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We describe a multidomain spectral-tau method for solving the three-dimensional

helically reduced wave equation on the type of two-center domain that arises when

modeling compact binary objects in astrophysical applications. A global two-center

domain may arise as the union of Cartesian blocks, cylindrical shells, and inner and

outer spherical shells. For each such subdomain, our key objective is to realize cer-

tain (differential and multiplication) physical-space operators as matrices acting on

the corresponding set of modal coefficients. We achieve sparse banded realizations

through the integration “preconditioning” of Coutsias, Hagstrom, Hesthaven, and

Torres. Since ours is the first three-dimensional multidomain implementation of the

technique, we focus on the issue of convergence for the global solver, here the alter-

nating Schwarz method accelerated by GMRES. Our methods may prove relevant

for numerical solution of other mixed-type or elliptic problems, and in particular for

the generation of initial data in general relativity.

∗ lau@math.unm.edu
† rprice@phys.utb.edu

http://arxiv.org/abs/1106.1632v1
mailto:lau@math.unm.edu
mailto:rprice@phys.utb.edu


2

I. INTRODUCTION AND PRELIMINARIES

A. Introduction

This paper describes spectral methods designed with a specific application in mind: nu-
merical solution of a mixed-type problem arising in gravitational physics. In reviewing an
ongoing program to construct helically symmetric solutions to the Einstein equations, this
introduction recalls the origins of this problem below. However, this paper also serves an-
other purpose; it demonstrates that spectral-tau integration preconditioning1 yields highly
accurate numerical solutions to the helically reduced wave equation (HRWE), a mixed-type,
variable coefficient, linear partial differential equation (PDE) problem, here posed on a
nontrivial three-dimensional (3D) domain. Ref. [1] offered spectral-tau integration precon-
ditioning as a general-purpose strategy for spectral approximation of differential equations,
and that reference provides the most thorough description and analysis of the technique;
related techniques were explored in [2] (integration postconditioning) and [3] (nodal inte-
gration preconditioning), with applications described in, for example, Refs. [4, 5]. However,
heretofore, spectral-tau integration preconditioning has primarily been studied either in the
ODE context or for PDE problems posed on single and basic two-dimensional (2D) domains
(rectangles, annuli, and disks), although we have earlier studied a 2D multidomain scenario
[6] as a warm-up to this work. While the current paper only considers the HRWE, a chal-
lenging model problem for the aforementioned target application, it shows how to implement
the technique in a 3D multidomain setting, addressing several key conditioning issues which
would seem to generically arise in higher dimensional settings. Therefore, our work should
facilitate the use of spectral-tau integration preconditioning for other elliptic or mixed-type
PDE problems. We provide more context and a fuller description of these issues below, but
now turn to the physical problem which has motivated our work.

The advent of gravitational wave detection has driven theoretical studies of gravitational
wave sources. A source that is possibly interesting for ground-based detectors, and perhaps
the most exciting source for space-based detectors, is the inspiral of two comparable mass
black holes and their merger to form a single black hole. The early stage of inspiral is modeled
with reasonable accuracy by perturbations of the Newtonian analysis, and the post-merger
stage can be analyzed with black hole perturbation theory. The most difficult stage to
analyze is the intermediate stage, when a few orbits remain. This epoch of inspiral is too
late for a modified Newtonian approach, but too early for black hole perturbation theory.
Yet this is the epoch in which a large part of the gravitational wave energy is generated.

The importance of, and difficulty in, analyzing this epoch was the original motivation for
an innovative approximation, the periodic standing wave (PSW) method. This approach
uses the fully nonlinear field interactions, but models the binary compact objects to be
forever on circular orbits of constant radius. Therefore, both the compact source motions
and the fields exhibit helical symmetry. Not only does this symmetry reduce the number of
independent variables, it also completely changes the nature of the governing PDEs, turning
the problem from the hyperbolic evolution of initial data to one of mixed-type that is elliptic
near a rotation axis and hyperbolic well outside the axis and beyond the orbits in the wave
zone of the system. More details of this astrophysical background are given in [6]. Here we
only point out that recent supercomputer evolutions of initial black hole binary data have

1 We use this term to refer to a specific technique reviewed below; however, insofar as our work is concerned

the word preconditioning might be a misnomer. In any case, the technique does achieve sparsification,

and this is the aspect of the technique we focus on here.
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been run stably for many orbits in the intermediate epoch. See, for example, Refs. [7–23]
(not an exhaustive list), and [24] for a recent review. Even the inspiral of binaries with
large mass ratios [21, 22] or high spins [23], both particularly challenging cases, can now be
computed. To be sure, recent successes with purely hyperbolic numerical evolutions have
undercut the original motivation for the PSW approximation. Nevertheless, there remains
a niche for the PSW approximation for the following reasons. First, it should provide a
test bench for understanding nonlinear gravitational radiation reaction as a local process.
Second, a helically symmetric solution of the Einstein equations would be, of its own accord,
of bewitching interest.

The numerical computation of PSW fields has, in fact, already been carried out, using
a single grid and a unique method devised especially for the problem by one of us (RHP)
and coworkers. These computations were done in a series of steps [25–29] moving from
linearized scalar fields up to and including the nonlinear tensor fields of general relativistic
gravity. However, the method used proved inherently too limited in accuracy to be useful.
Furthermore, despite the attractive simplicity of the computational method, its implemen-
tation for general relativistic tensor fields proved very challenging. The astrophysical PSW
problem, therefore, can be viewed as not yet solved. The spectral methods described here
are designed to solve this astrophysical problem to high accuracy. In any case, as mentioned
above, our work is relevant as a successful use of spectral-tau integration preconditioning for
the solution of PDEs (even of mixed-type) on nontrivial 3D domains. From this standpoint,
the astrophysical problem simply provides a convenient application, with a particularly in-
teresting feature. In the astrophysical problem, the region in which the PDEs are hyperbolic
—the distant wave zone— is a region in which the PDEs have only very small nonlinearities.
The strong linearities, near the source objects, are confined to a region in which the PDEs
are elliptic. While we do not consider nonlinearities in the current paper, the methods we
introduce for our linear model problem deliver sufficient accuracy that nonlinearities can
almost surely be included.

