at a relative humidity of 95% (+0, -5%) at a temperature of 30 0 C. 
Electrical circuit continuity checks before and after each condition shall be 
possible without system failure. 

Oscillation 

The main requirements is that failure does not result from launch 
operations. The effects of oscillations may arise from shock, sinusoidal 
and random vibration, and acoustic noise; and are interrelated. 
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Vibration 

The IFIS shall be capable of withstanding the sinusoidal and random 
vibrations as set out in Table 1 (applied at forward shoulder surface). 

Table 1 

Type 

Sinusoidal 

Axis 

Thrust 

Frequency
Range (Hz) 

5-11 

Sinusoidal Lateral 

11-17 

17-23 

23-200 

5-7.5 

7.5-13 

13-200 

Random Thrust 
& 

Lateral 

20-300 

300-2000 

Shock 

g Level Sweep 
(0-to-Peak) (Octaves/min) 

0.48 in. 2.0 

double amplitude 

+3.0 2.0 

+6,0 1.5 

+2.3 2.0 

0.8 in. Z.0 
double amplitude 

+2.3 g 2.0 
+1.5 g Z.0 

PSD Level Acceleration Duration 
(g2 Hz) (g-rms) 

0.0029 to 9.1 4 min 
0.045 each 
increasing axis 
from 20 Hz 
at 3 dB/ 
octave 

0.45 

The IFIS shall withstand shock loading applied per Fig. 4, once per 
axis, for the Delta M3 stages. 

9
 



LMSC/HREG D162476 

-Hooofif-----4-""')"" "HI1 ' ' 
---- DELTA N -Ir+1 1 -+ r, 1 

_'2 STAGES 1 £ 

400 :: . II,," ...,,.'i 
400

4o + , 
T L I 1 tll 

.i: !
W ,flfl 

2 +f+HE. 
f 002: :rDr 

z HI ; IIt- Il.
 

z I 

Ln ..........
 

L) 'I STAGE7€11 --. 
U--, 

0T' F, T!Ti 4+'
 

10 lill -.r f : 


IcI - r 

10 li, f~i I 4+1 ' 7md 

40 100 400 1000 2000 A000 

FREQUENCY -Hz 

Fig. 4 - Delta Shock Spectra Input - Spacecraft Flight Acceptance 
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2.6 POWER REQUIREMENTS 

No additional power for initiation or operation of the IFIS shall be 
required. 

2.7 GROUND SUPPORT AND CHECKOUT 

Equipment and procedures required for the checkout and maintainability
of the system during test and launch operations will be specified for the IFIS 
and the AGE. These are to include: 

1. 	 Systems design description- including schematics, component 
description, physical characteristics of the pressurant fluid, 
etc. 

2. 	 Design and test data on pressure vessels and subsystem parts. 

3. 	 Detail description of servicing equipment. 

4. 	 Detailed operating procedures: including schedules, personnel 
requirements, facility requirements, and safety precautions. 

(Ref. DAC-61687 and AFETRM 127-1) 

For a system with a burst-to-operating pressure ratio of less than 4 to 1 , 

the following additional information shall be supplied: 

1. 	 Quality control criteria 

2. 	 Qualification and acceptance test criteria 

3. 	 Test criteria for all flight units. 

11
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Appendix D 

CONCEPTUAL DESIGN CALCULATIONS 
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Appendix D 

TANK SIZING (INITIAL WORK) 

Under the initial work the following items were the boundary conditions 

for the tank: 

1. 	 Working fluid - butane 

2. 	 Fluid weight - 68 lb 

3. 	 Must hold fluid volume 

4. 	 Must reside inside 37 x 31 attach fitting and not overlap access 

ports, and remain clear of S&A restricted envelop and spring 

separators. 

The required volume is a function of temperature or liquid density. 

Using 150 0 F as the maximum temperature the volume is: 

W =pV 

= 2.085Z ft 3 
V ='A- = 68lb 

P 32.61 lb/ft3 

Fbr 	the torus tank the volume is: 

V = 2 r 2 a 

D-1
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Now since a general envelope shape is defined by the attach fitting, 

radius "a" was made the independent variable and varied as follows: 

V = 2r b a 

2 = V
272a 

r a 

6 + a = 9 inches, then b is 

Z. 0852 ft3 

b = _- 851 ft - 3755 ft =4.506 in 
S2(97in)

(F2 in) 

for a = 10 inches b = 4.275 inches 

a = 11 inches b = 4.07 inches 

Laying these tanks out on the motor-attach fitting assembly showed 

that the 10 inch by 4.275 inch cross -sectional tank would fit. To ensure that 

the torus was the optimum shape other configurations were investigated. A 
"pancake" tank as depicted below showed that filling the hole in the torus was 

not too efficient from a volume and dimension standpoint. 

' - 2Zr2 a2 R
 

2V = rR+ 

r R -for r = 4.32 in. R = 8.94 in. 

Although these dimensions are slightly smaller than a torus, this shape 

is not as good a pressure vessel and would require a greater wall thickness 

resulting in greater weight 

D-2 
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The next shape examined was an elliptical shape as shown below. 

4 2 
V = -t r ab 

for b = 4 inches which is dictated by available space 

3V - (3 x 1728-it3 x 2.085 it 3 
a 3- - =41r x4ix. = 14.7 in. 

This shape fits into the available space nicely but upon viewing stress 

and weight the ellipsoid would be costly. 

PRS22- N SZ =,PZ R 

Zt 2 = -- -

Using a maximum internal pressure of 106.2 psi and maximum working 

stress of 1/4 yield stress and 17-7 PH steel, the material thickness and 

weight are 

PRz PRZ 106.2 lb/in2 (14.7) in.
 
1 ft-8 z (46,500) lb/in3 1
 

PR2 /R Z P R) 2A7) 
t ( R1 t= - PRZ2-- = = -036.0502in. 

The minus indicates that the stress is not a tensile stress but rather 

a compressive stress. The weight is 

W =pvsurface t 

W2 i b' + [2 b 2 
[ 2 loge 1 

D-3 
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t =thickness
S 14.7 .783 

W = P [2ir(r)2+ ?r (14.7)2 log e I1+.783] 
.783 1 - .783 

W = 1164 pt 

p = .273 lb/in 3for 17-7PH steel 

W = 1164 (.273) (.0502) = 15.96 lb 

Now that the basic shape has been chosen (a torus) a comparison of 

material is necessary. The steps used to calculate the required wall thick­

ness from the stress equation using a conservative value for the allowable 

stress are outlined below 

Ph I?a -b 

lpo ntSSyVielSirnx= 
lmax = 5 allowable - 4 

for l7-7PH S = 185,000 = 46,500 psi
al 4 

/2a -b b 106.2 (4.275) 2 x 10 -4.275 \ 
=Pb 

t aliVa ab) 46,500 2 x10 2x 4.275 

t = .0134 in. 

W = pV =p (4rzabt) = (.273) (4 r x 10x 4.275) x .01345 

W = 6.19 lb 

D-4 
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Substituting in various materials yields the following results for the 

same tank (volume): 

Density StressAllowable Thickness Weight 

Material (p)lb/in.3 (psi) (in.) (ib) 

17-YPH Steel 0.273 46,500 .0135 6.19 

Modified H-il Steel 0.281 60,250 .0103 4.879 

Titanium Ti-8AL-lMo-IV 0.158 31,250 .0200 5.32 

Aluminum 5154 0.096 8,250 .0758 12.Z68 

Summary: 

Boundary Conditions - Butane 

= 2.0852 ft 3 
Volume 
Pressure = 106.2 psi 

Allowable Stress = Yield point stress/4 

17-7PH Steel 	 Titanium 

Thickness Weight Thickness Weight 
Tank Shape (in.) (lb) (in.) (1b) 

torus .0135 6.13 .020 5.32 

elliptical .050Z 15.96 .072 13.22 

spherical .0109 3.415 .016Z 2.9Z 

Conclusions: 

I. 	 Spherical shape best if it would fit 

Z. 	 Elliptical shape worst - too heavy 

3. 	 Steel best material from weight standpoint, but becomes too 

thin to fabricate and handle; hence ­

4. 	 Choice of titanium material and torus shape 

D-5
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TANK SIZING (INTERMEDLATE WORK) 

Conditions or restrictions: 

1. Stay out of S & A envelope 

2. Volume shall be 1 1/4 ft 3 approximate 

3. Maximum internal pressure shall be 106.2 psia 

4. Maximum allowable stress shall be 1/4 yield stress 

From previous study the material and shape were seen to be titanium 

and torus. 

= .158 lb/in. 3 
density p 

S_ 125,000 = 31,250 psi
max-allow able 4 

tank volume V = ha (1) 

tank stress P- '-h () 

tank weight W = p4r2at (3) 

item (1) restriction means a-b- 6.54 in. using equation 

i IZ160 _109.5379 
(1) b V = 1 _ 1095377rl~ ra a 

Pb /Za-b \ 1062b 12a-b 
hS-Z= 31,250 k2a-2b 

(3) W =p47rabt = (.158) (4) 7abt = 6.231 abt 
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a (in.) b (in.) a - b t (in.) W (1b) 

8.0 3.700 4.300 .01798 3.316 

8.5 3.589 4.911 .01665 3.165 

9.0 3.489 5.511 .01561 3.054 

9.5 3.396 6.104 .01475 2.965 

9.75 3.352 6.398 .01437 2.926 

I0.0 3.310 6.690 .0140 2.887 

10.5 3.230 7.270 .0134 2.832 

11.0 3.156 7.844 .01288 2.786 

11.5 3.086 8.414 .01241 2.744 

12.0 3.021 8.979 .01199 2.709 

Stress in tank due to 15 g loading 

S PR 

t 

where P W Wg)= fluid weight 

g =15 

A = - internal 
) ) surface area
 

The fluid is to represent 80% of the total system weight which is to be 

approximately 50 ib, i.e., 

W = .8(50) = 40 lb 
assume we do slightly better than .8 or 45 lb = W 

then S = 45 (15) (3.31) =446 psi
I( x 10 x 3.31) (.014) 

This stress along with the stress due to internal pressure amounts to 

31, 250 + 446 = 31,696 psi; which is very low, when compared to the yield 

stress (125,000 psi) 

D-7 
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The tank location relative to the 17 in. mounting ring was decided upon 

by leaving room for a socket head torque wrench to be used to install the 24 

mounting screws. 

Tank 

Thrust Cone 

Clearance 

I TE-364-3 

D-B
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TANK SIZING (Universal Tank Concept)
 

Determination of tank sizing for "universal" tank. Nominal design
 

factors are:
 

1. Torus tank - titanium 

2. Nominal volume - 1.25 cu. ft 

3. Nominal operating pressure - 150 psia 

Refering to Eqs. 1 through 3, page D-6: 

v 

Pb (Za-b 150b (Za-b
SS Za-2b/ 31,250 -Za-Zb] 

3. W = p4?r2 abt = 6.231 abt 

V ft 3 a (in.) b (in.) a - b 

1.25 10.0 3.310 6.690 

1.00 10.0 Z.986 7.014 

1.10 10.0 3.131 6.869 

1.40 10.5 3.447 7.053 

1.50 10.5 3.568 6.932 

1.60 10.5 3.686 6.814 


1.75 10.5 3.854 6.646 

1.90 10.75 3.962 6.788 

2.00 10.75 4.071 6.679 

t (in.) W (lb) 

.0198 4.09 

.0174 3.233 

.0184 3.600 

.0206 4.650 

.0215 5.011 

.0224 5.403 

.0236 5.954 

.0Z45 6.494 

.0254 6.920 
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ALTERNATE MATERIAL SELECTION TECHNIQUE
 

Calculation of the ratio of tank mass to tank volume: 

1. 	 Stress in sphere: S = PR S = stress - psi 

P = pressure - psi 

rR 32. 	 Sphere internal volume: V = 4/3 R - mean radius - in. 

t = shell thickness - in. 

3. Sphere surface area: A = 41rR 2 

4. Sphere mass: M = pV = p4?R t 

M 
rearranging 4. t = M 5. 

p47rR 
PR2
 

substitute 5 in 1 S =-R p4rR2 6.­

3M = 4?TR 7. 

M 3/2 p E8~8. 

or
 

M =IP where K ! = 3-
V 1K 25S 

p-Density Working Stress 	 -6 
Material (lb/in. 3) psi x 103 K1 x 10 

17-7PH steel 0.276 92.5 4.475 

Modified H-Il steel 0.281 120.5 3.497 

MX-Z steel 0.276 119.5 3.464 

Vascomax 350 steel 0.Z92 177.5 2.467 

Ti-8AI -lMo-IV 
titanium 0.158 6Z.5 3.792 

5154 aluminum 0.096 16.5 8.727 

This shows that for the same pressure and internal volume, the alumi­

num tank would be heaviest, with some steel materials lighter than titanium. 

