32,595 research outputs found

    Boron-10 loaded inorganic shielding material

    Get PDF
    Shielding material containing Boron 10 and gadoliunium for neutron absorption has been developed to reduce interference from low energy neutrons in measurement of fission neutron spectrum using Li-6 fast neutron spectrometer

    Vortex simulations of the Rayleigh–Taylor instability

    Get PDF
    A vortex technique capable of calculating the Rayleigh–Taylor instability to large amplitudes in inviscid, incompressible, layered flows is introduced. The results show the formation of a steady‐state bubble at large times, whose velocity is in agreement with the theory of Birkhoff and Carter. It is shown that the spike acceleration can exceed free fall, as suggested recently by Menikoff and Zemach. Results are also presented for instability at various Atwood ratios and for fluids having several layers

    Fast-neutron spectrometer developments

    Get PDF
    Li6 sandwich-type neutron spectrometer is equipped with proportional counter for particle identification. System uses current-sensitive preamplifiers to minimize pile-up of gamma-ray and particle pulses

    Mode-selective toroidal mirrors for unstable resonator planar waveguide and thin slab solid-state lasers

    Get PDF

    Accidents that were Fatal on Ohio Farms or to Farm People, 1945

    Get PDF

    Gamma-ray halos as a measure of intergalactic magnetic fields: a classical moment problem

    Full text link
    The presence of weak intergalactic magnetic fields can be studied by their effect on electro-magnetic cascades induced by multi-TeV gamma-rays in the cosmic radiation background. Small deflections of secondary electrons and positrons as the cascade develops extend the apparent size of the emission region of distant TeV gamma-ray sources. These gamma-ray halos can be resolvable in imaging atmospheric Cherenkov telescopes and serve as a measure of the intergalactic magnetic field strength and coherence length. We present a method of calculating the gamma-ray halo for isotropically emitting sources by treating magnetic deflections in the cascade as a diffusion process. With this ansatz the moments of the halo follow from a set of simple diffusion-cascade equations. The reconstruction of the angular distribution is then equivalent to a classical moment problem. We present a simple solution using Pade approximations of the moment's generating function.Comment: 12 pages, 6 figure

    Coronal mass ejections, magnetic clouds, and relativistic magnetospheric electron events: ISTP

    Get PDF
    The role of high-speed solar wind streams in driving relativistic electron acceleration within the Earth\u27s magnetosphere during solar activity minimum conditions has been well documented. The rising phase of the new solar activity cycle (cycle 23) commenced in 1996, and there have recently been a number of coronal mass ejections (CMEs) and related “magnetic clouds” at 1 AU. As these CME/cloud systems interact with the Earth\u27s magnetosphere, some events produce substantial enhancements in the magnetospheric energetic particle population while others do not. This paper compares and contrasts relativistic electron signatures observed by the POLAR, SAMPEX, Highly Elliptical Orbit, and geostationary orbit spacecraft during two magnetic cloud events: May 27–29, 1996, and January 10–11, 1997. Sequences were observed in each case in which the interplanetary magnetic field was first strongly southward and then rotated northward. In both cases, there were large solar wind density enhancements toward the end of the cloud passage at 1 AU. Strong energetic electron acceleration was observed in the January event, but not in the May event. The relative geoeffectiveness for these two cases is assessed, and it is concluded that large induced electric fields (∂B/∂t) caused in situ acceleration of electrons throughout the outer radiation zone during the January 1997 event

    Microstructural Evolution of Fine-Grained Layers through the Firn Column at Summit, Greenland

    Get PDF
    We present a microstructural characterization of fine-grained layers from the top 90 m of firn from Summit, Greenland, performed using a combination of scanning electron microscopy techniques including secondary electron imaging, energy-dispersive spectroscopy and electron backscattered patterns, and X-ray microcomputed tomography. The impurities in the firn, both soluble impurities and dust particles, were found largely in the grain interiors. Both c- and a-axis pole figures do not show strong evidence of a preferred orientation of the grains even at the bottom of the firn column. The firn structure became increasingly anisotropic with vertical alignment in the top 3 m, probably due to vapor transport associated with dry-snow metamorphism. The anisotropy decreases below this level until at ∼50 m the average firn structure is close to isotropic. In the near surface, the level of anisotropy is weaker than at Hercules Dome, Antarctica, confirming that differences in accumulation rates and temperatures leave enduring evidence in the structure of the firn. The fraction of closed-off pores is relatively low until ∼65 m; below that it rises through the end of our sampling at 90 m. Our microstructure measurements on the microscale are consistent with in situ firn-air sampling measurements on a decimeter scale, both indicating the existence of the lock-in zone starting near 69 m depth, and pore close-off at 81 m at this site

    Costs of producing milk in Ohio, 1945-1946

    Get PDF
    corecore