Multidomain spectral methods for the binary inspiral of compact relativistic objects are
not new. In pioneering work, nodal (i.e. collocation) methods were used by Pfeiffer et al. [30,
31] for the elliptical problem of constructing binary black hole initial data, and are now being
used by the Caltech-Cornell-CITA collaboration (see, for example, [20]) in the fundamentally
hyperbolic evolution problem. This work, now highly developed, relies on SpEC (the Spectral
Einstein Code [32]), a large C++ project chiefly developed by Pfeiffer, Kidder, and Scheel,
but also involving many other researchers and developers. One certainly might attack the
problem we consider with that software; in particular with SpEC’s EllipticModule which uses
finite-difference preconditioning [33, 34] and is also already configured to solve nonlinear
problems. Indeed, the EllipticModule has been used to solve the initial value constraint
equations on essentially the same type of domain we consider below2, and we suspect that
SpEC could be used to solve our problem to high accuracy. In any case, to date the 3D
mixed problem considered here has not been numerically solved via spectral methods.

Our previous study [6] applied a modal multidomain spectral-tau method to a model
nonlinear problem of two strong field sources in binary motion with only two spatial dimen-
sions. That study also relied on integration preconditioning, although the relevant linear
systems were inverted by direct rather than iterative methods (which was possible since the
2D problem was less memory intensive). Our 2D study, a proof of concept, showed that
high accuracy could be achieved with relatively modest memory and run-time requirements.

2 In fact, the domain decomposition of Pfeiffer et al. [30, 31] motivated our own choice.



4

(a) 3d view of domain decomposition.
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(b) Cross-sectional view.

FIG. 1. Domain decomposition. The whole inner configuration of 10 subdomains is enclosed

within an outer spherical shell which is not shown, save for its inner boundary in (b). Our total

configuration is therefore comprised of 11 subdomains.

Here we generalize our 2D method to 3D, that is to three spatial dimensions and one time
dimension, reduced to a problem with three independent variables by the imposition of heli-
cal symmetry. Due to the larger set of modes needed for the 3D problem, iterative solution
of the relevant linear system is now necessary. We use the generalized minimum residual
method (GMRES) [35, 36]. Since the amount of work and storage per iteration increases
with the iteration count [35, 36], preconditioning is a crucial issue (and here we mean further,
one might even say genuine, preconditioning on top of the “integration preconditioning”).
Through a multilevel preconditioning scheme, we will achieve near round-off accuracy for
large truncations (≃ 600,000 unknowns) with modest iteration counts. Moreover, as we
achieve a sparse formulation of the relevant linear system, each iteration is also fast.

B. Specification of the problem

Before writing down our mixed-type PDE problem, we describe the two-center (hereafter
2-center) domain D on which the problem is posed, first recalling the coordinate conventions
of [26]. Let {x, y, z} represent the inertial Cartesian system related to the spherical-polar
system {r, θ, φ} in the usual physicist’s convention (θ and φ are respectively the polar and
azimuthal angles). We then introduce a “comoving” Cartesian system

z̃ = r cos θ, x̃ = r sin θ cos(φ− Ωt), ỹ = r sin θ sin(φ− Ωt), (1)

where Ω < 1 is a fixed rotation rate. Note that the z̃ and z-axes coincide, and both are the
azimuthal axis. Via a simple permutation, we then define a new comoving system

X̃ = ỹ, Ỹ = z̃, Z̃ = x̃, (2)

for which the Z̃-axis is not the azimuthal axis. If we imagine two compact objects with “cen-
ters” located at ξ1(t) = a1 cos(Ωt)ex+a1 sin(Ωt)ey and ξ2(t) = −a2 cos(Ωt)ex−a2 sin(Ωt)ey
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Spherical shells

J 0.4 ≤ r ≤ 1.1 0 ≤ θ < 2π 0 ≤ φ ≤ π

H 0.3 ≤ r ≤ 1.1 0 ≤ θ < 2π 0 ≤ φ ≤ π

O 2.0 ≤ r ≤ 150.0 0 ≤ θ < 2π 0 ≤ ϕ ≤ π

Cylindrical shells

1 0.452 ≤ ρ ≤ 2.120 0 ≤ φ < 2π −2.120 ≤ Z̃ ≤ −1.525

2 0.452 ≤ ρ ≤ 2.120 0 ≤ φ < 2π −1.525 ≤ Z̃ ≤ −0.275

3 0.452 ≤ ρ ≤ 2.120 0 ≤ φ < 2π −0.275 ≤ Z̃ ≤ +0.375

4 0.452 ≤ ρ ≤ 2.120 0 ≤ φ < 2π +0.375 ≤ Z̃ ≤ +1.625

5 0.452 ≤ ρ ≤ 2.120 0 ≤ φ < 2π +1.625 ≤ Z̃ ≤ +2.120

Blocks

B −0.640 ≤ X̃ ≤ 0.640 −0.640 ≤ Ỹ ≤ 0.640 −2.120 ≤ Z̃ ≤ −1.525

C −0.640 ≤ X̃ ≤ 0.640 −0.640 ≤ Ỹ ≤ 0.640 −0.275 ≤ Z̃ ≤ +0.375

D −0.640 ≤ X̃ ≤ 0.640 −0.640 ≤ Ỹ ≤ 0.640 +1.625 ≤ Z̃ ≤ +2.120

TABLE I. Particular domain decomposition. The inner shells J and H are centered at (X̃, Ỹ , Z̃) =

(0, 0,−0.9) and (X̃, Ỹ , Z̃) = (0, 0, 1.0), and for each shell the polar system (r, θ, φ) is relative to

the Cartesian system arising from translation of the {X̃, Ỹ , Z̃} system to the shell’s corresponding

origin. For each cylinder, the cylindrical system (ρ, φ, Z̃) has the standard relationship with the

{X̃, Ỹ , Z̃} Cartesian system. Finally, the outer shell is O centered at the origin of the {X̃, Ỹ , Z̃}
system, but now the (r, θ, ϕ) system is relative to the {x̃, ỹ, z̃} system.

in the inertial {x, y, z} system, then the Z̃-axis connects those compact objects. That is,

ξ1 = a1eZ̃ and ξ2 = −a2eZ̃ . We introduce the coordinates {r̃, θ̃, ϕ̃} as spherical coordi-
nates relative to the comoving {x̃, ỹ, z̃} system. We will exclusively work with the comoving

systems (or simple translations or polar versions thereof), but we will often suppress tildes
when doing so will not cause confusion. We will, for example, use {r, θ, ϕ}, hereafter, to
mean {r̃, θ̃, ϕ̃}; these coordinates should not be confused with {r, θ, φ} of Eq. (1).