The titanium was chosen so as to keep an acceptable fabrication thickness. 
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THRUST CONE 

For a 1.5 in. 	 clearance:
 

r
 

H = 3.68+ 
R =8.68 

2.r 	 = 7.0T-- Rr H 


Weight W =pt [7 (R4-r) H
 
cone 	 3] 

w = (.158) (t) 	 [ (8.68 + 7.0) (3.68)2 + (1.68)7] 

W = 31,19 (t) 

W ring 	= P r (R z - R 1)t =.158 ir (9.07 - 8.68 z)t 

= 3.43 t 

t Wcone + ring total 

.010 .3119 .0343 = .346z 

.01Z .3739 .0411 .4150 

.014 .4355 .0479 .4834 

.016 .4972 .0547 .5519 

.018 .5599 .0616 .6215 

.020 .6238 .0686 .6924 

For a 2 in. clearance: H = 4.44
 

R = 8.68
 

r = 6.9
 

t W cone total
 

.010 .3697 .4040 

.012 .4437 .4848 

.014 .5176 .5655 

.016 .5916 .6463 

.018 .6655 .7271 

.020 .7395 .8081 
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THRUST CONE (INITIAL WORK) 

The thrust cone will be loaded by thrust and lateral g forces: 

Lateral 

8.68 Radius (in.)
5.08 

tF 	 8.52 Radius (in.) 

Thrust Vector 

Static loads: 	 Tank weight = 2.887
 

Fluid weight = 50.000
 

52.887 

for the lateral case: 

5.08) (3g) (8.68) - 350260 psi
S .Mc = (52.887 x _ 8.524 ) 

?__ (8.684I 


for the thrust case: 

The problem here is a short column loading; using Rankine formula for 

buckling of short columns. 

P = load at failure(L
A R)-	 A = cross sectional area 

L = length 
S 170,000 =5.23 x 10 - 4  p = least radius of gyration 

CrZE -Zr16.5 x 106 S -ultimate 

(+"(,)?z coefficient of constraint 

1B (R+a)2 E = Youngs Modulus 

P4 (R+ )+ H2B I ZR r 	 C = 

p 4(8.6 82 + 	 7?) + 3.682 ++2x8.68x7 r =7.0 

+ 18 (8.68 + 7)2 / R = 8.68 
H = 3.68 

p = 31.085 + 	 1.-1242 =5.675 
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(5Z.887) (1) -2 (3.68 \2] 

S= (752.887 (1 - 7 5)(15) + 5.23 x 10ir(7 z - 6.9842) 

S=0.7025 ++1.0s 793.305 .024] 1 

S 1156.57 psi 

Summary of Conditions Used in Analysis 

Tank - volume - 1 1/4 ft 3 

size - 10.0 x 3.31 

weight - 2.887 lb for .014 thick 

Thrust cone - weight - 0.5519 lb for .016 thick 

Similar calculations were made for a tank of 1.5 cubic feet volume and 

tank weight of 5.1387 pounds. 
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STRESS ON GRAPHITE RING (INTERNAL PRESSURE) 

Deflection of the porous ring due to internal pressure - assuming porous 
metal sees entire 1500 psi pressure. L ; t 

Radial displacement D = R ) CSSE 
K 	 .E ( 2 VS) 

1=_p = 1500 (1.178) = 7,050 psi 

2 (.125) 

S2 =PR = 14,100 psit 

D 1.1781.1783
DR - 11786 (14,100 - .27x7,050) -1.18 (12.195 x 103 

lOx 10 l1x 10 

1.4 3 1 x 10 - 3  DR = 	 .001431 in. 

Allowance for this growth can be made by allowing a clearance between 
the graphite and the porous metal. 

Graphite loads: Assume shock pressure taken by insulation sleeve and 
graphite sees only the 600 psi steady state chamber pressure. 

Then the compressive hoop stress is:
 

=-t .094=8,0 s
S Er = 600 psi x 1.278 in. 8,150 psi 

This valve is well below the maximum attainable compressive strength 

for pyrolytic graphite (60,000 psi). 

The internal pressure required to fracture the graphite ring is: 

Pr pSt = 500 (.094) =36.9 psi 
t r 1.278 

p=St - 500 (.0525) 19.99 psi 
a 1.313 
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MATERIAL PORE SIZE 

(_) 2 P 	 R 
Rg eg 

R 

o surface tension, dynes/cm 

AP = differential pressure, dynes/cm2 

psi 106 = dynes/cm2
14.7 

R = pore radius, cm 

D = pore diameter, cm = ZR 

For Butane; 	 a = 9.25 dyne/cm at 120 0 F 

sia =14.7 106 dynes/cm2 
AP'==7070 psia 	 =70 x 

4a 4 x9.25 	x 14.7 x 0-6 =7.75x 10
A .=70 

= 3.059 x 10-6in. 

= 3 micron 

For Water; 	 a = 66.2 dyne/cm at 600C 

AP = 14.7 psia 

D =4X 6x 14.7 106 -264.82 x 10 6 cm 104 x 10 6in. 

14.7 

D = 104 micron
 

For Ammonia; a = 19.95 at 80 0 F
 

AlP = 122
 

D = 3.78 micron
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Appendix E
 

FLUID PIPING SYSTEM ANALYSIS
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Appendix E 

FINAL CALCULATION OF REQUIRED ORIFICE SIZES 

The inert fluid injection system (IFIS) utilizes two identical and parallel 

piping systems to provide flow from the fluid tank to the rocket motor chamber. 

The following analysis is concerned with one of the "legs" of the piping system. 

A one-dimensional analysis is presented with the fluid assumed to be incompressible. 

Total head loss is calculated for the systems to include pressure form losses and 

shear losses. The orifices in the injector assembly are sized to give desired 

mass flow rate for an available pressure drop to the rocket motor conditions. 

Tank pressure requirements can then be determined. 

The piping system considered initially has the following physical character ­

is tics: 

Supply Tube: 

O.D. 0.25 in.
 

Wall Thickness 0.16 in.
 

I. D. 0.218 in. 

Injector Supply Passages: 

d s = 0.125 in. 

Mass Rate of Flow (for Butane): 

m 0.564 lbm/sec 

0.564 0.28Z lbm/sec (flow in single leg)
rline -2.0 
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The piping system was divided into the segments described in Table E-1. 
Piping lengths or loss coefficients are shown for each of the segments. 

Table E-1 

PIPING SYSTEM CHARACTERISTICS 

Section Loss 
Station No. Item Length Coefficient 

1.0 Tank 	 ---­
Z.0 Tank fitting 	 CL = 0.05 
3.0 Elbow at tank 	 CL = 0.90 
4.0 Straight section 	 2.5 in. 
5.0 900 bend 	 CL = 0.09 
6.0 Straight section 	 11.5 in. 
7.0 450 bend 	 CL = 0.08 
8.0 Straight section 	 1.0 in. 
9.0 Fill value 	 CL = 0.75 

10.0 	 Straight section 1.5 in. 
11.0 	 1800 bend CL=CL9 0 (l.5) 

= (1.5)(0.09) 
12.0 	 Straight section 1.0 in. 
13.0 	 Pyrotechnic valve CL = 0.5 
14.0 	 Straight section 4.0 in. 
15.0 	 680 bend CL = 0.08 
16.0 	 1800 bend CL = 0.135 
17.0 	 Straight section 1.0 in. 
18.0 	 "Tee" at injector CL = 0.90 
19.0 	 Three supply passages 3.0 in CL = 1.0
 

(in injector) pressure form
 
loss
 

Z0.0 	 Injector ports:
 
Entrance 	 = 0.05CL 
Straight section 	 0.75 in.
 
Exit 	 CL = CL= 10 

Calculate flow velocity in supply tube for Butane fluid: 

- = -	 0.282 
v(3.14159 	 (0.218)2)

(36.05) (20// 
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0.282
(36.05)(2.591 ­x 	10 4 ) 

V 	 = 30.1911032 ft/sec 

Now calculate Reynolds number, Nrey: 

VPDN = 
rey A 

(36.05) ( -218

N N= re 12.04
 rey 1.06843 x 10­

where for Butane: 

p 	 = 36.05 ibm/ft3 at T =70.00
 

= 1.06843 x I'0- 4 lbr/ft-sec
 

Thus 

N 18.506 x 104 and f = 0.016rey 

from Fig. 7-3 of Ref. E-I. 

The total head loss in the system can then be expressed as (excluding the 
injector losses): 

n 	 v2 

HL 2 (CL i +f .L/D) (4 - )
 

Albertson, M.L., et al., Fluid Mechanics for Engineers, Prentice-Hall,
 
Englewood Cliffs, N. J., 1960.
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or combining terms 

"° 
HL L3 62 + (0.016) 0*21 L 2.0 (3.174) ] 

H L = (5.2713761) (510.6556) = 2691.857 psf 

H L = 18.6934 psia 

Head loss in injector supply ports can then be calculated in the following manner. 

m. = .Z8= 0.094 lb /sec (mass flow in each of supply
P jpassages) 

0.094 

( 0.125ZI(36.05) 3.14159 
12.0 1* 4.0 

0.094 
- 4x 10(36.05) (0.852 

V = 30.60 ft/sec 

Then the Reynolds number is 

0.7.5 
(30.60) (36.05) ( i-

lNreY 1.6- x1 - 4 10.756 x 104 
rey 1.06843 x 10~ 

Thus f = 0.018. 
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The head loss in the supply passages is 

H (i.0 + (0.018) 3.0 .,36.05 (30.60)2) 

LinspI. lZ5](Z.O) (3Z.174)] 

H-L. = (1.432) (0.5602349 (30.60) 2
 

insp
 

HL. = (1.432) (524.731) = 751.4431 psf
 
Insp
 

H L. = 5.218 psia
 
insp
 

The head loss in the injector ports (for dpoit = 0.073 in.) can then be cal­
culated as follows: 

0 .=8 = 0.0705 lbm/sec (for single injector port) 

0.0705
v (36.05) 34159 (o.o73)Z
 

0.0705V = (36.05) (0.2906 x 10- 4 

V= 67.28659 
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Than 

(67.28659) (36.05) (O.27)
 

rey 1.06843 x 10 - 4
 

10413.811 xN = 
rey 

Note: Assume rough tube wall.' = 0.028 

Then 

H 15 + (0.028) .75 j/ 3 6.05 (67.28659)-
L ( 0.073))] (Z.0) (3Z.174) 

HL = (1.33767) (Z536.4552) = 3392.943 

H L = 23.562 psia 

The total head loss in the Piping system is: 

Head Loss = 18.6934 + 5.218 + 23.562 

= 47.4735 psia 

To reduce head loss in the system the injector port diameters were in­

creased to 0.090 in. and the calculations repeated. 

rninj = 0.0705 ibm/sec 

0.0705
 
S (36.05)\/3.14159 (0.090
V f?i~ 

4.0 1.0 /) 
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0.0705

(36.05) (0.441 x 10- 4 

V = 44.3452 ftX/sec 

Then 

(44.3452) (36.05) 0.090 
=12.0N rey 1.06843 x 10 - 4 

Nrey = 11.2219 x 104 1 = 0.0Z5 

Then 

36.05 (44.3452)2( 0.75-\ 
H 10 0 0 5to) (2.0) (32.174) ) 

HL = (1.Z5834) (1101.700) = 1386.305 psf 

HL = 9.627 psia 

The total head loss for the system is then calculated to be 

HLtotal = 33.538 psia 

Now consider similar systems using water as the working fluid: 

p = 6Z.189 at T = 80°F 

= 0.8545 centipoises 

-(0.8545) (6.7197 x 10 4 ) lbm/ft-sec = 5.74198 x 10 - 4 
u = 
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rn = 0.0474 

ml.ne = 0.02,37 lb/sec 

Calculate velocity: 

0.0237
(6Z.189) (Z.591 x 10- 4 ) 

V = 1.47085 ft/sec 

Then 

0.218(1.47085) (62.159) (iz. 
Nrey = 5.74198 x 10-4 

Ne = 0.289 x 104 (transition region) f = 0.035rey 

Then total head loss 

H-62 F3 + (0.35) Z2.5, F6Z.1s9 (1.47085)22 

=0 (.--18 JL(.0) (32.174) 

HL = (7.Z3238) (2.0908) = 15.121 psf = 0.105 psia 

or 

HL = 0.105 psia 
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Now calculate head loss in the injector supply passages 

0.0237r _ 0.0076 lbM/secMsp = 

- 0.0076
(62.189) (0.85 - 4x 10

V = 1.434367 

Then 

(14.3436) (62.189) (0125 
=N - 4rey 5.74198 x 10 

N = 1.618 x 103 and f= 0.043rey 

Then 

62. 189 (1.43437) 
HL = + (0.043) 0125 (2.0) (32.174).. 

