2,058 research outputs found
Catena-Poly[[copper(I)-micro-2,6-bis[4-(pyridin-2-yl)thiazol-2-yl]pyridine] hexafluoridophosphate acetonitrile monosolvate] from single-crystal synchrotron data
The title complex, {[Cu(C21H13N5S 2)]PF6·CH3CN}n, was formed immediately on adding together a methanol solution containing copper(I) ions and a methanol solution of 2,6-bis[4-(pyridin-2-yl)thiazol-2-yl]pyridine. Crystallographic studies of the complex r
Distribution of activity across the monkey cerebral cortical surface, thalamus and midbrain during rapid, visually guided saccades
To examine the distribution of visual and oculomotor activity across the macaque brain, we performed functional magnetic resonance imaging (fMRI) on awake, behaving monkeys trained to perform visually guided saccades. Two subjects alternated between periods of making saccades and central fixations while blood oxygen level dependent (BOLD) images were collected [3 T, (1.5 mm)(3) spatial resolution]. BOLD activations from each of four cerebral hemispheres were projected onto the subjects' cortical surfaces and aligned to a surface-based atlas for comparison across hemispheres and subjects. This surface-based analysis revealed patterns of visuo-oculomotor activity across much of the cerebral cortex, including activations in the posterior parietal cortex, superior temporal cortex and frontal lobe. For each cortical domain, we show the anatomical position and extent of visuo-oculomotor activity, including evidence that the dorsolateral frontal activation, which includes the frontal eye field (on the anterior bank of the arcuate sulcus), extends anteriorly into posterior principal sulcus (area 46) and posteriorly into part of dorsal premotor cortex (area 6). Our results also suggest that subcortical BOLD activity in the pulvinar thalamus may be lateralized during voluntary eye movements. These findings provide new neuroanatomical information as to the complex neural substrates that underlie even simple goal-directed behaviors
Measurement of Permanent Electric Dipole Moments of Charged Hadrons in Storage Rings
Permanent Electric Dipole Moments (EDMs) of elementary particles violate two
fundamental symmetries: time reversal invariance (T) and parity (P). Assuming
the CPT theorem this implies CP-violation. The CP-violation of the Standard
Model is orders of magnitude too small to be observed experimentally in EDMs in
the foreseeable future. It is also way too small to explain the asymmetry in
abundance of matter and anti-matter in our universe. Hence, other mechanisms of
CP violation outside the realm of the Standard Model are searched for and could
result in measurable EDMs.
Up to now most of the EDM measurements were done with neutral particles. With
new techniques it is now possible to perform dedicated EDM experiments with
charged hadrons at storage rings where polarized particles are exposed to an
electric field. If an EDM exists the spin vector will experience a torque
resulting in change of the original spin direction which can be determined with
the help of a polarimeter. Although the principle of the measurement is simple,
the smallness of the expected effect makes this a challenging experiment
requiring new developments in various experimental areas.
Complementary efforts to measure EDMs of proton, deuteron and light nuclei
are pursued at Brookhaven National Laboratory and at Forschungszentrum Juelich
with an ultimate goal to reach a sensitivity of 10^{-29} e cm.Comment: 8 pages, 2 figure
Effects of a soft robotic exosuit on the quality and speed of overground walking depends on walking ability after stroke
\ua9 2023, BioMed Central Ltd., part of Springer Nature.Background: Soft robotic exosuits can provide partial dorsiflexor and plantarflexor support in parallel with paretic muscles to improve poststroke walking capacity. Previous results indicate that baseline walking ability may impact a user’s ability to leverage the exosuit assistance, while the effects on continuous walking, walking stability, and muscle slacking have not been evaluated. Here we evaluated the effects of a portable ankle exosuit during continuous comfortable overground walking in 19 individuals with chronic hemiparesis. We also compared two speed-based subgroups (threshold: 0.93 m/s) to address poststroke heterogeneity. Methods: We refined a previously developed portable lightweight soft exosuit to support continuous overground walking. We compared five minutes of continuous walking in a laboratory with the exosuit to walking without the exosuit in terms of ground clearance, foot landing and propulsion, as well as the energy cost of transport, walking stability and plantarflexor muscle slacking. Results: Exosuit assistance was associated with improvements in the targeted gait impairments: 22% increase in ground clearance during swing, 5\ub0 increase in foot-to-floor angle at initial contact, and 22% increase in the center-of-mass propulsion during push-off. The improvements in propulsion and foot landing contributed to a 6.7% (0.04 m/s) increase in walking speed (R 2 = 0.82). This enhancement in gait function was achieved without deterioration in muscle effort, stability or cost of transport. Subgroup analyses revealed that all individuals profited from ground clearance support, but slower individuals leveraged plantarflexor assistance to improve propulsion by 35% to walk 13% faster, while faster individuals did not change either. Conclusions: The immediate restorative benefits of the exosuit presented here underline its promise for rehabilitative gait training in poststroke individuals
Feedback control architecture and the bacterial chemotaxis network.