Relative to the system {X̃, Ỹ , Z̃}, the 2-center domain D that we have used is depicted
in Fig. 1. Topologically, the domain D is a large solid 3D ball with two excised regions
(each a smaller solid 3D ball). The global domain D has been broken into 11 subdomains,
each sufficiently simple to allow for spectral expansions in terms of classical basis functions.
A large outer shell (labeled O for “out”) is not shown in Fig. 1, but the remaining 10
subdomains which comprise the “inner region” are shown. The inner region is comprised of
two “inner shells” (spherical shells labeled J andH), three “blocks” (rectangular subdomains
labeled B, C, andD), and five “cylinders” (cylindrical shells labeled 1, 2, 3, 4, and 5). Table I
lists the parameters which specify the subdomains comprising D, along with the numerical
values we have used in the computations to be reported below. Its caption describes the
relationship between the parameters and the appropriate comoving system.

The HRWE problem we consider is as follows:

Lψ = g on D, ψ = h− on ∂H− ∪ ∂J−,

(
∂

∂r
− Ω

∂

∂ϕ
+

1

r

)
ψ = h+ on ∂O+, (3)

where the defining operator is

L =
∂2

∂x̃2
+
∂2

∂ỹ2
+

∂2

∂x̃2
− Ω2

(
x̃
∂

∂ỹ
− ỹ

∂

∂x̃

)2

=
∂2

∂X̃2
+

∂2

∂Ỹ 2
+

∂2

∂Z̃2
− Ω2

(
Z̃

∂

∂X̃
− X̃

∂

∂Z̃

)2

.

(4)



6

Here the constant Ω is the rotation rate, and g is a prescribed source. As described in, for
example, [6] this problem arises via a helically reduction of the inhomogeneous 3+1 wave
equation (see also the Appendix). Notice that the problem includes Dirichlet conditions set
on the inner boundaries of the spherical shells J and H . The boundary condition set on the
outer boundary of the spherical shell O is of radiative type, and is here expressed in terms
of the polar coordinates {r, θ, ϕ} relative to {x̃, ỹ, z̃}. Although this radiation condition
is described precisely below, it may here be thought of as an inhomogeneous Sommerfeld
condition. (The inhomogeneity h+ in (3) is a nonlocal expression.) This paper will consider
only the variable-coefficient linear problem (3). For numerical tests, g is taken as zero on
D, but with distributional support, point sources, located at the centers, ξ1 and ξ2, of J
and H . For this choice of g, an exact solution is described in the Appendix. While we
only consider the linear scalar problem (3), the helical reduction of the Einstein equations
described in [27, 28] involves a tensorial field resolved into ten coupled “helical scalars”
ψ(αβ) each of which obeys a copy Lψ(αβ) = g(αβ) of the above equation. However, for this
formulation g(αβ) is now not an external source, but rather is a nonlinear coupling function
of the helical scalars built with lower-order terms including some first derivatives. Therefore,
clearly solving the linear problem that we consider is the first step towards considering the
helically reduced Einstein equations.

C. Overview of 3D spectral-tau integration “preconditioning”

Mostly focusing on the 3D HWRE in three Cartesian variables on a rectangular block, this
subsection gives a short overview of integration preconditioning for spectral-tau methods,
in particular focusing on the Kronecker product representations necessary for 3D. We hope
that this overview will provide the reader with enough context to follow the heavy details
encountered later when applying the technique on 3D spherical and cylindrical shells. Our
earlier paper [6] gave a fuller account of essentially the same issues for 2D, many of which
change little in going to 3D. Therefore, in order to here avoid a prohibitively long discussion,
we have opted for a short overview, and one tied to our particular problem, pointing the
reader to [6] for more details.

The following overview makes use of matrices Dk and Bm
[n]. These respectively represent

kth order differentiation and mth order integration with respect to a basis of Chebyshev
polynomials. As explained later, the subscript [n] indicates that the first n rows of a matrix
are empty. We do not here provide precise expressions for Dk and Bm

[n]; however, we list the

following key properties exploited later: (i) Dk is dense upper triangular, (ii) Bn
[n] is sparse

and banded with upper and lower bandwidth n, and (iii) Bn
[n]D

k = Bn−k
[n] for n ≥ k. Here

B0
[n] ≡ I[n] is the identity matrix, except that each entry in its first n rows is a 0. Our earlier

paper [6] gave the precise expressions for D ≡ D1, D2, B[1] ≡ B1
[1], and B

2
[2]; our treatment

of the 3D HRWE (a second order equation) only requires these matrices. That reference
also discusses the necessary rescalings of these matrices for work with an arbitrary interval
rather than the standard interval [−1, 1] for Chebyshev polynomials. Of course, Ref. [1] also
considered such expressions and identities, even for more general basis functions.
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1. Direct product representations

A function on any of our 3D subdomains is encoded by the modal coefficients for its spec-
tral expansion, and this set of modal coefficients is often here viewed as a direct (Kronecker)
product. For example, let us consider a rectangular block delineated by the above comoving

coordinates {X̃, Ỹ , Z̃}, but for the rest of this overview let us suppress the tildes on these
coordinates. Suppose a function ψ(X, Y, Z) on the block is formally represented as a triple
Chebyshev expansion

ψ(X, Y, Z) =
∞∑

n=0

∞∑

m=0

∞∑

p=0

ψ̃nmpTn(ξ(X))Tm(η(Y ))Tp(χ(Z)), (5)

where (ξ(X), η(Y ), χ(Z)) maps our block to the standard cube [−1, 1]3. To get an approxi-
mation of ψ(X, Y, Z), we consider the truncated series