HL = (2.032) (1.988386) = 4.0404 psf 

HL = 0.28 psi 

Head loss in injector ports: 

Assume d.. = 0.021 in. (number 75 drill). Then 

V = 0.0059/3.14159 0.o021Z(62.189)\ 20 )2)o/ 
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V = 0.0059 = 41.248 ft/sec-5
(6Z.189) (0.23 x 10

Then 

(41.248) (62.189) i-.0 
=N 

rey 5.74198 x 10 - 4 

or 

N = 0.78179 x 104 and f = 0.035 
rey 

So 

62.189 (41.248)2
H 1.05 + (0.035) ( -

L.inj .0-1 (2.0) (3Z.174) ) 

H"in =-(2.299) (1644.312) = 3781.917 psf 

H 26.26 psia
Lanj 

Total head loss in system is 

H Ltotal = Z8.676 psia 

Consider the third option of using Ammonia as the working fluid: 

p = 37.65 Ibm/ft3 at 78.3°F 

z = 0.Z07 centipoises 
- 4 

= (0.207) (6.7197 x 10- 4 ) = 1.3909779x 10 
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m = 0.067 lb /sec 

rnline = 0.0335 lbm/sec 

Calculate velocity in supply line: 

-- '- 0.0335 3.434 ft/sec- =.033 
(37.65) (2.591 x 10 - 4 3 

Then 

0.218 

(3.434) (37.65) ( 12.0 
N = 1 2 .0 4 rey 1.3909779 x 10 

N = 1.688 x 10 £ = 0.027 rey 

Then total head loss in the supply line: 

3.62 + (0.027) (2.5 1 [(37.65) (3.434)z 

L = 0.218)j L(20) (3Z.174) J 

H L = (6.406697) (6.8997) = 44.Z04 psf 

H L = 0.30697 psi 

Now calculate head loss in the injector supply passages: 

0.0335 
n 3.0 0.01116 
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V= 4.11 3.479 ft/sec0.01116
(37.65) (0.852 x 10 - 4 3 

V = 3.479 ft/sec 

Then 

(3.479) (37.65) ( 0.125 
N =1.0 

rey 1.3909779 x 10-4 

N = 0.9809 x 104 £ = 0.032rey
 

Then 

H10 (.0Z) 3.o ))37.65 (3.479)z 
L = (i. + (0.032) 0.125 W20Z) (32.174)) 

HL = (1.768) (7.0817) = 1Z.52 psf 

HL = 0.08694psia 

Calculate loss in injector parts: 

M 4.0 0.0084: d inj = 0.031 (No. 68 drill) 

Then 

0.0084 

( 4159 (0.031 
E-Z 
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=Z.9772x =N - 104 0.045rey 

Thus 

HLnip .t4r) (37.65 (43.62)2L. - (1.05 + (0.045) 0.031 (Z.0) (3Z.174)/ 

HL jp = (2.1387) (1113.2719) 

EL. = 2380.965 psf = 16.535 psia

'nJp
 

Total system loss = 16.92839 psia
 

PIPING SYSTEM ANALYSIS SUMMARY 

The results of the piping system analysis are summarized in the following 
table. 

Mass Flow Injector Port Total Head
Fluid Required Diameter Loss 

(ibm/S ec) (in.) (psia) 

Butane-n 0.574 0.090 33.538 
Water 0.0474 0.0Z1 Z8.676 
Ammonia 0.067 0.031 16.93 
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Appendix F 

THERMAL ANALYSIS 
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Appendix F 

LAUNCH TEMPERATURES FOR IFIS (Including Pad) 

This section documents the anticipated launch temperatures for the 

IFIS to set a maximum operating temperature. 

Data to substantiate the maximum operating temperatures are listed 

below. 

1. 	 AEDC - TR-67-256 Qualification Test of Thiokol Chemical 
Corporation. TE-M-364-3 Solid-Propellant Rocket Motors.... 

,Test temperatures with 46 hr soak: 500, 55 ° 750, and 

° 95 + 5 F. 

Z. 	 Delta Spacecraft Design Restraints, Douglas Report DAC­
61687. 

Allowable fairing inside surface temperature, specified by the space­

craft agency, is maintained by applying insulation, if necessary to the fairing 

exterior . For every mission a Fairing Thermal Profile Analysis is made 

when the powered flight has been established. A typical time history of this 

analysis is presented in the figure on the following page. 

Emissivity of the fairing interior surface is approximately 0.9). In any case, 
the inside surface temperature will not be allowed to exceed 500 degrees F, 
above which temperature outgassing of the fairing material (phenolic resin) 
may occur. 
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500 
 Insulated 

------------ Uninsulated
 
400 - G
 

bIJ 
a) 300 - M 

Fairing 
Ejection200 

100 

0 I I 
30 60 90 120 150 180 

Time (sec) 

The temperatures for pad operations are: 

for Eastern Test Range -

Location Temperature 

Spacecraft Labs 75 + 5°F 
Hanger AF 75 T 3OF 
Spin Test Facility 75 + 5°F 
Handling Can Not(controlled 
Gantry Greenhouse 70 +5°F 
Gantry Fairing 75 -90°F + 50 

for Western Test Range -

Location Temperature 

Building 836 Areas 70 + 5°F 
75 2°F 

Spin Test Facility 77 + 5°F 
Handling Can Not controlled 
Gantry Greenhouse 70 + 50 F 
Gantry Fairing 75 - 90 + 50 F 
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3. Accordingly, the IFIS may be subjected to a maximum 
temperature of -100°F during the pad and launch opera­
tions. For the fluids used, the following tank pressures 
may be expected: 

Vapor 
Temp. Pressure 

A. Butane 100 0 F 51.37 psia 

B. Axnmonta 1000F 211.9 psia 

C. Water 1000F 0.9492 psia 

DETAIL THERMAL ANALYSIS 

To ensure that modifications to the ignition-injector assembly do not 

produce a thermal environment that cannot be tolerated, a detailed thermal 

analysis was conducted. A mathematical thermal model of the ignition­

injector assembly was constructed for this purpose. Various pieces of the 

assembly were partitioned into nodes and assigned the proper material char­

acteristics. Material properties used in this analysis are presented in Table 

F-I. The thermal model was used as input to Lockheed's thermal analyzer 

program described in Ref. F-i. 

All portions of the ignition-injector assembly were assumed to be at 

95 F prior to ignition. Motor burn was then simulated for 48 seconds by a 

constant level heat source with an average temperature of 5500°O. From 

motor ignition, the temperature time histories for the various nodes were 

calculated for a total elapsed time of 200 seconds. Results of these calcula­

tions are presented in Table F-2. 

The conclusion was reached from this analysis that the ignition-injection 

assembly could withstand the imposed thermal environment. Temperature 

information generated in this analysis was utilized in the detailed structural 

analysis. 
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Table F-I 

THERMAL PROPERTIES OF MATERIALS USED IN THERMAL 
MODEL OF IGNITION-INJECTOR ASSEMBLY 

Temperature k C p 
0OF) (Btu/hr-ft-0 F) (Btu/ib - 'R) (lbm/ft3m 

Stainless Steel - Ladish DGAC 

0.0 29.173 0.114 490.0 
1300.0 0.114 
2600.0 0.114 
4000.0 0.114 

Aluminum - 7075 - T6 

0.0 90.680 0.192 174.0 
200.0 101.695 0.Z14 
400.0 105.88Z 02.Z9 
600.0 101.695 0.250 
800.0 96.774 0.280
 

1000.0 92.307 0.318
 
1200.0 88.235 0.360
 
2600.0 88.235 0.360 

GENGARD - BUNA-N 

0.0 0.0499 0.42 70.0
2750.0 I 0.42 
5500.0 0.42 

Pyrolytic Graphite 

0.0 108.434 0.125 119.0 
500.0 72.000 0.320
 

1000.0 50.139 0.390
 
1500.0 37.815 0.435
 
2000.0 30.875 0.460
 
3000.0 24.390 0.490 
4000.0 21.583 0.5105000.0 19.780 0.530 

430 FM 

0.0 0.3801 0.11 194.0 
1300.0 0.11 
2600.0 0.11 
4000.0 0.11 

NOTE: Density values assumed constant over temperature range of the 
analysis.
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Table F-2 

IGNITER TEMPERATURES 

Position 

Time, sec. 

1 z 3 

Temperatures, 

4 5 6 

0 F 

7 8 9 10 

48 

50 

100 

150 

200 

1862 

1886 

1781 

1614 

1452 

168 

171 

236 

287 

328 

1968 

1986 

1789 

1614 

1450 

1250 

1291 

1497 

1397 

1276 

384 

399 

614 

683 

711 

123 

126 

189 

245 

Z91 

129 

131 

196 

252 

298 

132 

134 

201 

257 

302 

274 

282 

397 

454 

491 

308 

316 

458 

541 

592 

Motor Burnout 

Recommended Pyrolytic Graphite Insulation 

* BunaN 

* 0.040 in. thick 
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Appendix G 

THRUST CONE 

The thrust cone is a welded titanium structure. The toroidal tank is 

welded to the upper outside edge. 

I -

R
 

Material: Ti - 6A2 - 4V (Annealed) 

Fy = 126,000 lb/in. 2 (Ref. G-l) 

F = 132,000 lb/ins 
cy 

E = 16 x 106 lb/in. Z 

t = .016 in. 

a = 150 

R 1 = 7.05 in. 

R z = 8.27 in. 

I = 4.5 in. 

=Rl/cosa = 7.3 in. 

G-1
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Compute Critical Axial Load 

General instability 

P = ZtrCEt COS aC 

C = 0.20 (Ref. q-Z) 

6 cos 150)2P = 27r(.Z) 16 x 106 (.0
C 

= 20.1 x 106 (2.39 x 10 4 )P c 

p = 4,800 -lb 
C 

p C 

Fa 2
Zrpl tcos 

4800 
Zi (7.3) (.016)(.966)2 

F =7030 lb/in.? 

a a 

a 

Compute Critical Torsional Load 

R /R = 8.27/7.05 = 1.172 

R 1 Cosa 1+ V.5 (I + R/Rl) - 5(l +R n/RI) (Ref. G-2) 

- 1 + V.1 5 (1 + 1.172) - /.5(l + 1.172) 

I 1.042 .9581 + ­

G-2
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_ _= 1.084 
R 1 cosa 

.'.p* = 1.084 (7.05) cos 15 = 7.38 in equivalent cylinder radius 

= 2 

zL l-g­

7.38(.016) 

ZL =163.5 

K s 33.5 (Ref.G-2, Fig.6.1Z-l) 

Critical torque for 	general instability 

Et3 
Ta 2r3K 

12 ( 	 (Ref. G-2)Et 

x273r3-(33.5) 16 	 106 (.016) 3 

12 (.91)(4.5/7.38)2 

T = 33,450 in. -lb 
a 

Critical torsion stress 

T 
c z c
 

c22r 
R 12 t 

33,450
 

Z7r (7.05) (.016)
 

= 6,710 lb/in.2
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CRITICAL TRANSVERSE SHEAR LOAD 

Increase the torsional buckling stress by 1.25 to determine the 

transverse shear buckling stress. (Ref.G-3, C8.12) 

F s = 1.25 Ta = 8,380 lb/in. 2 
a 

For cylinders the maximum shear stress occurs at the neutral 

axis 

F = 4/3 ( + 2+ ) (Ref. G-3, A14.4) 

For thin wall shells 

+ ) 1.5 

f 2?TRt 
.. v = s1.5 

= rRtf s 

V = 7rRt F 
as
 

= ?(7.05)(.016) (8,380) 

V = 2,970 - lb 

G-4
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APPLIED LOADS 

, Maximum combined weight of torial tank and fluid is 60 lb. Dynamic 

loads of 15 g vertical and 3 g lateral will be experienced. 

Paxial = 60(15) = 900 lb 

90D 
ax 

axr(7.3)(.016)(.966) 

a = 1,316 lb/in. 2 

ax 

a = SF x a = 1.5(1316) = 1972 lb/in.2 

V = 60(3) = 180 lb 

£ = 180 
s 7r(7.05)(.016) 

f 
s 

= 508 lb/in.2 

fs = S. F. (f) = 1.5(508) = 76Z lb/in.2 

Margin of safety 

R a 1972 =.381 c F 7030. a 

f s 762 
R s =62.0909 s F - 8380 .

S 

1 
MS= -

C s 

1 
MS = -1=2.38/.281 z + .0909 z 

G-5
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TOROIDAL TANK 

The toroidal tank is a welded pressure vessel designed to store the 

inert fluid. 

t = 0.0ZZ Minimum 

7.136 ID 

Z1.00 

Load Condition - Internal pressure 150 psi 

150 psi operating pressure 

Factor of safety (ultimate) = 4.0 (Ref. G-4)} 
=Pu p xF. S. = 140 x 4.0 =600 psi 

Material Properties MIL-HDBK-5 (Ref. G-5) 

Titanium - 6AI-4V (annealed) 

Ftu = 134 k psi 

Fty = 126 kpsi 

F cFr = 132 kpsi 

F = 76 kpsi 

e = 100 
E = 16. x 103 kpsi 

G-6 
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Membrane Stress Due to Internal Pressure 

R = 10.50 

£- r= 3.58 

ffr 

Z = (Ref. G-5) 

I -max Pr (ZR-r at p =R- r
 

! /21. - 3.58\
 

NI max 1-max xt = 0-00 x 358 2 7.16
 

= 2.145 x 1.26 =2.71 K/in. 

