3,469 research outputs found

    Scholastic Concept of International Law

    Get PDF

    The Two Cultures Controversy: Reviews and Reflections

    Get PDF
    Richard R. Baker, named interim Chairman of the Department of Philosophy, has a well established reputation as a competent philosopher and is U.D.\u27s prince of wit. He here offers an overview of a timely controversy and some of his own relections on it

    A highly efficient engineering tool for three-dimensional scramjet flowfield and heat transfer computations

    Get PDF
    The SIMPLE-based parabolic flow code, SHIP3D, was under development for use as a parametric design and analysis tool for scramjets. Some capabilities and applications of the code are demonstrated, and a report on its current status is given. The focus is on the combustor for which the code was mostly used. Recently, it was also applied to nozzle flows. Code validation results are presented for combustor unit problems involving film cooling, transverse fuel injection, and nozzle test. A parametric study of a film cooled or transpiration cooled Mach 16 combustor is also conducted to illustrate the application of the code to a design problem

    A Compton telescope for remote location and identification of radioactive material

    Get PDF
    The spare detectors from NASA Compton Gamma-Ray Observatory COMPTEL instrument have been reconfigured to demonstrate the capability at ground level to remotely locate and identify sources of g radiation or the movement of material that might shield γ-ray sources. The Gamma-Ray Experimental Telescope Assembly (GRETA) employs two 28 cm diameter scintillation detectors separated by 81 cm: one 8.5 cm thick liquid scintillator detector and one 7.5 cm thick NaI(Tl) detector. The assembly electronics and real-time data acquisition system measures the energy deposits and time-of- flight for each coincident detection and compiles histograms of total energy and incident angle as computed using the kinematics of Compton scattering. The GRETA field of view is a cone with full angle approximately 120°. The sensitive energy range is 0.3 to 2.6 MeV. Energy resolution is ~10% FWHM. The angular resolution, ~19° in the simplified configuration tested, will improve to better than 5° with well-defined enhancements to the data acquisition hardware and data analysis routines. When operated in the mode that was used in space, the instrument is capable of measuring and imaging up to 30 MeV with an angular resolution of 1.5°. The response of the instrument was mapped in the laboratory with 14 Ci 22Na source 3 m from the instrument. Later, we conducted demonstrations under two measurement scenarios. In one, the remotely located instrument observed an increase of background radiation counts at 1.4 MeV when a large amount of lead was removed from a building and a corresponding decrease when the lead was replaced. In the other scenario, the location and isotope-identifying energy spectrum of a 500 μCi137Cs source 3-5 m from the instrument with two intervening walls was determined in less than one minute. We report details of the instrument design and these measurements

    A Farmdalian Pollen Diagram From East-Central Iowa

    Get PDF
    Pollen analysis of the Butler Farm buried peat in east-central Iowa suggests that a spruce-pine forest grew in the area during the Farmdalian Substage. Pine decreased and spruce increased in dominance as the peat accumulated. Radiocarbon dates indicate that the peat was deposited from 28,800 to 22,750 RCYBP. It is overlain by late Wisconsinan loess and underlain by a Sangamon paleosol developed on Illinoian till. The regional pollen data suggest a general cooling trend through Farmdale time

    Sparse spectral-tau method for the three-dimensional helically reduced wave equation on two-center domains

    Get PDF
    We describe a multidomain spectral-tau method for solving the three-dimensional helically reduced wave equation on the type of two-center domain that arises when modeling compact binary objects in astrophysical applications. A global two-center domain may arise as the union of Cartesian blocks, cylindrical shells, and inner and outer spherical shells. For each such subdomain, our key objective is to realize certain (differential and multiplication) physical-space operators as matrices acting on the corresponding set of modal coefficients. We achieve sparse banded realizations through the integration "preconditioning" of Coutsias, Hagstrom, Hesthaven, and Torres. Since ours is the first three-dimensional multidomain implementation of the technique, we focus on the issue of convergence for the global solver, here the alternating Schwarz method accelerated by GMRES. Our methods may prove relevant for numerical solution of other mixed-type or elliptic problems, and in particular for the generation of initial data in general relativity.Comment: 37 pages, 3 figures, 12 table

    X ray imaging microscope for cancer research

    Get PDF
    The NASA technology employed during the Stanford MSFC LLNL Rocket X Ray Spectroheliograph flight established that doubly reflecting, normal incidence multilayer optics can be designed, fabricated, and used for high resolution x ray imaging of the Sun. Technology developed as part of the MSFC X Ray Microscope program, showed that high quality, high resolution multilayer x ray imaging microscopes are feasible. Using technology developed at Stanford University and at the DOE Lawrence Livermore National Laboratory (LLNL), Troy W. Barbee, Jr. has fabricated multilayer coatings with near theoretical reflectivities and perfect bandpass matching for a new rocket borne solar observatory, the Multi-Spectral Solar Telescope Array (MSSTA). Advanced Flow Polishing has provided multilayer mirror substrates with sub-angstrom (rms) smoothnesss for the astronomical x ray telescopes and x ray microscopes. The combination of these important technological advancements has paved the way for the development of a Water Window Imaging X Ray Microscope for cancer research

    Head-on collision of unequal mass black holes: close-limit predictions

    Full text link
    The close-limit method has given approximations in excellent agreement with those of numerical relativity for collisions of equal mass black holes. We consider here colliding holes with unequal mass, for which numerical relativity results are not available. We try to ask two questions: (i) Can we get approximate answers to astrophysical questions (ideal mass ratio for energy production, maximum recoil velocity, etc.), and (ii) can we better understand the limitations of approximation methods. There is some success in answering the first type of question, but more with the second, especially in connection with the issue of measures of the intrinsic mass of the colliding holes, and of the range of validity of the method.Comment: 19 pages, RevTeX + 9 postscript figure

    A Quantitative Method for Estimating Probable Public Costs of Hurricanes

    Get PDF
    A method is presented for estimating probable public costs resulting from damage caused by hurricanes, measured as local government expenditures approved for reimbursement under the Stafford Act Section 406 Public Assistance Program. The method employs a multivariate model developed through multiple regression analysis of an array of independent variables that measure meteorological, socioeconomic, and physical conditions related to the landfall of hurricanes within a local government jurisdiction. From the regression analysis we chose a log–log (base 10) model that explains 74% of the variance in the expenditure data using population and wind speed as predictors. We illustrate application of the method for a local jurisdiction—Lee County, Florida, USA. The results show that potential public costs range from 4.7millionforacategory1hurricanewithwindsof137kilometersperhour(85milesperhour)to4.7 million for a category 1 hurricane with winds of 137 kilometers per hour (85 miles per hour) to 130 million for a category 5 hurricane with winds of 265 kilometers per hour (165 miles per hour). Based on these figures, we estimate expected annual public costs of $2.3 million. These cost estimates: (1) provide useful guidance for anticipating the magnitude of the federal, state, and local expenditures that would be required for the array of possible hurricanes that could affect that jurisdiction; (2) allow policy makers to assess the implications of alternative federal and state policies for providing public assistance to jurisdictions that experience hurricane damage; and (3) provide information needed to develop a contingency fund or other financial mechanism for assuring that the community has sufficient funds available to meet its obligations
    • …
    corecore