PNX ,NY ,NZ
ψ(X, Y, Z) =

NX∑

n=0

NY∑

m=0

NZ∑

p=0

ψ̃nmpTn(ξ(X))Tm(η(Y ))Tp(χ(Z)), (6)

so that ψ(X, Y, Z) is represented (either exactly or approximately) by a three-index set

{ψ̃nmp : 0 ≤ n ≤ NX , 0 ≤ m ≤ NY , 0 ≤ p ≤ NZ} of modal coefficients. We represent this

finite collection of modal coefficients as a column vector ψ̃, with components ψ̃(α) = (ψ̃)α
determined by the direct product representation3

ψ̃(n(NY + 1)(NZ + 1) +m(NZ + 1) + p) = ψ̃nmp. (7)

A single matrix operating on the vector ψ̃ (all modal coefficients representing the given
function) may then equivalently be considered as having block-elements which are other
matrices. We always view the modal set for a function on a cylindrical or rectangular
subdomain as a direct product of three one-dimensional sets. However, in the case of the
spherical shells (J , H , and O), we sometimes view the set of modal coefficients as the direct
product of only two sets, the set corresponding to the radial modes and the set corresponding
to the spherical harmonic modes (which involve both the polar and azimuthal angles).

In our notation, operators corresponding to a single dimension, that is “simple” matrices
(whose elements are numbers, not matrices), are usually represented by a capital in an
ordinary font, such as the identity operator/matrix IX or the matrix DZ which realizes
differentiation by Z. Matrices which act on the full set of modal coefficients are represented
by a calligraphic capital, for example B. Thus, if BZ[1] represents integration in Z, then on a
rectangular subdomain we might have B = IX⊗IY ⊗BZ[1] as the matrix which, when applied

to a vector ψ̃ holding the full set of modal coefficients, realizes integration in Z with no action

in X or Y . That is, if ψ(X, Y, Z) has modal coefficients ψ̃, then formally
∫
ψ(X, Y, Z)dZ

has modal coefficients Bψ̃. The [1] on BZ[1] indicates that all entries in the first row (in fact,

3 We could have instead taken

ψ̃(m(NX + 1)(NZ + 1) + p(NX + 1) + n) = ψ̃nmp,

which might prove advantageous for representation of the Ω2 term in (8). Our choice (7) has been

determined by technical decisions made during the initial construction of our code. In any case, based

on some experimentation, we believe this choice makes little difference, at least for Ω . 0.5 (well in the

range of rotation rates we aspire to treat).
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the zeroth row by our conventions) of this matrix are zero, so that (Bψ̃)(α) = 0 whenever
p = 0 for the index α = n(NY +1)(NZ +1)+m(NZ +1)+ p [cf. Eq. (7)]. This choice would
fix the integration constant (a function of X and Y ) in

∫
ψ(X, Y, Z)dZ, but this empty row

might also be subsequently filled with a “tau-condition,” that is another vector chosen to
fix a different constant.

2. Integration preconditioning

Let us briefly review the key ideas behind the technique of integration preconditioning,
continuing to assume a rectangular block subdomain and also assuming the operator (4) for
the HRWE. (See Refs. [1, 6] for nonlinear scenarios, [1] for more complicated 1D operators,
and Refs. [1, 37] for more exotic basis functions). After enough invocations of the Leibniz
rule, we may express the operator in (4) (again with tildes suppressed) as

L = ∂2Y + ∂2X(1− Ω2Z2) + ∂2Z(1− Ω2X2)− Ω2(∂XX + ∂ZZ − 2∂X∂ZXZ). (8)

We view this equation as an operator identity, that is the partial derivatives see both terms
like Z2 and XZ to the right, and also the function (not shown) on which L will eventually
act. The Chebyshev polynomials Tn(ξ) obey the three-term recurrence 2ξTn(ξ) = Tn+1(ξ)+
Tn−1(ξ). Here ξ may be viewed as a suitable rescaling of either X , Y , or Z. Therefore,
multiplication by the independent variable (here ξ) is represented in the corresponding space
of modal coefficients by a banded (evidently a tridiagonal) matrix Aξ. In fact, multiplication
by a polynomial p(ξ) is similarly represented by a banded matrix p(Aξ). Now, the matrix
which represents L is

L = IX ⊗D2
Y ⊗ IZ +D2

X ⊗ IY ⊗ (IZ − Ω2A2
Z) + (IX − Ω2A2

X)⊗ IY ⊗D2
Z

− Ω2(DXAX ⊗ IY ⊗ IZ + IX ⊗ IY ⊗DZAZ − 2DXAX ⊗ IY ⊗DZAZ). (9)

where each D represents differentiation in the space of modal coefficients for one coordinate.
This matrix is of the general form

L =

2∑

i=0

2∑

j=0

2∑

k=0

Di
X ⊗Dj

Y ⊗Dk
Z

(
2∑

r=0

2∑

s=0

2∑

t=0

pijk,rstA
r
X ⊗As

Y ⊗ At
Z

)
, (10)

where the pijk,rst are constants (most zero in our case). In Eq. (10) the matrix within the
parenthesis is banded and sparse; however, overall L is neither, since these desirable features
are spoiled by the derivative matrices (see the second paragraph of this subsection).

The idea behind integration preconditioning is to “undo” all of the matrix differentiations
which appear in (10) through repeated application of integration matrices [cf. point (iii) in
the second paragraph of this subsection]. To illustrate, we consider the modal representation

Lψ̃ = g̃ of (3) on the rectangular block, ignoring for the time being the issue of boundary

conditions. Introducing B ≡ B2
X[2]⊗B2

Y [2]⊗B2
Z[2], we then form BLψ̃ = Bg̃. The coefficient

matrix of the new “preconditioned” system is then

BL = B2
X[2] ⊗ IY [2] ⊗ B2

Z[2]

+ IX[2] ⊗B2
Y [2] ⊗ (B2

Z[2] − Ω2B2
Z[2]A

2
Z) + (B2

X[2] − Ω2B2
X[2]A

2
X)⊗B2

Y [2] ⊗ IZ[2]

− Ω2(BX[2]AX ⊗B2
Y [2] ⊗ B2

Z[2] +B2
X[2] ⊗ B2

Y [2] ⊗ BZ[2]AZ − 2BX[2]AX ⊗ B2
Y [2] ⊗ BZ[2]AZ).