2.71 -N1I 

2.145
 
~2.0 1.90
 

z1 1.81 

N2 = 1.074 k/in. 

1.0­

0 30 60 90 120 150 
 180
 
0, degrees
 

N = f£" t = - 0.600 x 3.58/2 = 1.074 K/in.

2 2 2~
 

=
f-rnax tfNI -ma - Z.71/.022 = 123. kpsi 

34
M.S=Ftu _I
MVf.S - = 123 - 1 = + 0.089 

G-7
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SHELL STRESSES DUE TO AXIAL LOAD 

nx =15 g 

F15 

Wt = 60lbmax.
 

n= 15. g
x 

F.S. ult. = 1.5 and F.S.yield 1.15
 

P = n • Wt= 15x60 = 9001b
S x 

It will be assumed that the inertia loads are transmitted to the tank as a 
membrane stress. The running loads are 

N I = x 900 21.2 lb/in. 

Z7rp- cos 150 2 ir 7. cos 15 

1.5 x21l.Z
f .5-0= 1.500 kpsi

1 -nit 0.022 

Summing the stresses due to internal pressure (F. S. = 4.0) and inertial 
loads (F. S. = 1.5) 

f-u = IZ3. + 1.5 = 134.5 kpsi 

Fu 130MS --- 1= 12. 1= +0.04 
IZ4.5f I-u 
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TORUS TANK/THRUST CONE - MATH MODEL 

A mathematical model of a segment of the torus tank and thrust cone 

was constructed. This finite element model provides an accurate structural 

analysis of the stresses and deformations of the two structural components 

and a detailed look at their interface. The structure was modeled using the 

Lockheed SNAP/V70D, Finite Element Digital Computer Program (Ref. 0-6). 

The global axis system was located at the center of the tank/cone struc­

ture with the cone lower flange in the (1-2) plane. A segment of the structure 

was defined by rotating through an angle 6, measured in the (1-2) plane, 

positive about the 3-axis. A theta value of 3 degrees was used in this analysis. 

The orientation and location of the node points are shown in Fig. G-1. 

To facilitate the description of the model and preparation of input data, 

local reference frames were specified at the center of the tank cross-section. 

The local axis system is denoted by the prime superscript (1', 2', 3', 0 ') in 

Fig. 0-1. The (1'-2') planes lie in the global (R-Z) plane at both 0=0 and 3 

degrees. Only the local axes at the zero degree plane is shown in Fig. G-1 

for clarity. Using the local reference system, the tank node points are 

easily specified by cylindrical coordinates (1'=R, 2'=0 ', 31=Z), where E' 

is measured positively about the 31 axis. 

The cone node points are specified in rectangular coordinates since 

they lie on the tangent, with the local axes selected as shown. The location 

and orientation of each of the local reference axis systems is specified with 

respect to the global system. The local (1'-31) planes make an angle of 

1208? with the global (1-2) plane. For greater accuracy, smaller angle 

increments (AO ') were used in the region of the tank/cone interface. For 

30 degrees either side of node 1 (31), a 10 degree increment was used in 

defining the node points. Twenty degree increments were used from nodes 

4-19 (34-49). 

G-9 
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A3 (z) 

37 1 (x) 

2 (Y)" 7 

6 Typical Element 

3(z) 36 37 7 8 

35 ?, 40 10 

33 3 42 1 
32 

4152 z21221 
53 3 2 
54 146 4 14 

2(y) 56 Z 17 16 
57 Z7
58 128
 

-"-~ 5 029 ( 

Global Axis--*" 
System 

Fig. G-1 - Tank and Gone Math Model 
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The math model was analyzed for the condition of 150 psi internal 

pressure in the tank. The applied loads are specified using the local axis 

systems. 

Table G-I is part of the SNAP program output. The first set of data 

is the forces and moments at the node points of each element, the second set 
contains the stress values. All values are oriented in the element reference 

frames. Each element has a reference frame associated with it as shown 

in Fig.G-1. For the typical quadrilateral element shown (6, 7, 37, 36), the 
origin is located at the first node specified, and the second node designates 

the positive direction of the 1-axis. The 3-axis is always the normal or out­

of-plane axis. The forces and moments acting at the nodes of this element 

are given on the fourth page of Table G-1. The forces are parallel to the 

axis designated and the moments are acting about the designated axis. Force 

values are in (Iby, moments in (in. -ib) and stresses in (lb/in. 2). A negative 
sign denotes a load acting in the negative direction and not a compression 

load. For example, Fl at node 6 of the element shown is -135.076 lb. From 

Fig. G-1, this is seen to be a tension load acting in the (-I) direction. Like­

wise, Ml is a negative moment about the 1-axis resulting in compression 

in the top or external surface of the tank element. For the stress values, 

the (+) or (-) sign denotes tension or compression, respectively. 

Using the computed stress values, the margin of safety for the tank 

at the tank/cone interface can be determined. For element (1, 2, 32, 31) 
the hoop tension stress (SXX) is taken from the last page of Table G-1. 

SXX = 30,345.9 (lb/in. 2) 

The stress due to in-plane bending can be determined from M?, page G-15 

MZ = -. 0004370 in. -lb
 
MZe
 = SM I 

(.000437)(.011) 
- 7103.27 x 

G-L 
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Table G-1 

SNAP PROGRAM COMPUTER OUTPUT
 

LOADING CJNDITION 

FOPCES AND MOMENTS ACTING ON ELEMENT BOUNDARY NODES. 

COMPONENTS ARF S3VN IN LOCAL (ELEMENT) REFERENCE FRAMES. 

THERMAL EFFECTS ARE EXCLUDED 

CONNECTED 
JOINTS 71 r2 r3 Mi M2 M3 

79 -. 16248301+O -. 24535194-01 -. 4E903232-03 -. 35675R17-04 .84298235-04 .0 

30 .lS?83779+lf -. 42270381-01 .4'908321-03 .595'4327-04 .15037122-03 -0e 

Fo .16241339+00 .44070441-01 .46909613-n3 -. 60901006-04 .14971013-G3 .0 

99 -. 1;27S69B'O0 .'2735135-0i -. 46914702-03 .34762433-04 .84695977-34 .1 

28 -. 1g250177+O .13178416-02 .16853631-03 .58680052-06 -. 18852732-08 .c 

oq 
2q .1828302h-'1 

.1G24q4V5+OO 
-. 37949r61-03 
.21785370-02 

-. 18857361-03 
-. 16871082-03 

-. 33?17790-04 
.34151920-04 

-. 84298237-04 
-. 839377C2-04 

.0 

.0 

58 -.1;247528-0 -.311R8819-2 .1687412-03 -. 60302497-06 -. 21273233-0 .0 

27 -. 16251723+00 -. 19635042-03 .40558109-04 .82930353-05 -. 20416054-04 .0 

2.;5jl80+rD 
98 .1625304+00 

.36804023-02 
-. 18952980-02 

-. 40627171-04 
-. 40426038-04 

.9414546n-07 
-. 12265562-06 

.18351038-06 

.20468078-08 
.0 
.0 

57 -. IS251533+30 -. 15837539-32 .40495101-04 -.80S99DO-05 -. 205026;7-04 .0 

26 -. 162576t5+00 .70645795-O2 -. 49022861-04 -. 17828575-05 .42231675-05 .0 r 

77 .1;251727400 .37049533-02 .49237158-04 .80122374-05 .20418?2-04 .0,A 

57 .l62553F3+O -. 19164754-02 .49253t788-04 -. 82050377-05 .20323581-C4 .O, 

5 -. 1;749424+3n -. 18530574-32 -. 4946S084-04' .17397363-05 .42316818-O5 .3'". 

25 -.1626111.llin -. 85491324-02 -. 31363017-03 -. 64780714-04 .16019661-03 .0,i 

2F. 1;257G&8'-f .37437453-02 .31289685-03 -. ?1353R75-05 -. 42232223-05 .o c 

5 .1628071G+ff -. 14051346-02 .31208245-03 .21335259-05 -. 42384010-05 .0 

55 -. 1;757274+q .S7134218-02 -. 3112591?-03 .52713815-04 .16[6983-03 .­
a, 

24 -. 18167170Ofl -. 83083756-01 .11701193-02 .17250086-03 -. 42398934-03 .c 

25 
55 

.l;l!1Sffl0 

.16193708+o 
-. 49445366-01 
.51067827-01 

-. 11705119-02 
-. 11880280-02 

-. 59899888-04 
.61387210-04 

-.lGOlq;?-03 
-. 15933300-03 

-0 
.0 

4 -.1;97;5441 .814;1294-01 .1168419G-02 -. 16771583-03 -.4257155'4-03 .0 



Table G -1 (Continued) 

Fl F2 F3 M1 M2 M3 

23 
74 
54 
53 

-.16371059+fl 
iS7!81+0-

.16301373+00 
-. 1;197495+-0 

.30565959+00 
.15577572-01 

-.93917493-01 
-. 30731967+00 

.86107011-03 
-. 95038784-03 
-.84950656-03 
.93982429-03 

.34198A07-03 

.17572495-03 
-. 17949?35-03 
-. 33486795-03 

-.P4691842-03 
.42398945-03 
.42189512-03 

-. 84886733-03 

.0 

.0 

.01 
ao 

72 
?3 
93 
9? 

-. 1690382+00 
.13371)2+110 
.1C8343E7+O0 

-. 15332345+00 

.?0811698fl0 

.36582082+00 
-. 36?37no8+o 
-. ?1156772+00 

-. 16303636-01 

.1632404G-01 

.16306445-01 
-. 1632855-01 

-. ?9857478-02 

.23208204-03 
-. 23776584-03 
.29393710-02 

.72952136-02 

.84691893-03 

.842567C3-03 

.73300951-32 

.0 

.0 

.0 
-0 

1 
?2 
S2 
31 

-. 138062703.0 
.1;313312+1 
.14171159+00 

-. 17467182+00 

-. 43690996G01 
-. ?1446921+01 
.21484913+01 
.43653004+01 

.33334734-01 
-. 33255913-01 
-. 33264842-01 
.33186022-01 

.37956901-02 
-. 27222425-02 
.28106476-02 

-. 36720135-02 

-.93323942-C2 
-. 729521'43-02 
-. 72671587-02 
-. 93624413-92 

.0 
-3 
.0 
.0 

20 
21 
51 
50 

-. 12574135+03 
.12385531'33 
.12574745+03 

-. 12386141+03 

-. 78299643+02 
-. 80643216+02 
.77656709+02 
.81286149+02 

.16921395-01 
-. 16745394-0i 
-. 16226150-01 
.16050149-01 

.13394912-02 
-. 26351261-02 
.24509609-02 

-. 13277124-02 

-.42445028-02 
-. 60728122-02 
-. 60910920-02 
-. 41591839-02 

.0 

.0 

.0 

.0 

21 
1 

?1 
91 

-.12384840+03 
.12?63618+*3 
.12384682.03 

-.1776345303 

-.77925701+02 
-.78906954+02 
.77008271 02 
.79324385+02 

-.25625753-01 
.252104'1-01 
.25646066-01 

-. 25230774-01 

-.20164620-02 
.337Z8699-02 

-. 39043136-02 
.20333838-02 

.60730670-02 

.97713453-02 

.98818401-02 

.60004573-02 

.0 

.0 

.0 

.0 

19 
20 
50 
49 

-. 12835038+03 
.12575195+33 
.12831437+03 

-. 12571493+03 

-. 79822809+02 
r.3 2 3 3 1( 2 1+0 2  

.78311779.02 

.83812652+02 

-. 22524485-01 
.19927490-01 
.18454541-01 

-. 15857546-01 

-. 37119939'02 
.12711519-02 

-. 12301139-02 
.29'16446-02 

.80741998-02 

.42442713-2 

.42304568-02 

.74073243-02 

.c 

.a 

.0 
A0 0 

18 

19 
49 
49 

17 

-. 1359427B+3 

.12352761+33 

.13600900+03 
-. 1 593824Z3 

-. 14409G34+03 

-. 15251637 03 

-. 16078905+03 
.15528057+03 
.15892485+33 

-. 1614r-180+03 

.76645642-02 

-. 44157495-02 
.28001209-02 

-. G943356-02 

.72848149-01 

-. 71957617-02 

-. 90113565-02 
.78709382-02 
.99399945-02 

.43568782-01 

.60505613-02 

-. 80734913-92 
-. 78283780-02 
.78089733-02 

-.75379393-01 

.0 

.o 

.0 

.0 

.0 

W 

01 
-

18 
48 
47 

.13513348+03 

.14394089.03 
-. 13%98303+03 

-. 15365310+03 
.15166548.03 
.1638942+33 

-. 5c412537-01 
-. 68705763-01 
.55270151-01 

.13773527-02 
-. 77576347-02 
-. 42973155-01 

-.60499937-02 
-. 78375371-02 
-. 70050953-01 

.0 

.0 
.' 