PMCID: PMC3088647This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Bacteria move towards favourable and away from toxic environments by changing their swimming pattern. This response is regulated by the chemotaxis signalling pathway, which has an important feature: it uses feedback to 'reset' (adapt) the bacterial sensing ability, which allows the bacteria to sense a range of background environmental changes. The role of this feedback has been studied extensively in the simple chemotaxis pathway of Escherichia coli. However it has been recently found that the majority of bacteria have multiple chemotaxis homologues of the E. coli proteins, resulting in more complex pathways. In this paper we investigate the configuration and role of feedback in Rhodobacter sphaeroides, a bacterium containing multiple homologues of the chemotaxis proteins found in E. coli. Multiple proteins could produce different possible feedback configurations, each having different chemotactic performance qualities and levels of robustness to variations and uncertainties in biological parameters and to intracellular noise. We develop four models corresponding to different feedback configurations. Using a series of carefully designed experiments we discriminate between these models and invalidate three of them. When these models are examined in terms of robustness to noise and parametric uncertainties, we find that the non-invalidated model is superior to the others. Moreover, it has a 'cascade control' feedback architecture which is used extensively in engineering to improve system performance, including robustness. Given that the majority of bacteria are known to have multiple chemotaxis pathways, in this paper we show that some feedback architectures allow them to have better performance than others. In particular, cascade control may be an important feature in achieving robust functionality in more complex signalling pathways and in improving their performance
Dissociable effects of 5-HT2C receptor antagonism and genetic inactivation on perseverance and learned non-reward in an egocentric spatial reversal task
Cognitive flexibility can be assessed in reversal learning tests, which are sensitive to modulation of 5-HT2C receptor (5-HT2CR) function. Successful performance in these tests depends on at least two dissociable cognitive mechanisms which may separately dissipate associations of previous positive and negative valence. The first is opposed by perseverance and the second by learned non-reward. The current experiments explored the effect of reducing function of the 5-HT2CR on the cognitive mechanisms underlying egocentric reversal learning in the mouse. Experiment 1 used the 5-HT2CR antagonist SB242084 (0.5 mg/kg) in a between-groups serial design and Experiment 2 used 5-HT2CR KO mice in a repeated measures design. Animals initially learned to discriminate between two egocentric turning directions, only one of which was food rewarded (denoted CS+, CS−), in a T- or Y-maze configuration. This was followed by three conditions; (1) Full reversal, where contingencies reversed; (2) Perseverance, where the previous CS+ became CS− and the previous CS− was replaced by a novel CS+; (3) Learned non-reward, where the previous CS− became CS+ and the previous CS+ was replaced by a novel CS-. SB242084 reduced perseverance, observed as a decrease in trials and incorrect responses to criterion, but increased learned non-reward, observed as an increase in trials to criterion. In contrast, 5-HT2CR KO mice showed increased perseverance. 5-HT2CR KO mice also showed retarded egocentric discrimination learning. Neither manipulation of 5-HT2CR function affected performance in the full reversal test. These results are unlikely to be accounted for by increased novelty attraction, as SB242084 failed to affect performance in an unrewarded novelty task. In conclusion, acute 5-HT2CR antagonism and constitutive loss of the 5-HT2CR have opposing effects on perseverance in egocentric reversal learning in mice. It is likely that this difference reflects the broader impact of 5HT2CR loss on the development and maintenance of cognitive function
GPs' decision-making when prescribing medicines for breastfeeding women: Content analysis of a survey