(11)



9

Face Rows Index restrictions

Z = Zmin n(NY + 1)(NZ + 1) +m(NZ + 1) + 0 0 ≤ n ≤ NX , 0 ≤ m ≤ NY

Z = Zmax n(NY + 1)(NZ + 1) +m(NZ + 1) + 1 0 ≤ n ≤ NX , 0 ≤ m ≤ NY

Y = Ymin n(NY + 1)(NZ + 1) + p 0 ≤ n ≤ NX , 2 ≤ p ≤ NZ

Y = Ymax n(NY + 1)(NZ + 1) + (NZ + 1) + p 0 ≤ n ≤ NX , 2 ≤ p ≤ NZ

X = Xmin m(NZ + 1) + p 2 ≤ m ≤ NY , 2 ≤ p ≤ NZ

X = Xmax (NY + 1)(NZ + 1) +m(NZ + 1) + p 2 ≤ m ≤ NY , 2 ≤ p ≤ NZ

TABLE II. Filling of empty rows for blocks.

Because it is built only with Bs and As, this matrix is sparse and banded, albeit with large
bandwidth due to the direct product structure.

The matrix BL has many empty rows, signaling missing information. The spectral-tau
procedure is to put the “tau conditions,” here the boundary conditions, in these empty rows,
and the corresponding inhomogeneous values in Bg̃. When this procedure is carried out cor-
rectly, with due regard to possible repetition in the specification of boundary data, the empty
rows provide precisely the space needed for the boundary data of a well-posed problem. To
enforce boundary conditions for the example at hand, we proceed as follows. Define, for ex-
ample, h+(X, Y ) = ψ(X, Y, Zmax) and h

−(X, Y ) = ψ(X, Y, Zmin). Then Dirichlet boundary
conditions along the XY -faces of a block are expressible as

NZ∑

p=0

ψ̃nmpδ
±
p = h̃±nm, (12)

where a double Chebyshev projection appears on the right-hand side. Moreover, δ+ (all 1’s)
and δ− (alternating +1 and −1) are the (NZ + 1) dimensional “Dirichlet vectors.” Similar
equations correspond to Y Z and XY faces, and in all 2(NX +1)(NY +1)+2(NY +1)(NZ +
1) + 2(NX + 1)(NZ + 1) such equations are possible. However, there are only

2(NX + 1)(NY + 1) + 2(NY + 1)(NZ + 1) + 2(NX + 1)(NZ + 1)− 4(NX +NY +NZ + 1)

available empty rows in (11). However, there are precisely 4(NX + NY + NZ + 1) linear
dependencies amongst the set of all possible boundary equations, owing to the fact that
faces share common edge values. Table II gives our prescription for filling empty rows.

As a result of the integration preconditioning, we have reformulated the set of equations
in terms of matrices with a drastic reduction in nonzero elements. In the context of ODEs,
that is in the 1D origins of this method, Ref. [1] has thoroughly studied the condition num-
ber of the resulting preconditioned matrix with respect to norms that arise from diagonal
equilibration. While in ODE settings integration preconditioning often improves the condi-
tioning of the original system, in the PDE context at hand B2

X[2] ⊗ B2
Y [2] ⊗ B2

Z[2] is not an

optimal preconditioner in that it does not approximate (in any measure that we are aware
of) the inverse of the original coefficient matrix. Nevertheless, one should expect that the
“preconditioned” coefficient matrix has a more clustered spectrum, since the Bs are com-
pact operators (even as infinite dimensional matrices). A clustered spectrum often yields
favorable convergence properties in the context of Krylov iterative methods. Regardless,
sparsification is a desirable property, since it clearly affords a fast matrix-vector multiply
in Krylov methods. Therefore, for multidimensional problems we are more comfortable
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focusing on the sparsifying aspect of the technique, with the understanding that further pre-
conditioning (described below) on top of the “integration preconditioning” will be required
to enhance convergence of the underlying linear solver (in our case GMRES).

II. SPARSE SPECTRAL APPROXIMATION OF THE 3D HRWE

Starting with one of the forms appearing in (4) and after further transformations, this
section describes the spectral-tau representation of L on each of the basic subdomains, except
for the block case which we have already described in Sec. IC. These descriptions allow for
implementation of the lefthand side of (3) as a “matrix-vector multiply,” an implementation
required by the iterative solver GMRES [35].

A. Outer spherical shell

In the polar system associated with the comoving system (1) the operator (4) becomes

r2L = r2∆− Ω2JO, r2∆ = ∂2r r
2 − 2∂rr +∆S2, JO = r2∂2ϕ, (13)

where ∆S2 is the unit-sphere Laplacian and O stands for the outer spherical shell. These
equations should be viewed as operator identities acting on scalar functions. The solution
ψ to Lψ = g is formally represented as the triple series

ψ(r, θ, ϕ) =

∞∑

n=0

∞∑

ℓ=0

ψ̃ℓ0nP ℓ0(cos θ)Tn(ξ(r))

+
∞∑

n=0

∞∑

ℓ=1

ℓ∑

m=1

P ℓm(cos θ)
[
ψ̃ℓ,2m−1,n cos(mϕ) + ψ̃ℓ,2m,n sin(mϕ)

]
Tn(ξ(r)), (14)

where the P ℓm(cos θ) are normalized associated Legendre functions [38] and ξ(r) maps the
radial domain to the standard interval [−1, 1]. The corresponding numerical approximation
is the following finite expansion:

PNr,Nθ
ψ(r, θ, ϕ) =

Nr∑

n=0

Nθ∑

ℓ=0

ψ̃ℓ0nP ℓ0(cos θ)Tn(ξ(r))

+

Nr∑

n=0

Nθ∑

ℓ=1

Nθ∑

m=1

P ℓm(cos θ)
[
ψ̃ℓ,2m−1,n cos(mϕ) + ψ̃ℓ,2m,n sin(mϕ)

]
Tn(ξ(r)).