Table G-i (Continued) 
Fl F2 F3 Ml M2 M3 

16 
17 
47 
46 

-. 15355380+S3 
.14436739f13 
.15348829+03 

-. 14429;87+13 

-. 17292783+03 
-. 17'27817+03 
.16850941+03 
.18069G58+33 

-. 10476451400 
.1131722+00 
.94294775-01 

-. 10271749+00 

-. E6669025-02 
.45167375-01 

-. 37139552-01 
.938485132-02 

.54133899-01 

.75377032-01 

.741506271--

.53942431-01 

.0 

.0 

.0 

.0 

15 
16 
46 
45 

-. 16196620+ 3 

.1533718+3 

.16217432+03 
-. 15431733+33 

-. 15977803+03 

-. 17353570+03 
.16587548+03 
.6743824+03 

.33587631-01 

-. 34222580-01 
-. 34718702-01 
.35353651-01' 

-. 11031300-01 

-. 26707554-01 
.24048609-01 
-11184654-01 

.12464881-01 

-. 5413S433-01 
-. 55617351-01 
.11657524-01 

.0 

.0 
.0 
-3 

14 
15 
45 
44 

-. 16836241+03 
.1;2177q9+03 
.1682R767+fl3 

-. 16211325+13 

-. 15814336+03 
-. 16192566+03 
.15450568+03 
.16456334+03 

.14795222-01 
-. 14887173-01 
-. 12802261-01 
.12894913-01 

.11662478-02 
-. 57190139-02 
.48267677-02 

-. 95644350-03 

-.49458042-02 

-. 12466212-01 
-. 12383934-01 
-. 46089128-02 

.0 

.0 

.0 

.2 

13 
14 
44 

43 

-. 17255076+03 
.15354547+33 
.17254416+03 

-. 1;953187+33 

-. 16177438+03 
-. 16527846+03 
.111805+03 

.1659Q479+03 

-. 62307449-02 
.72221665-02 
.55237613-02 

-. 65151828-02 

-. 78,951847-03 
.23413153-02 

-. 171356877-02 
.10713297-02 

.30601108-02 

.49463894-02 

.46869745-02 

.31384522-02 

.0 

.0 

.0 
-0 

3213 

43 
4? 

-. 17382331+03.17264457+03 

.17381787+03 
-. 17263914#33 

-. 16418896+03 
-. 16474913+03 

.16350844*03 

.t6542765+03 

.18196757-02 
-. 14954662-02 

-. 13220878-02 
.15979784-02 

-. 66391015-03 
-. 14466362-02 

.15637762-02 

.7'937088-03 

.9652F367-03 
-. 3060324B-02 
-.31752039-02 
.10215335-02 

.0 

.0 

.0 
-0 

11 

12 
42 

41 

-. 17199988+03 
.17331594+3 
.17198848+03 

-. 17381454.3 

-. 1669P140+03 
-. 16497691+93 
.16672853+03 
.-16499978+03 

.24173164-02 
-. 20301411-02 
-. 22391054-02 
.1519302-02 

.80073843-03 
-. ?38f35342-03 
.35390204-03 

-. 63469381-03 

-. 171328C0-02 
-. 96523391-03 
-. 10231588-02 
-.16031741-02 

.0 
-3 
.0 
-0 

t 

10 
11 
41 
40 

-. 19728111+03 
.17187S54+33 
.16725631+03 

-. 17185175+03 

-. 16665992+03 
-. IG352186+03 
.16824394+03 
.16193785+03 

-.640917019-02 
.66728287-02 
.60846535-02 

-. a3483113-02 

-. 27391270-02 
.32393142-03 

-. 20060483-03 
.25303982-02 

.62092225-02 

.17131925-02 

.15912989-02 

.63431044-02 

.0 
-

.0 
o0 

tI 

9 

10 
40 
3q 

-. 16013846+03 

.1;7395B2+33 

.16018288+03 
-. 13714004t03 

-. 17249009+03 
-. 1637F932+03 

.17052831+03 

.1657311t+03 

-. 14726392-02 
.29227899-02 

.31664628-02 
-. 46166135-02 

-. 43028812-02 
-. 32415R61-02 

.36335988-02 

.46757499-02 

.95103940-02 
-.G2086133-02 

-.61229058-02 
.10405711-01 

.0 
.3 

.0 

.0 

0 
r 



Table G-1 (Continued) 
rl FZ F3 Ml M2 M3 

A -. 15147707+03 -. 16946834 03 .63490902-01 .33093923-01 -.62035196-01 .0 

39 
38 

.o15987G21.33 

.151396C9 03 
-.15979523+03 

-. 16653483+93 
.17427857+03 
.16172460+03 

-. 56785953-01 
-. 58646039-01 
.51941089-01 

.51'13397-02 
-. 35472419-02 
-. 27184002-01 

-. 95094333-02 
-. 10392337-01 
-. 61354985-91 

.0 

.0 

.0 

7 

a 
38 
37 

-. 14305214+03 

.15121353+13 

.142917F3+03 
-.151373)1.03 

-.15700598+03 

-. 15592629+03 
.1E363367+03 
.14929960+03 

-. 75694280-Cl 

.82148792-01 

.70400081-01 
-.7G854593-01 

-. 16663884-01 
.21392528-01 

-. 21E93830-01 
.15998106-01 

.33566251-01 

.62033453-01 

.58869136-01 

.35112237-01 

.0 

.9 

.0 
.0 

-6 

-37 
-36 

-. 135C7651+03 
7.t42921 22+13 

.13519279+03 
-.1429375303 

-.16533864+03 
-. 1 541 73'05.03 
.16091695+03 
.15859533+03 

.2038411-01 
-. 17903037-01 
-. 20867423-01 
.I9732048-01 

-. 15460122-01 
- .25592506-01 
.27889281-01 
.15385673-01 

.85854830-02 

-. 33567822-011 
-. 32916026-01 

.9761615-02 

.0 

.0 

.0 
.0 

S 
6 

36 
35 

-.12840036+03 

.13484553+33 

.12831830 03 
-.13475353+93 

-. 16441322+03 

-. 16572127+93 
.17081786 03 
.15931663+03 

.15756243-01 

-. 10153127-01 
-. 95498464-02 

.39467303-02 

.97,774743-03 

-. 52301123-02 
.57t791911-02 

.11386908-02 

-. 45101549-02 

-. 85863473-02 
-.87876061-02 

-.25532541-02 

.0 

.0 
'.0 

.0 

4 
5 

35 

34 

-. 12436073.03 
.17825G41+33 
.1438415+03 

-. 12R27984+33 

-.16237731+03 
-. 15988957+03 
.16299529+03 

.15927159+33 

-. 79502943-02 
.1244816G-01 

-.42825089-03 

-. 40696205-02 

-. 24624387-02 
.20701246-02 
.20925545-05 

.20847427-02 

.39591700-02 

.45106273-02 

.25990004-02 

.38923571-02 

.0 

.U 

.0 
.0 

3 
4 

34 

33 

-. 12245596+03 

.12341437103 
.12244930+03 

-. 1?341772.03 

-. 81678335+02 

-. 90710035.02 
.P2135704.02 

.90252667+32 

.838649C4-02 

-. 94768n01-02 
-. 74978498-02 

.85881595-02 

.25749244-03 

-. 19368705-02 
.15806912-02 

-. 34649169-03 

-. 13795428-02 

-. 39593834-02 
-. 38222f75-02 

-.14306375-02 

.0 
.0 
.0 

.0 

2 
3 

33 
32 

-. 12224557+n3 
.1 245349+33 
.12224928+03 

-. 1245715*S3 

-.81261:IC02 
-. 80899154+02 
.81210947+02 
.909421G6+02 

-.10291275-01 
.95833959-02 
.10D03872-01 

-. 33959928-02 

-. 21453050-02 
.202q3791-03 

-. 28f742816-03 
.199d9035-02 

.47819134-02 

.13795591-02 

.14257841-02 

.46945459-02 

.a 

.0 

.0 

.0 0 

1 

2 
32 

31 

-. 12276554f03 

.12224903-03 

.12276809.03 

-. 12225156.93 

-. 78509169+02 
-. R0360632+02 
.79564432 02 

.79309369+02 

.81174369-02 
-. 97940572-02 
-. 79131923-02 

.85899127-02 

-. 27562183-03 
-.22656667-02 
.20897537-02 

.16375303-03 

-.43704158-03 
-.47818733-02 
-.47029736-02 

-. 50018733-03 

.0 

.0 

.0 

.0 

U 



Table G-1 (Continued) 
CONDITION I 
 STRESSES IN PLANE-STRESS QUADRILATERAL ELEMENTS
 
CONNFCTED JOINTS UIETA NODE 1 NODE 2 NODE 3 NODE 4 

29 30 60 59 5 SXX: 
SYY: 
SXY: 

.48922333+02 

.10593787+31 

.2245531'0O 

.48922333+02 

.15712010 92 

.22u55831+00 

.48859131+02 

.15644549+02 

.2245S831+00 

.48859962+02 

.99280335 00 

.22455831 0 

?8 21 59 58 5 SXX: 

SYY: 
SXY: 

.4950799702 

-.14211200+Ol 
.2 7467944+t10 

.4g537917+02 

.12013845+01 

. 74579t4.,r 

.49500904 02 

.11894691.01 
.2757944+00 

.4950099802 

-.14328767+01 
.2746794400 

27 28 58 57 5 SXX: 
SYY: 
SXY: 

.5O179672+02 

.34634932+02 

.27803V550D 

.50179672+02 
-.12219156+01 
.27803055+02 

.50192020+02 
-.12148823+01 
.27803055+D0 

.50191853+02 

.353887q1.00 

.27803055+00 

?G 27 57 5G 5 SXX: 

SYYr 
SXY: 

.50894095-02 
-. 32668625+01 
.28733149.03 

.50894095+02 

.59451892+00 

.2$73319+t0 

.50872314+02 

.57744214+00 
.23733149+0O 

.50872512 02 
-. 32837058+01 
.28733149+00 

C 

25 

24 

26 

25 

56 

S5 

55 

54 

5 SXX= 
SYY: 
SXY: 

5 SXX: 
SYY= 
SXY: 

.5161396502 

.43817171+01 

.28823(l36+.0 

.52113542.02 

.28523209+02 

.17019741+00 

.516139E5+02 
-. 30845006 91 
.28823436+00 

.52113542+02 

.45093796F01 

.17019741 00 

.51610188+02 
-.30519331+01 
.28823436+00 

.52371685+02 

.46126723+01 

.17019741+00 

.51610240+02 

.44138324+01 

.28823436+00 

.52368253+02 

.28625050+02 

.17019741+00 

73 24 54 53 5 SXX: 

SYY: 
SXY: 

.53354279+02 

-. 12922831 03 
.54587144*00 

.53354279+02 

.2959n701+02 

.54587144f00 

.52666618+02 

.28317155+02 

.54587144+00 

.52676431+02 

-­ 12989223+03 
.54587144+00 

72 23 53 52 5 SXX: 
SYYr 

SXY: 

.55345916 02 
-.14129731+02 
.9670t835+03 

.55345916+92 
-. 12982857+03 

.96701835+00 

.54557879+02 
-. 12934491+03 

.967 I335+00 

.54567840+02 
-. 13653069+02 

,96701835+oo 

0 

1 22 52 31 5 SXY= 
SYY: 
SXY: 

.49412701+02 

.16436143.04 
-. 38284138+01 

.49412701+02 
-. 2197064.9? 
-.38284138.01 

.55153164 02 
-. 15108590+02 
-. 38284138+01 

.55068844+02 

.16503755+04 

-.38284I38 01 
0 

20 21 51 59 5 SXX: 

SYY: 
SXY: 

.29383322.05 

.11726406+05 
-. 21335430+03 

.29383322.35 

.11445247+05 
-. 2133543'0+33 

.29387546+o5 

.11443210+05 
-. 21335430+03 

.29387712 o5 

.11724290+05 
-. 21335430+03 

N
0' 

21 1 31 51 5 SXX: .29970443+05 .29970443+05 .29969305+05 .29969276.05 

SXY: 
.YY=.11630104+05 

-. 14275P75 03 
.112?3983 95 

-. 1427875+03 
.11227154+05 

-. 1427575+03 
-11628227+05 

-. 14275875+03 



Table G-I (Continued) 

CONDITIO0\ I STRESSES 14 0LANE-STRESS 0utAD:ZIATE4AL ELEPIENTS
 
CONNECTED JOINTS NBETA NODE 1 NODE 2 NODE 3 NODE 4 

iq 29 SO 49 5 SXX: .28639870+05 .28639870+35 .28516102+05 .28614912+35 
SYYz .12153353+05 .11492390+05 .11485803+05 .12146437G5 
SXY: -. 26285859+03 -. 26285859+33 -. 26285859+03 -. 26285953+-3 

18 19 49 48 5 SXX= .27476570+05 .27476570+05 .27515448+05 .27520280+05 
SYY: .11163374+05 .11770432+.5 .11774601+05 .1116810105 
SXY= -. 33370551+03 -. 33370551+03 -. 33370E51+03 -. 33370551+03 