<p>Abstract</p> <p>Background</p> <p>Many breastfeeding women seek medical care from general practitioners (GPs) for various health problems and GPs may consider prescribing medicines in these consultations. Prescribing medicines to a breastfeeding mother may lead to untimely cessation of breastfeeding or a breastfeeding mother may be denied medicines due to the possible risk to her infant, both of which may lead to unwanted consequences. Information on factors governing GPs' decision-making and their views in such situations is limited.</p> <p>Methods</p> <p>GPs providing shared maternity care at the Royal Women's Hospital, Melbourne were surveyed using an anonymous postal survey to determine their knowledge, attitudes and practices on medicines and breastfeeding, in 2007/2008 (n = 640). Content analysis of their response to a question concerning decision-making about the use of medicine for a breastfeeding woman was conducted. A thematic network was constructed with basic, organising and global themes.</p> <p>Results</p> <p>335 (52%) GPs responded to the survey, and 253 (76%) provided information on the last time they had to decide about the use of medicine for a breastfeeding woman. Conditions reported were mastitis (24%), other infections (24%) and depressive disorders (21%). The global theme that emerged was "<it>complexity of managing risk in prescribing for breastfeeding women"</it>. The organising themes were: <it>certainty around decision-making; uncertainty around decision-making; need for drug information to be available, consistent and reliable; joint decision-making; the vulnerable "third party" </it>and <it>infant feeding decision</it>. Decision-making is a spectrum from a straight forward decision, such as treatment of mastitis, to a complicated one requiring multiple inputs and consideration. GPs use more information seeking and collaboration in decision-making when they perceive the problem to be more complex, for example, in postnatal depression.</p> <p>Conclusion</p> <p>GPs feel that prescribing medicines for breastfeeding women is a contentious issue. They manage the risk of prescribing by gathering information and assessing the possible effects on the breastfed infant. Without evidence-based information, they sometimes recommend cessation of breastfeeding unnecessarily.</p
The Effects of Cocaine on Different Redox Forms of Cysteine and Homocysteine, and on Labile, Reduced Sulfur in the Rat Plasma Following Active versus Passive Drug Injections
Received: 28 November 2012 / Revised: 19 April 2013 / Accepted: 6 May 2013 / Published online: 16 May 2013
The Author(s) 2013. This article is published with open access at Springerlink.comThe aim of the present studies was to evaluate
cocaine-induced changes in the concentrations of different
redox forms of cysteine (Cys) and homocysteine (Hcy),
and products of anaerobic Cys metabolism, i.e., labile,
reduced sulfur (LS) in the rat plasma. The above-mentioned
parameters were determined after i.p. acute and
subchronic cocaine treatment as well as following i.v.
cocaine self-administration using the yoked procedure.
Additionally, Cys, Hcy, and LS levels were measured
during the 10-day extinction training in rats that underwent
i.v. cocaine administration. Acute i.p. cocaine treatment
increased the total and protein-bound Hcy contents,
decreased LS, and did not change the concentrations of Cys
fractions in the rat plasma. In turn, subchronic i.p. cocaine administration significantly increased free Hcy and lowered
the total and protein-bound Cys concentrations while
LS level was unchanged. Cocaine self-administration
enhanced the total and protein-bound Hcy levels, decreased
LS content, and did not affect the Cys fractions. On the
other hand, yoked cocaine infusions did not alter the concentration
of Hcy fractions while decreased the total and
protein-bound Cys and LS content. This extinction training
resulted in the lack of changes in the examined parameters
in rats with a history of cocaine self-administration while in
the yoked cocaine group an increase in the plasma free Cys
fraction and LS was seen. Our results demonstrate for the
first time that cocaine does evoke significant changes in
homeostasis of thiol amino acids Cys and Hcy, and in some
products of anaerobic Cys metabolism, which are dependent
on the way of cocaine administration
Aryloxymaleimides for cysteine modification, disulfide bridging and the dual functionalization of disulfide bonds
Tuning the properties of maleimide reagents holds significant promise in expanding the toolbox of available methods for bioconjugation. Herein we describe aryloxymaleimides which represent 'next generation maleimides' of attenuated reactivity, and demonstrate their ability to enable new methods for protein modification at disulfide bonds
- …