(15)

We represent the triply-indexed modal coefficients ψ̃ℓqn as a vector ψ̃(α) of length (Nθ +
1)(2Nθ + 1)(Nr + 1), with the two notations connected by

ψ̃(ℓ(2Nθ + 1)(Nr + 1) + q(Nr + 1) + n) = ψ̃ℓqn, (16)

For ℓ < Nθ the second sum over m in (15) includes too many terms. Indeed, m should run
from 1 to ℓ only (with the m = 0 terms appearing in the first sum); therefore, whenever



11

q > 2ℓ, we must set ψ̃ℓqn = 0 by hand. We have enlarged the space of modal coefficients
for later convenience when using spherical harmonic transformations. With this remark in

mind, for our representation (16) the index α of the vector ψ̃(α) starts at 0 and takes on
all values corresponding to the ranges 0 ≤ ℓ ≤ Nθ, 0 ≤ q ≤ 2Nθ, and 0 ≤ n ≤ Nr. We
denote by P the projection matrix whose range is the set of vectors associated with proper
spherical harmonic expansions,

(Pψ̃)(ℓ(2Nθ + 1)(Nr + 1) + q(Nr + 1) + n) = 0, for q > 2ℓ. (17)

Let us first consider a sparse approximation of the Laplacian term r2∆, which from (13)
has the spectral representation

A2
r∆ = P

[
Iθ ⊗ Iϕ ⊗ (D2

rA
2
r − 2DrAr)− L

2 ⊗ Ir], (18)

where A2
r = Iθ ⊗ Iϕ ⊗ A2

r, and Ar is the matrix equivalent to multiplying r-dependent
functions by a factor of r. In the first term within the square brackets Iθ ⊗ Iϕ⊗ means that

there are no operations mixing modes ψ̃ℓqn with different values of ℓ, or of q (i.e. the dual
indices to θ and φ). The operator (D2

rA
2
r − 2DrAr) is the matrix equivalent of the partial

differentiation ∂2r r
2− 2∂rr in (13). The matrix L 2, representing −∆S2 in (13), is comprised

of (Nθ + 1) constant blocks ℓ(ℓ+ 1)I(2Nθ+1)×(2Nθ+1) in each subspace labeled by ℓ.
To get a sparse form of the Laplacian, we define B = Iθ⊗Iϕ⊗B2

r and write the expression

(BA2
r∆)modified = P

[
Iθ ⊗ Iϕ ⊗ (Ir[2]A

2
r − 2Br[2]Ar) + L

2 ⊗B2
r[2]

]
+ (Iθ ⊗ Iϕ ⊗ Ir − P) . (19)

Here the “modified” notation indicates that, by the addition of the last term above, 1’s have
been placed on the diagonal in rows set to zero by the projection operation, so that the

result is a nonsingular matrix. Therefore, to ensure that a solution ψ̃ to the corresponding
linear system obeys

ψ̃(ℓ(2Nθ + 1)(Nr + 1) + q(Nr + 1) + n) = 0, for q > 2ℓ . (20)

We demand that the source obeys g̃ = Pg̃. Finally, from (13) the sparse preconditioned
form of the operator JO is

BJO = −P
[
Iθ ⊗ M

2 ⊗ B2
r[2]A

2
r

]
, (21)

where M 2 = diag(0, 1, 1, 4, 4, · · · , N2
θ , N

2
θ ) is the (2Nθ+1)-by-(2Nθ+1) matrix representing

−∂2ϕ. Therefore, (BA2
r∆)modified−Ω2BJO is our sparse form of the overall coefficient matrix,

prior to inclusion of boundary conditions.
We now consider specification of outer radiation conditions, for which we summarize

results given in [6]. Specification of Dirichlet conditions on the inner boundary ∂O− of the
outer shell O is essentially the same as specification on the boundaries ∂H± of the inner shell
H , and we describe that specification in detail below. The specification at ∂O+, however,
involves radiation conditions. To define these, we set R = rmax, the radial coordinate value
of ∂O+, and introduce

Vℓ+1/2(ξ) =

√
πξ

2
exp

[
− i
(
ξ − 1

2
πκ− 1

4
π
)]
H

(+)
ℓ+1/2(ξ), (22)
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which satisfies Vℓ+1/2(ξ) ∼ 1 as ξ → ∞. Here H
(+)
ℓ+1/2(ξ) is the cylindrical Hankel function

of the first kind, of half-integer order ℓ+ 1/2. For our radiative boundary condition we will
need the “frequency–domain kernel,”

vℓ+1/2(ξ) ≡ ξ
V ′
ℓ+1/2(ξ)

Vℓ+1/2(ξ)
, (23)

which is computable as a continued fraction via Steed’s algorithm [39]. Radiation conditions
involve

p ≡ mΩR + Im
(
vℓ+1/2(mΩR)

)
, q ≡ 1− Re

(
vℓ+1/2(mΩR)

)
, (24)

with p = 0 and q = ℓ + 1 for m = 0 modes (see Ref. [6] for details). The p and q here (in

particular the q) are not related to the indices on ψ̃ℓqn. Both uses of p and q will not appear
in the same formula. As tau-conditions, our radiation conditions are then expressible as

Nr∑

n=0

(
Rψ̃ℓ,2m,nν

+
n + pψ̃ℓ,2m−1,nδ

+
n + qψ̃ℓ,2m,nδ

+
n

)
= 0 (25a)

Nr∑

n=0

(
Rψ̃ℓ,2m−1,nν

+
n − pψ̃ℓ,2m,nδ

+
n + qψ̃ℓ,2m−1,nδ

+
n

)
= 0 . (25b)

Here δ+ (all 1’s) and δ− (alternating +1 and −1) are the (Nr + 1) dimensional “Dirichlet
vectors” used to impose Dirichlet conditions at the endpoints of a coordinate range. Simi-
larly, ν+ and ν− are the (Nr +1) dimensional “Neumann vectors” used to impose derivative
conditions at the endpoints. Details are given in [1, 6].