17 I4 4R 47 5 SXX= .25731360+05 .2573136'0+35 .Z5650813+05 .25640977+5 
SYY= .12800TU3+05 .10661141+05 .10641?25+05 .12777733+05 
SXY: -. 34355363+03 -. 34q55363 13 -. 34355363+03 -. 34855363+03 

I 17 47 46 5 SXX= .24233931+05 .24233931+05 .24203717+05 .24199986+05 
SYY= .13277971+05 .12306944+05 .1229618q+05 .13265787 05 
SXYz -. 29712707+03 -. 29712707+03 -. 291712707+03 -.29712707+03 

is 1; 45 45 5 SXX: .23072893+05 .23072893+95 .23133695+05 .23136534+05 
SYYr .11524657+05 .12864303+05 .12879758+05 .11541687+05 
SXY= -. 264S1015+03 -. 26461015+03 -. 26461015+03 -. 26461915+03 

14 15 45 44 5 SXX= .22237590+05 .22237590+05 .22208467*05 .22206311405 
SYY: .12080115+05 .11231262+,35 .11273132+05 .1207138305 
SXYr -. 2C505630+03 -. 20505630+03 -. 20505630+03 -. 20505630*03 

13 14 44 43 5 SXX: .21676917+05 .21676917+.5 .2174452+05 .21674345.05 
SYYz .12036943*05 .11890691+05 .11889683+05 .12035892+05 
SXY: -. 11868733+03 -. 11868733+03 -. 11868733*03 -. 11868733+93 

1; 13 43 42 5 SXXr .21429038+05 .21429038+05 .21427034+05 .21427010+05 cn 
SYY: .12103104+05 .11954921+35 .1195450B+05 .12103436+05 
SXY= -. 33649422+02 -. 33649422+02 -. 33649422+02 -. 33649422+02 

i1 12 4? '41 5 SXX: .21457268+05 .214572G8+35 .?1456739+15 .21456743+3,5 
SYYr .12150591+05 .12112659+T5 .12112783+05 .12150712+05 

SXY: .51262;43+02 .512G2643+12 .51292;43+02 .51262343+02 

1n 11 41 40 5 SXX: .21795111+05 .21765111+05 .21'755325+D5 .21755792+05 
N 
a, 

5YY= .11906223+05 .12253936+05 .12?51110+05 .11903531+05 N 
SXY: .134 4929+03 .13484929+03 .13484929+03 .13484929+03 

9 11 4) 39 i SXX: .22347372+05 .22347372+95 .22365315+05 .22364931+05 
SYY= .12919326+05 .120884"2+05 .12093341105 .12523907-05 
SXY: .20755R74+03 .20755874+03 .2n755874 03 .20755874+23 



Table G-I (Concluded) 

CONDITION I STRESCES IN PLANE-STRESS QUADRILATERAL ELEMENTS
 
CONNECTED JOINTS N3ETA NODE 1 NODE 2 NODE 3 NODE 4 

8 9 39 38 '5 SXX= 
SYY= 
SXY= 

.232597C6405 

.11779755+05 

.27164147+03 

.232597n6+5 

.12836664+n5 

.27164147+03 

.23221472+05 

.12823115+05 

.27164741+03 

.23225173+05 

.11767513+05 

.27164147403 

7 q 33 37 S SXX: 
SYY= 
SXY: 

.2455DS55+5 

.10740F29+05 

.342?4R65+03 

.2495n656 05 

.12197029+05 

.342488G15+33 

.24479088+05 

.12179323+05 

.34248865+03 

.24487141+05 

.107249164C5 

.34248865+03 

9 7 37 36 5 SXX: 
SYY: 
SXY: 

.26147760+05 

.12180844+05 

.3E178q27+03 

.26147760+05 

.11209433+5 

.35178927+03 

.26217861+05 

.11219148+05 

.35178927+D3 

.26209622+05 

.12189417+05 

.35178927+03 

O 

5 6 39 35 5 SKX: 
SYY= 

SXY: 

.279q47563+05 

.11384750+05 

.30607375+03 

.279475613+15 

.12791147+05 

.30637375+03 

.27392193+05 

.12w781211+05 

.30607375+03 

.27898397+05 

.11375873.15 

.30607375+03 

4 5 35 34 5 SXX: 

SYY= 
SKY= 

.2950646005 

.11721921+05 

.21863944+03 

.29506460+05 

.11857556+05 

.21863944Q+3 

.29523551+05 

.11867917 05 

.21863944+03 

.29522265+05 

.11721422+05 

.2186394403 

3 Et 34 33 5 SYX: 
SYY: 

SXY: 

.30137536 05 

.11733014.05 

.10608906403 

.30187536+05 

.11932973+05 

.10608506+O3 

.3018258305 
.11932275+05 
.1'0056+03 

.30182&79+05 

.11732329+05 

.1060853S+03 

2 3 33 32 5 SXX= 
SYY: 

SXY: 

.30406958+05 

.11826529.05 

.24652'95+02 

.30406958+05 

.11802630+05 

.24652795+02 

.30409726+05 

.llD2649+05 

.24652795+02 

.30409714+05 

.1182S547+05 

.24652795+02 

1 2 32 31 5 SXX: 
SYY: 

SXY: 

.30345943+05 

.11344L82+05 

-. '100D07+02 

.30345943+35 

.11(5BI+05 

-.Sl')0807+02 

.333047827+05 

.11806689+05 

-. 51303307+02 

.30347848+05 

.11345369+05 

-. 61000837+02 0 

0' 

N 
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SM = 14.7 lb/in. 2 (tension in top surface) 

St = 30,345.9 + 14.7 = 30,360.6 lb/in. 2 
max 

Applying the specified ultimate factor of safety 

Stu F.S. xSta x 

= (4) (30,360.6) 

St = 121,442.4 lb/in. 
U 

For Ti - 6AI - 4V (annealed) 

Ft = 134,000 lb/in. (Ref. G-1) 
u 

MS~u = 
F 
St 

-1 

U 

134,000 1 
121,442.4 

MS= 0.10Zu 

The hand calculations of the toroidal tank (page G-6) agree with these values. 

By inspection of the computer stress results, 30 ksi is the maximum 

hoop tension stress in the tank structure. This value occurs in the region of 

the tank/cone interface. 

By inspection of the inplane bending moments the maximum moment, 

MZ = .075377 in. -ib, occurs in element (16, 17, 47,46). The margin of safety 

at this element is 

G-19 
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SXX 24,233.93 

SM- (.075377)(.011) = 1774 lb/in. 2 
10 - 7 

4.67 x 

St = 24,233.93 + 1774 = 26,008 lb/in. 2
 

max
 

s = (4)(Z6,008) = 104,032 lb/in. z
 

u
 

MS = 134,000 1 = 0.288u 104,032 

The results of this computer analysis shows that the tank structural 

integrity is maintained and will satisfy the safety requirements. 

IGNITER CASE/POROUS SLEEVE 

-A mathmodel of the igniter case and porous sleeve was constructed 

and used to analyze three temperature cases. The impulse pressure during 

igniter injection was also analyzed. 

Igniter Case: 

MATL: 7075-T6 Aluminum
 
t = .05Z5 in.
 

R. = 1.0625 in. 
in 

Porous Sleeve: RIGIMESH (Ref. G-7) 

MATL: 347 Stainless Steel
 

MESH: 12 x 64
 

LAYERS: 12
 

t = 0.1725 in.
 

Rin = 1,115 in.
 

LOCKHEED -HUNTSVILLE RESEARCH & ENGINEERING CENTER 
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The resultant radial deflections for the four cases are given in Table 

G-2. The values shown are the changes in radius. The temperature 

cases were taken from the thermal analysis. The ignition pressure was 

1250 psi. 

Table G-2 

RADIAL DEFLECTIONS 

Igniter Case Porous Sleeve 
Condition Deflection Deflection 

(in.) (in.) 

Igniter Ignition .00053 .00050 

Temperature 50 sec .01081 .01271 

Temperature, 100 sec .01161 .01358 

Temperature Z00 sec .01215 .01408 

NOTE: Values given are changes in radius. 

Table G-3 gives the computer program output for the stresses in the 

igniter case and porous sleeve during igniter ignition. The igniter case is 

denoted by nodes 1, 2, 5, 6 and the porous sleeve bynodes 2, 3, 7, 6. The sketch 

gives the node locations and local axis system for the nodes in each plane. 

From the output, the maximum hoop tension stress in the porous sleeve 

is 

6,915 lb/in.SYY = 

Applying the safety factor of 1.5 

ft = S.F. xSYY 

= (1.5)(6915) 

f = 10,380 1b/in.2 

G-21 
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Table G-3 

COMPUTER OUTPUT, IGNITER IGNITION 

CONJITION 4 
CONNECTED JOINTS 

- 2 .. . 

....SRESSES IN PLANE-STRESS QUADRILATERAL ELEMENTS 

NSETA NODE 1 NODE 2 NODE 3 NODE 4 
-S SXX. .-.­1796922+f'l4 -. 10736922+04 .-...11336718+0Q-.1i311297+24 

5.Y. _--__,4E8-63, S92 +t7-__._qJ496OZ0 4 ,*q4979734q+.~_487 282 +J4_ 
SXY: -. 13385892+13 -. 13385892 03 -. 13385892+03 -. 13385892+J3 

2 

.. . 

3 7 -

.. . .. . 

5 SXX .-. 45053544+O3 

. SYY= . ... G,9i 4.8915+(14 
SXY= -.14157651+03 

-. 45.53544+03-.41548425+03 

55627_q.37.D4 ...... 56713633+04._ 
-. 14157651+03 -. 14157651+03 

-.4208b2+03 

.69223566+J4 
-.14157651+03 

w 

N/ x 

7W 

62 Porous Sleeve 

Igniter Case 

\ R tri 
C) 

U 
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The allowable stress is the tensile yield 

Fy = 22,100 lb/in. 2 

Margin of safety 

-S 22,100 -1 = 1.13 
10,380 

PYROLYTIC GRAPHITE SLEEVE 

The following analysis will be applicable only if the sleeve is oriented 

as shown below. This arrangement takes advantage of the orthotropic pro­

perties of pyrolytic graphite. 

a a
 

Ca 

G-23 
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Tolerances adequate to prevent contact with the stainless steel ring during 

the igniter ignition impulse pressure must be provided. Changes made in 

the length of the graphite sleeve will not affect this analysis. 

PYROLYTIC GRAPHITE SLEEVE 

= 1.35 in.t 0 

R1 = 	 1.Z935 in. 

t = 	 .0565 in. 

L = 	 0.75 in. 

A 	 .0565 (.75) = .0424 in. 2 

- 5 	 4 
= 1.128 x 10 n.I i- (.75)(.0565)3 

PRESSURE DURING MOTOR BURN 

p 925 psi acting as an external pressure on the sleeve 
z 

ZpR 0 

2 (925) (1.35) _ 3370, 
1.352 - LZ9352 .15
 

f C = 22,450 lb/in. 2
 

For 	the "a" direction (Ref. G-8) 

F = 10,000 lb/in. ? 

MS 10,000 - 1 = -. 555 (no S.F. applied)
?Z,450
 

G-L4
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Sleeve will crack under motor burning pressure. Since the pressure is 

external and the insulation will act as a membrane around the sleeve, the 

sleeve should remain in position around the orifices. 

INTERNAL PRESSURE REQUIRED FOR FAILURE 

F (Ro 2 - Ri2)
t 

cr
P = 

a (RQ40 + 1t 

For "c' direction (Ref. G-8) 

Ft = 500 lb/in. 2 at RT 

Ft = ZOO b/in. Z at 5,000°F 

At RT 

500 (1.35 z - 1.Z9352) 
Pcr : (135Z + 1.2875 ) 

500 (.15) 
3.495 

pcr = 21.45 psi 

At 50000F 

2200 (.15) 
er 3.495 

P = 8.59 psiCr 

The temperature is approximately 10000 F, therefore a pressire of approxi­

mately 19 psi will probably cause failure if the sleeve did not crack during 

motor burn. 

G-25 
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CONTACT OF SLEEVE WITH THERMALLY EXPANDED POROUS STAINLESS 
STEEL RING 

For the "a" direction, change in diameter from Table Z, t Z00 sec. 