Along the block-diagonal of the coefficient matrix (BA2
r∆)modified − Ω2BJO, there are

(Nr + 1)-by-(Nr + 1) blocks, one for each (ℓ, q) pair. When q exceeds 2ℓ, each such block is
the identity matrix; however, the block corresponding to a physical mode 0 ≤ q ≤ 2ℓ has
the form 


0

0

Bℓq


 . (26)

Here 0 represents a row of zeros, and Bℓq is a nonzero (Nr − 1)-by-(Nr + 1) submatrix.
The zeros in the first two rows are filled in with the Dirichlet boundary conditions on ∂O−,
using δ−, and the radiation boundary conditions on ∂O+, using (25). Since these radiation
conditions mix one cosine (q = 2m−1) and the other sine (q = 2m) mode, the tau conditions
lead to a coupling between among the blocks. The resulting 2(Nr + 1)-by-2(Nr + 1) block
neighborhood, with Dirichlet and radiation boundary conditions, takes one of the following
forms (either representation is possible due to the homogeneity of the boundary conditions):




δ−

pδ+

Bℓ,2m−1

0

Rν+ + qδ+

0

0

Rν+ + qδ+

0

δ−

−pδ+
Bℓ,2m




or




δ−

Rν+ + qδ+

Bℓ,2m−1

0

−pδ−
0

0

pδ+

0

δ−

Rν+ + qδ+

Bℓ,2m




, (27)
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where 0 represents either a row (when opposite a δ−) or a (Nr − 1)-by-(Nr + 1) submatrix
of zeros (when opposite a B). Boundary conditions for m = 0 (zero modes) correspond to
blocks 


δ−

Rν+ + qδ+

Bℓ0


 . (28)

Evidently, in this case only a single azimuthal block need be considered.

B. Inner spherical shells

We stress that the polar coordinates (r, θ, φ) appearing in this subsection are not the
polar coordinates (r, θ, ϕ) used in the last, although only the notation for the azimuthal
angle (φ vs. ϕ) reflects the difference. We start with (4), assume that one of the “holes” is

at Z̃ = zH , and define new comoving coordinates

z = Z̃ − zH , x = X̃, y = Ỹ . (29)

The helically reduced wave operator in the new coordinates is

L =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− Ω2

[
(zH + z)

∂

∂x
− x

∂

∂z

]2
. (30)

Spherical polar coordinates {r, θ, φ} in this subsection correspond to the system {x, y, z}.
As already mentioned, the system {r, θ, φ} is not the system {r, θ, ϕ} corresponding the

outer shell. Nevertheless, for an inner shell our treatment of the Laplacian part of the
operator is the same as the treatment given in the last subsection. In particular, we adopt
the same conventions for the indexing of the spectral representation, and therefore again
arrive at the expression (19). Notationally, the only difference is that we replace all instances
of ϕ with φ. Therefore, having already considered (r2×) the Laplacian part of the HRWE,
we turn to (r2×) the term in (30) paired with −Ω2,

JH ≡ r2[(zH + z)∂/∂x − x∂/∂z]2. (31)

To facilitate the expression of the derivatives in (31) in terms of operations on {r, θ, φ},
we introduce

Q = sin θ cosφ (32)

P = cos θ cosφ∂/∂θ − csc θ sinφ∂/∂φ (33)

N = cosφ∂/∂θ − cos θ csc θ sinφ∂/∂φ, (34)

and note that

∂/∂x = Q∂/∂r + r−1P, z∂/∂x − x∂/∂z = N . (35)

With the identities (which should be read as operators acting on a scalar function)

r2∂2r = ∂2r r
2 − 4∂rr + 2, r∂r = ∂rr − 1, r2∂r = ∂rr

2 − 2r, (36)
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we then find that JH of (31) can be written as

JH = z2HQ
2∂2r r

2 + z2H(PQ+QP − 4Q2)∂rr + zH(NQ +QN)∂rr
2

+ zH(NP + PN − 2NQ− 2QN)r +N2r2 (37)

+ z2H(P
2 + 2Q2 − PQ− 2QP ).

We use JH to denote the spectral form of the differential operator JH . The corresponding
sparse form BJH ≡ (Iθ ⊗ Iφ ⊗ B2

r[2])JH is then

BJH = z2HQ
2 ⊗ I[2]rA

2
r + z2H(PQ+ QP− 4Q2)⊗B[2]rAr (38)

+ zH(NQ+ QN)⊗B[2]rA
2
r + zH(NP + PN− 2(NQ+ QN))⊗ B2

[2]rAr

+ N2 ⊗ B2
[2]rA

2
r + z2H(P− 2Q)(P− Q)⊗B2

[2]r.

Here the san serif N, P, and Q are matrices acting on the spectral space of spherical harmonic
expansion coefficients. Whence we need explicit realizations of the following matrices: Q2,
PQ + QP, PN + NP, PQ + QP, and (P − Q)2. We compute these matrices as truncations
of the corresponding exact infinite dimensional matrices described below (with products
computed before truncation). The truncated matrix components N(α, β) of N obey the
following condition:

N
(
ℓ(2Nθ + 1) + q, k(2Nθ + 1) + p

)
= 0, for q > 2ℓ or p > 2k, (39)

and similarly for the components P(α, β) and Q(α, β). (Here we have switched to parenthesis
notation [36] for the components N(i, j) = Nij of a matrix.) This condition properly treats

the extraneous components we have included in our expansion vector ψ̃.
Of the three angular differential operators P,Q,N , we only consider N in detail here, as

its action on spherical harmonics is the simplest to describe. Partial formulas are given for
P and Q at the end of this subsection. Using standard formulas from the theory of angular
momentum (see the appendix of [40]), we have

NYℓm =
1

2

√
(ℓ−m)(ℓ+m+ 1)Yℓ,m+1 −

1

2

√
(ℓ+m)(ℓ−m+ 1)Yℓ,m−1. (40)

Before completing our construction of N, P, and Q, we first collect some formulas which
relate the standard complex representation of spherical harmonics Yℓm(θ, φ) to the real-
valued representation. The normalized Legendre functions are [38]

P ℓm(u) = (−1)m

√
2ℓ+ 1

2

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (u), (41)

with Pm
ℓ (u) the standard associated Legendre function (as given, for example, by Thorne

[41]). We then have

Yℓm =

√
1

2π
(−1)mP ℓme

imφ, Yℓ,−m =

√
1

2π
P ℓme

−imφ, m ≥ 0. (42)