AD = Z(.0141) = 0,0282 in. 

p= AD EI (Ref. G-5)
 

.149 R3
 

- 5 )
(.0282)(5 x 1061(1.1Z8 x 10


(.149) (1.32175) 3
 

1.343 4.63 lb 

Maximum Bendang Moment 

M = 0.3183 PR 

= 0.3183 (4.63)(1.32175) 

M = 1.95 in./lb 

f 1.95 (,028Z5) 
- 510I.IZ8 x 

f =4890 lb/in. Z 

Applying the safety factor 

f = 1.5(4890) = 7340 lb/in. z 

F 10,000 lb/in. ? (Ref.G-8) 

10,000 -1 = .362
MSB = 7340 

G-26 
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Maximum Shear Stress 

1 P/A 

y (4.63/.04Z4) 

f = 	 54.7 lb/in. Z 

500
 
MS =-- 1 = 8.14
54.7 
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Appendix H
 

CALCULATION OF SYSTEM CHARACTERISTICS
 
(WEIGHT/ULLAGE/MOMENT OF INERTIA)
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Appendix H 

TOTAL SYSTEM WEIGHT 

1. Tank: 

F +__ Thickness = .022 inch 

10.5" 

W = P4r za b t = (.158) 4 (7r) (10.5) (3.57) (.022) 

W= 5.1387 

TOTAL SYSTEM WEIGHT 

2. Thrust Cone: 7.032 0.305 

3.846 

0.125 8.0625 0.6 

9.939 

Assume top curved section straight 

H-I 
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Gone: 	W = Pt[r(R+r)FH2(R-r)2] 

W = .158(.016 1r (8.0625 + 7.032)T\(4.151)2 + (8.0625 - 7.037)2] 

W 0.5125 c one
 

Ring: W tPr (R2 - r) = (.094) (.158) (r) (9.9382 - 8.06252
 

Wrig= 1.5702ring
 

2.0827Wttal 

3. 	 Pyrovalve: 

Body 0.60 
Squibs 	and connectors 0.49
 

1.09 

TOTAL 	SYSTEM WEIGHT 

4. Plumbing: 

1/4', OD Tubing 0.016 Wall Wt/ft - .014 lb/ft ALUM. 

Tank to ball valve - 14 in.
 

Ball valve to pyro valve- 8 in.
 

Ball valve to OD - 4 in.
 
Tubing total length = 26 inches/side = 52 inches total
 

5Z in 
Wtubing = ( iZ-n t ) (.014 lb/ft) = .060 lb 

Flex Hose weight = .08 lb/ft 

Wflex hose = Z()10 (.08 lb/ft) = .133 lb 

H-2 
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Fittings 

2 - Quick Disconnects .06 lb. ea. = 1.20 

2 - Elbows at tank .027 lb. ea. .054 

2 - Tee's at injector .045 lb. ea. = .090 

4 - Female conn. at valve .0272 lb. ea. = .109 

.393 lb 

5. Ball Valves: 0.09 lb ea. = 0.18 lb 

6. Doubler: 

___I 
.030 thickness 

2.25 W pV = (.158)(.030)(2)(2.25) 

_W = .0Z13 lb. ea. 

t2 .0t I 
Z doublers W = .0426 

TOTAL SYSTEM WEIGHT 

7. Valve Support: 

7.57 4.65 5.75 

Figure flat pattern area times .04 thickness x p = weight 

H-3 
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= 66.418 in. 2A 1 = (Z.2)(7.57 + 4.65 + 5.75 + 4.65 + 7.57) 

A2 = !(.569)(.985) + A(7.)(.725) + (7.0)(.26) = 4.6377 

4A2 = 18.5508 

A3 = (.66)(1.143) + (3.99)(1.143) = 4.938 

4A3 = 19.7510 

A4 = (.688)(1.28) + (5.062)(1.28) = 7.26 

ZA4 = 14.72 

so that the flat area before cut out is: 

66.418 
18.551 
19.751 
14.720 

.2 
119.640 in. 

.04 in. thick 

4.7856 in. 3 W = PV = (.158)(4.786) = .7562 lb. 

TOTAL SYSTEM WEIGHT 

Now we remove all holes and cut-outs, and then add in the two corner 

blocks. 

V = .00441 in.8 - 3/8 diameter corner bend relief holes 

a - i/z diameter holes = .00785 

Z - .687 diameter holes = .01482 

2 - .781 diameter holes = .01915 

Z - .203 diameter holes = .00129 

H-4
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Valve meeting cut outs 

Lw ­ .06767 

_+ o.c- .1024 

VT = . 21758 
_.0 W = .034379 lb. 

2W = (.6)(.55)(1.25)(.158)= .0652 

W = .7562 - .0344 + .0652 = 0.787 

Total System Weight: 

fluid 50 084 
Tank 5.1387 Ratio Total = 59.907 0.8346 
Thrust cone 2.0827 
Pyrovalve 1.0900 
Plumbing 0.5860 = 9.907 Hardware 
Ball valves 0.1800 50.00 Fluid (nominal)
 
Doublers 0.0426 59.907 lb.
 
Valve support 0.7870
 

SYSTEM ULLAGE REQUIREMENTS 

The three primary fluids; butane, ammonia, and water each have 

characteristics which make determination of a "universal', tank very much 

a tradeoff. 

1. For the baseline tank previously described, using Butane as the working 

fluid the following is found: 

VT = 1.25 ft3 

Pnax 150 psia 

T = 177.8 0F 
max
 

Tmexp= 150 0 F
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Due to ullage required for fluid expansion at increased temperatures, a 
volume less than maximum is available at normally expected temperature. 

The ullage required is a varying percentage of total volume depending 

on the temperature (fluid) maximum design and the loading temperature. 

EV, at loading temperature x 10 

0o Ullage = 1 - Vf at maximum temperature x 100 

which is 	the percentage extracted at loading. 

Tload = 	 750a. 	 For Tmax33 = 1780 


WF = (l.Z5ft )(31.3 lb/ft ) = 39.1 lb
 

~ =Uae=i-I - Vfat 39.1 lb = 1 1.25 = 1.0 - .869o~ 	 1.25 

%'Ullage= 13.1% 

Weight total at 75°F 

Wf = 1.25(36.05) = 45.0 lb. 

Ullage weight = (.13)(45) = 5.9 lb 

. f Final = 39.1 lb 

which is equivalent to Wf at Tmax 

b. 	 For maximum expected conditions T = 150°F
 
max
 

For loading temperature of 750 

Ullage Weight = 4.4 lb or 9.8%0 

WF Usable = 40.6 lb 

H-6 
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II. In order to provide a usable fluid weight of - 50 ib, the tank volume must 
be increased. 

V 50 Ib = 1.53 ft 3 
T at 1500F 

32.6 lb/ft3 

Using 1.5 ft 3 

Ullage = 9.1% or 4.9 lb 

WF Usable = 49.1 lb 

Tank weight for 1.5 ft 3 = 5.011 lb 

Weight for fittings, tubes, and thrust cone - 3.00 lb
 

Mass fraction = 49.1= .86

57.01 

I.. Ammonia presents other problems in that at the maximum pressure, the 

allowable temperature is 79F. 

Therefore three alternatives are available: 

1. 	 Normal tank (universal) equipped with pressure relief valve 

(150 psia) 

(1.25 ft 3 
2. 	 Increase tank wall thickness to withstand higher pressure 

i.e., at 125OF = 307 psia
 

' twall - .03588
 

Weight 8.36 lb
 

This is assuming no burst test and design to safety factor of 4.
 

3. Restrict maximum operating temperature to 80 0 F. 
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Ammonia Ullage Peq. 
Tank Vol. = 1.5 ft 
Max. Fluid Weight - 50.0 lb 
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MOMENT OF INERTIA OF STRUCTURE 

I = mr W = mg I -r 

Item 	 Weight (ib) r(in.) I(lb -in. 2 I(in-2b-sec 

Tank 5.1387 10.5 566.542 1.4662 
Thrust cone skin 0.5125 * 3.986 0.0103 
Thrust cone ring 1.5702 9.050 128.603 0.3328 
Doublers 0.0426 7.81 2.598 0.0067 
Valve Support: 

Sect 1* 0.2105 7.15 10.761 0.0278 
Sect 2 0.1173 6.80 5.421 0.0140 
Sect 3 0.1248 4.00 1.997 0.0052 
Sect 4 0.0930 1.28 0.152 0.0004 
Sect 5 0.1293 4.28 2.369 0.0061 
Sect 6 0.0799 1.28 0.131 0.0003 

Pyrovalve 1.09 0.52 0.295 0.0008 
Ball valves 0.180 2.08 0.779 0.0020 
Q. D. Is 0.120 5.00 3.00 0.0078 
Tank Elbows 0.054 15.06 12.247 0.0317 
Tees 0.090 2.68 0.646 0.0017 
Plumbing: 

Tank to Ball valve 0.0326 11.00 3.945 0.0102 
Ball valve to pyrovalve 0.0186 1.25 0.029 0.00007 
Flex Line 0.1330 1.625 0.351 0.0009 
Ball valve to Q. D. 0.0093 3.Z5 0.098 0.0003 
Manifold 	 0.0093 2.20 0.045 0.0001 

1.92537 

0.1604 slugs-ft21.9Z5 in. -lb-sec =1structure = 

z 

6 

0 4 

)
= W (R? + rIz 

.5125 (80 2p 702) 
Sections of valve support = 7.0322 

H-iC 
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SYSTEM MOMENT OF INERTIA AS FUNCTION OF TIME 

Tank Fluid Volume 

y 

YS 

dy A= Zx dy R = 10.5 

B = R+y r =3.568 
x = x +y VT= 27TR( z) 

... II Dela ehcl aenterzine)--r)
 

Limits y = -3.56 to +3.56 

#- - (Delta Vehicle Centerline)- .-

V =- ZrB(Zx dy) Zr(R+y)(Zx ay) 

v = f 4 r (R+y)( z -y 2 ) dy 

y 1 

2v f (R V-yZ, dy+(y] r-y dy 
yl
 

1. V = 4r (-2Y -z w Y) 

For Centroid 

For y 0 and Y2 - 3.56 

V --4 7 10.5 (1 y ) + 2 --- 11)) -3i 3.56 
v'1 =rv ri~ ~y + 2~Z sin-' (1) ~ (~23 0 

-41r 0 + a - 14.0] 

H-Ia 



LMSC/HREC D162662 

V = 1509 in. 3 

- 4 3.56Yc - = 1.51
 
c 3 7r
 

Therefore from the initial volume of fluid (Butane) at 700, P 36.05 lb/ft3 and 

the initial weight of 49.1 lb. 

3= 
Vf. = 1.365ft3 2355 in. 

For the first increment, then: 

AV = 846 in. and AW = 17.66 lb 

At 17.66 lb = 31.9 sec. 

.564 lb/sec 

Moment of inertia at t I = 31.9 sec 

' = l2 = 31.44 lb (12.01 in. )2 11.82 in-lb-sec 2 

m 386 in/sec2 2 

I M= .987 slug-ft 2 
m 

In Fluids: 

I. Butane T = 70 P = 36.05 r .564 ibrm/sec 

vf y wf t rg I I 

(in. 3) (in.) (ib) (sec) (in.) (in-lb-sec2 (slug-ft2 

2355 0 	 49.1 0 10.5 14.05 1.168 
1509.2 1.51 31.4 31.9 12.01 11.82 .987 

858.2 1.98 17.81 55.6 1Z.48 7.20 .599 
153.3 	 2.54 3.20 81.4 13.04 1.41 .117
 

0 - 0 87.08 14.06 0 0
 

H-13 
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i. Water -T = 700 P = 62.34 lb/ft3 m = .0475 ibm/sec 

Vf y Wf t rg I 2 Im 

(in. 3 ) (in.) (lb) (sec) (in.) (in-lb-sec ) (slug-ft) 

1409 1.55 50.0 0 - 11.05 15.78 1.315 
858.2 1.98 31.09 419 12.48 12.55 1.045 
153.3 	 2.54 5.52 935 13.04 2.44 .203
 

0 0 1050 14.06 0 0
 

III. Ammonia T = 700 P = 38.0 lb/ft3 m = .067 lb/sec 

V y W, t rg Im I 
(in. (in.) (Ib) (sec) (in.) (in-lb-sec Z (slug-ft2 ) 

Z300 0 	 50 0 10.5 14.30 1.190 
1509 1.51 33.2 250 12.01 1Z.44 1.035
 
853 1.98 18.8Z 466 IZ.48 7.60 .632
 
153 2.54 3.38 695 13.04 1.49 .124
 

0 -	 0 746 14.06 0 0 

Combining the structure and fluid moments assuming full load the moments 

are: 

I(slug-ft2Fluid 

Butane 	 1.3284 
Ammonia 	 1.3504 
Water 	 1.4754 

The graph on the following page shows the change in mass moment versus 

time of actual fluid flow. The zero corresponds to 0.1604 slug-ft 2 for the 

structure. The effect of any axial acceleration during this period has been 

assumed to be negligible, and therefore it has been neglected in this analyses. 

H-14 
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Appendix I
 

FUNCTIONAL PROCEDURES
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Appendix I
 

TEMPERATURE ENVIRONMENT CONSTRAINTS 

During the ETR operations the environmental temperatures are controlled 
for all operations except in the "handling can" during transportation to the pad. 

Due to the weight considerations, a 1.50 cu ft tank with a 0.021-in. thick wall
 

is used in the IFIS. For the three expected fluids the tank will maintain a 4:1
 

safety stress factor at 150 F with one exception: If ammonia is used as the
 

working fluid, a maximum temperature of 80°F must be maintained to limit tank
 

pressure to 1/4 design burst.
 

Since the tank will be loaded prior to spin tests, it is imperative that
 

temperature control be utilized for the "handling can" if ammonia is used.
 

ASSEMBLY PROCEDURES 

The IFIS system consists of two major subassemblies: the tank (including
 

thrust cone, valving and most hardware) and the ignition assembly (which in­

corporates the ports, manifold, etc.). The final assembly and connections
 

shall be made just prior to the third stage spin tests. Following is the final
 

assembly and operations sequence:
 

A. Tank Subassembly
 

1. Receiving inspection and approval.
 

2. Installation of valves, support, tubing, etc., not
 
previously installed.
 

3. Leak and functional checks. (See pagel-2.)
 

4. Fluid loading (pageI-6) accomplished approximately one
 
day prior to final assembly.
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B. 	Ignition Subassembly
 

1. 	Receiving inspection and approval.
 

2. 	Leak and functional check (if not previously accomplished).
 

C. 	Final Assembly
 

1. 	Install ignition subassembly R72413 in third stage motor.
 

2. 	Install motor S/A assembly in the ignition subassembly.
 

3. 	 Attach tank subassembly to the third stage motor casing. 

4. 	 Connect lines from tank subassembly to ignition subassembly 
at the pyrotechnic valve. 

5. 	 Leak check final assembly. (See page 1-5.) 

The 	final assembly shall be performed just prior to the spin tests at the
 

Spin Test Facility. Due to the required orientation of the tank (tank fittings
 

in vertical plane) during loading (fluid), the tank must be filled prior to
 

attachment to the third stage motor. Also, because of environmental control
 

for the fluid, the loading should te accomplished just prior to third stage
 

buildup. Extreme care should be utilized at ill times when the loaded tank is
 

being handled to prevent any damage to the fittings, etc.
 

The IFIS is in an operational configuration at this point, with the 

loading of the pyrotechnics and positioning the S/A valves at the pad the only 

remaining operation before flight. 

LEAK AND FUNCTIONAL CHECK 

Tank Assembly 

1. 	The pressure vessel shall be proof tested to 1.50 times 
maximum pressure (150 psia operating - 225 psia proof) 
prior to installation of mating hardware (preferably at 
manufacture of tank). 

2. 	Leak and functional test will be performed after assembly of
 
the following components:
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a. Tank
 

b. S/A valves
 

c. Pyrotechnic valve 

d. Interconnecting lines
 

e. Quick-Disconnects
 

The following operational outline shall be followed in order to provide 

proper checkout of the items listed in No. 2 above. Pressures shall not exceed 

1/4 design burst at any time. A relief valve shall be provided to limit supply 

pressure to approximately 200 psia. 

3. Leak and Functional Test (Tank) (Refer to Fig. I-1.) 

A. GSE
 

1. Assemble GSE as per Fig. I-1.
 

2. Adjust supply pressure to 250 psig. 

3. Adjust RV1 until GAl indicates approximately 20 psig.
 

4. Leak check GSE fittings (Leak-Tek Sol). 

5. Close RV1 and bleed off pressure. 

B. Tank - Purge 

1. Connect GSE Q.D.'s to Tank Q.D.'s.
 

2. S/A valves to FILL position.
 

3. Adjust RV1 until GAl indicates approximately 20 psig. 

4. Verify flow through vent line. 

5. Purge system for five minutes. 

C. Tank - Leak Check 

1. Close S/A valve on vent side.
 

2. Adjust RV1 to maintain constant approximately 20 psig.
 

3. Leak check all fittings on tank and S/A valves.
 

4. Position both S/A valves to ON position.
 

5. Leak check lines and fittings to pyro valve. 
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SV 
RV 
GA 

-

-

Shut-Off Valve 
Regulator Valve 
Pressure Gage 

S/C-GSE Interface 

S/A Valve 

Q.D. 

Vent 

connector 

Tank Pyro Valve 

S/A Valve I Flex Hose 
3-Position 2-Way 
(Fill-Off-On) 

Relief 
Valve 
(200 psig) 

GA1 
(0-250 psig> 

RVl 

GN 2 

Regulator Valve 
(Self-Venting) 

(0-3 00 psi) 
Facility or Bottle 

2: 
SV-l 
Shut-Off Valve
 

Fig. I-i - Leak and Functional (Schematic)
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D. 	 Tank - Functional - Decay Check 

1. 	 Position inlet S/A valve to FILL. 
+0psg
 

2. 	Adjust RV1 until GAl indicates 135 -51g.
 

3. 	 Close RV1 and observe pressure decay for 10 minutes 
(no leakage allowable). 

4. 	Adjust pressure to 5 + 2 psig.
 

5. 	 S/A valves to OFF. 

6. 	 Disconnect GSE. 

1.3.2 Ignition Subassembly
 

Functional checkout of the ports, manifold and orifices shall be con­

ducted prior to the installation of the pyrolytic graphite orifice cover.
 

A. 	Flow Rate
 

1. 	 Inlet lines connected to separate flowmeters in order to 
determine flow with either one or both lines operating. 

2. 	Water shall be used for flow check.
 

3. 	 Flow rate shall be a minimum of 0.047 lb/sec at 15.0 psig 
with both inlets open. 

B. 	 Drying 

After flow rate test, the ignition system must be purged with 
GN2 at 20 psig until dry. 

Final leak check of the ignition system shall be performed after the 

fittings are mounted and after the graphite orifice cover is installed. A 

maximum pressure of 8 psig shall not be exceeded after graphite cover is 

installed. 

After the tank subassembly and ignition subassembly are installed, the
 

final leak check shall be accomplished. In order to perform this check, GHe
 

will be introduced at low pressure and leaks sensed with a Mass Spectrometer.
 

A low flow into the motor will result because of the bleed orifice in the in­

jector assembly. Generally:
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1. 	Verify all connections downstream of pyrotechnic valve are
 
correctly torqued.
 

2. 	Unplug one transducer port on pyrotechnic valve.
 

3. 	 Connect low pressure GHe supply (with pressure gage and
 
regulator valve) to transducer port.
 

4. 	Establish low flow rate of helium through system.
 
(DO NOT EXCEED 8 PSIG SUPPLY PRESSURE.)
 

5. 	 Check system (connections) with Mass Spectrometer. * 

6. 	Disassembly and replug transducer port. Verify correct
 
torque on plug.
 

1.4 TANK LOADING PROCEDURE 

The 	 tank will be fully loaded with fluid (liquid) tHen, and ullage will 

be withdrawn to allow space for expansion. The amount of ullage (by weight) shall 

be determined by the fluid temperature at loading. (Refer to Figs.I-2 and 1-3 

for 	ullage requirements.) The supply pressure is then used to add additional 

pressure to the tank. Refer to Fig. i-4 for accompanying servicing schematic.
 

A. 	 Mount tank in fixture with one inlet line at the top.
 
Place fixture with tank on scales.
 

B. 	Assembly GSE equipment as per schematic using 1/4 in. or 
larger flex hose and appropriate fittings. 

C. 	Fluid supply tank should be high pressure vessel, with or 
without internal bladder. Maximum capacity approximately 
100 lb fluid. Temperature gage should be integral with 
tank (0 to 200 0F, + 0.250F). 

CAUTION: 	 Vent line should lead to open area where Butane or
 
Ammonia vapor will not collect.
 

D. 	Prior to connection of supply tank (fluid) to GSE lines,
 
leak test all fittings.
 

1. 	Tank S/A valves - FILL 

2. 	 RV2 - CLOSE RV1 - OPEN
 
RV3 - CLOSE SV2 - OPEN
 

3. 	Adjust GN2 ullage pressure to 200 psig.
 
I 

*An 	alternate leak check method using soap solution can be utilized.
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Butane Ullage iRe . 

Tank Vol. - 1.5 f 
Max. Fluid Weight - 49.1 lb 
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LMSC/HREC D162662 

Vent 

RVZ 
SGI 

Vent 

S/A Valve (2) 
(On -Off -Fill) 

I Vz RV 6 

GNZ 

Valve % 
Outle 

0 
SRV3 
S/C -GSEInterface 

CVZ 
Ullage Press. 
0-300 psi 

GAl 

0-150 b 1Inl Relief Valve (200 psia)+.05 lb ac. 

RV4 
Scales 

Supply .0 
Press. 

Tank- RVI Supply -0FLI0-300 psi 

EL 
Q.D.
 

RV5 

Vent 

CV Check Valve TG - Temperature Gage (0-200F)
 
SV - Shut-Off Valve SG Sight Glass
 
RV - Regulator Valve FM - Flow Meter (optional)
 
GA - Pressure Gage (0-300 psig) FL Filter ( 10p)
 

Fig. 1-4 - IFIS Servicing Schematic 
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LMSC/HEC D162662
 

4. 	 RV3 - OPEN 

5. 	Use Leak-Tek on all fittings. Verify no leakage.
 

6. 	 RV3 - Adjust GA2 pressure to 0 psig. 

The following loading procedures are presented in basic outline form,
 

with all major operations detailed. There are two procedures, generally simi­

lar, but with necessary changes pertinent to the specific fluid. The sections
 

are: (I) Butane or Ammonia, (11) H20.
 

I. 	 Butane or Ammonia 

A. 	Valve positions (initial). Verify following:
 

1. 	RV1 - CLOSE RV5 - CLOSE S/A - FILL 
RV3 - CLOSE SV2 - OPEN 
RV4 - CLOSE RV2 - OPEN (slightly) 

2. 	Adjust GN2 pressure (both bottles) to 30 psig.
 

3. 	 Record tank tare weight, lb 

4. 	Record fluid temperature (TG1), OF 

5. 	Record pressure (tank) (GA3),-psig
 

NOTE: 	 If GA3 is approximately 30 psig, GN2
 
pressure not required.
 

B. 	Fill
 

1. 	 RV4 - OPEN 

2. 	 Verify flow by FM1. Verify P of approximately 
20 psig between GAl and GA2. 

3. 	Adjust RV2 as required to control above step.
 

4. 	If AP cannot be maintained, adjust RV1 as required.
 

5. 	 With tank full, slight glass approximately all liquid 
(no vapor bubbles) and Awt > 50 lb as read on scales.
 
Proceed.
 

6. 	 RV2 - CLOSE SV2 - CLOSE 
RV4 - CLOSE
 

RV1 - CLOSE
 

7. 	Record TG1, OF
 

8. 	 RV5 - OPEN-CLOSE as required until GAS indicates 
approximately initial pressure (Step A-5).
 
Record, psig
 

1-10
 

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER 



LMSC/HREC D162662
 

C. 	Ullage
 

1. 	Record tank weight, lb
 

2. 	Refer to Ullage Chart (for applicable fluid) using 
TGI temperature to determine ullage required. 

3. 	 RV2 - OPEN approximately 30 psig on GN2 outlet. 

4. 	 OPEN/CLOSE RV4 carefully to drain required ullage. 
When tank weight is at final weight, close RV4 and 
RV3.
 

5. 	 Inlet S/A valve - OFF. Let stabilize. 

6. 	 OPEN/CLOSE RV3 to increase tank pressure to 60 psia 
(45.3 psig) for butane or 122 psia (107.3 psig) for
 
ammonia. Record, psig
 

7. 	 Outlet S/A valve - CLOSE. OPEN RV6. 

8. 	Disconnect S/C-GSE Q.D.S. 

9. 	Drain and disassemble GSE.
 

II. H20 

A. 	Initial valve position.
 

1. 	RVI - CLOSE RV6 - CLOSE
 
Rv4 - CLOSE RV2 - OPEN
 
RV3 - CLOSE SV2 - OPEN
 
RV5 - CLOSE
 

2. 	Adjust GN2 pressure (supply) to approximately 20 psig.
 

3. 	Record tank tare weight, lb
 

4. 	RVl - OPEN
 

5. 	S/A valves - FILL 

B. 	Fill
 

1. 	Open RV4. Verify flow by FMlI and increasing tank weight.
+0
 

2. 	Flow until 50+0.2 lb H20 is in tank. Record, lb 

3. 	 Close RV4 

C. 	Pressurization
 

1. 	RVl - CLOSE SV2 - CLOSE 
RV5 - OPEN
 

NOTE: If fluid weight in tank is less than 50 lb,
 
perform the following:
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a. 	Adjust ullage pressure to 10 psig.
 
b. 	OPEN RV3
 
c. 	OPEN/CLOSE RV4 as required to obtain correct fluid weight.
 
d. 	RV3 - CLOSE
 
e. 	RV6 - OPEN
 

2. 	S/A inlet valve - OFF. 

3. 	Adjust GN2 ullage pressure to 10 psig.
+2
 
4. 	 RV3 adjust until GA2 indicates 35 -0 psig. Record psig 

after stabilization. 

5. 	S/A outlet valve - OFF.
 

6. 	 RV3 - CLOSE GN2 pressure - 0 

7. 	Disconnect GSE-S/C Q,D.'s.
 

8. 	 Stow GSE. 
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