For fixed ℓ, the expansion in azimuthal index takes the form

cℓ0Yℓ0 +

ℓ∑

m=1

(
cℓmYℓm + cℓ,−mYℓ,−m

)
= aℓ0P ℓ0 +

ℓ∑

m=1

P ℓm

[
aℓm cosmφ + bℓm sinmφ

]
, (43)
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where the real expansion coefficients are
√
2πaℓ0 = cℓ0 and, for m ≥ 1,

√
2πaℓm = cℓm(−1)m + cℓ,−m,

√
2πbℓm = i

[
cℓm(−1)m − cℓ,−m

]
. (44)

We define another set of complex expansion coefficients

fℓm =
1

2

√
(ℓ+m)(ℓ−m+ 1)cℓ,m−1 −

1

2

√
(ℓ−m)(ℓ+m+ 1)cℓ,m+1 , (45)

so that, from (40), the action of N has the effect

Ψ =
∞∑

ℓ=0

ℓ∑

m=−ℓ

cℓmYℓm, NΨ =
∞∑

ℓ=0

ℓ∑

m=−ℓ

fℓmYℓm. (46)

We can then represent N by the matrix N that converts the vector of coefficients cℓm to the
vector fℓm by f = Nc. We also define real coefficients dℓm, eℓm which are related to fℓm in
the same way that aℓm, bℓm are related to cℓm, and then view the action of N as a mapping
from the real coefficients aℓm, bℓm to the real coefficients dℓm, eℓm.

Turning to the representation for Q, we likewise use results tabulated in the appendix of
[40] to find

QYℓm =
1

2

√
(ℓ−m+ 1)(ℓ−m+ 2)

(2ℓ+ 1)(2ℓ+ 3)
Yℓ+1,m−1 (47)

− 1

2

√
(ℓ+m+ 1)(ℓ+m+ 2)

(2ℓ+ 1)(2ℓ+ 3)
Yℓ+1,m+1

− 1

2

√
(ℓ+m)(ℓ+m− 1)

(2ℓ+ 1)(2ℓ− 1)
Yℓ−1,m−1

+
1

2

√
(ℓ−m)(ℓ−m− 1)

(2ℓ+ 1)(2ℓ− 1)
Yℓ−1,m+1,

so that f = Qc is determined by

fℓm =
1

2

√
(ℓ−m− 1)(ℓ−m)

(2ℓ− 1)(2ℓ+ 1)
cℓ−1,m+1 (48)

− 1

2

√
(ℓ+m− 1)(ℓ+m)

(2ℓ− 1)(2ℓ+ 1)
cℓ−1,m−1

− 1

2

√
(ℓ+m+ 2)(ℓ+m+ 1)

(2ℓ+ 1)(2ℓ+ 3)
cℓ+1,m+1

+
1

2

√
(ℓ−m+ 2)(ℓ−m+ 1)

(2ℓ+ 1)(2ℓ+ 3)
cℓ+1,m−1.
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Boundary Rows Index restrictions

r = rmin ℓ(2Nθ + 1)(Nr + 1) + q(Nr + 1) + 0 0 ≤ ℓ ≤ Nθ, 0 ≤ q ≤ 2ℓ

r = rmax ℓ(2Nθ + 1)(Nr + 1) + q(Nr + 1) + 1 0 ≤ ℓ ≤ Nθ, 0 ≤ q ≤ 2ℓ

TABLE III. Filling of empty rows for shells.

Again, we may express the action of Q as a mapping from aℓm, bℓm to dℓm, eℓm. Finally, we
use the identity

PYℓm =− 1

2
ℓ

√
(ℓ−m+ 1)(ℓ−m+ 2)

(2ℓ+ 1)(2ℓ+ 3)
Yℓ+1,m−1 (49)

+
1

2
ℓ

√
(ℓ+m+ 1)(ℓ+m+ 2)

(2ℓ+ 1)(2ℓ+ 3)
Yℓ+1,m+1

− 1

2
(ℓ+ 1)

√
(ℓ+m)(ℓ+m− 1)

(2ℓ+ 1)(2ℓ− 1)
Yℓ−1,m−1

+
1

2
(ℓ+ 1)

√
(ℓ−m)(ℓ−m− 1)

(2ℓ+ 1)(2ℓ− 1)
Yℓ−1,m+1.

to similarly define the action of P as a mapping from aℓm, bℓm to dℓm, eℓm.
To enforce the inner and outer boundary conditions in (3), we fill empty rows in

(BA2
r∆)modified−Ω2BJH with the tau-conditions. Let h+(θ, φ) = ψ(rmax, θ, φ) and h

−(θ, φ) =
ψ(rmin, θ, φ). Then Dirichlet boundary conditions on the inner and outer boundaries of the
shell are expressible as

Nr∑

n=0

ψ̃ℓqnδ
±
n = h̃±ℓq, (50)

where spherical-harmonic projections appear on the righthand side. Table III shows how
empty rows are filled to enforce these boundary conditions.

C. Cylindrical shells

Throughout this section we suppress the tildes on X̃, Ỹ , Z̃. Let ρ = (X2 + Y 2)1/2, and
multiply Eq. (4) by ρ2 to get the operator identity

ρ2L = ρ2
[
∂2Y + ∂2X + ∂2Z − Ω2∂2XZ

2 − Ω2∂2ZX
2 − Ω2(∂XX + ∂ZZ − 2∂XX · ∂ZZ)

]
. (51)

Since X = ρ cosφ and Y = ρ sin φ,

ρ2(∂2X + ∂2Y + ∂2Z) = ∂2ρρ
2 − 3∂ρρ+ 1 + ∂2φ + ρ2∂2Z , (52)

again with the view that this is an operator identity. Eq. (52) has the spectral representation

A2
ρ∆ = Iφ ⊗ (Iρ +D2

ρA
2
ρ − 3DρAρ)⊗ IZ +D2

φ ⊗ Iρ ⊗ IZ + Iφ ⊗ A2
ρ ⊗D2

Z . (53)

Here A2
ρ represents the matrix Iφ ⊗ A2

ρ ⊗ IZ . To achieve this representation we start by
introducing a mapping of [Zmin, Zmax] to [−1, 1] with the function χ(Z), so that Z dependence
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can be expressed with the Chebyshev polynomials Tp(χ(Z)). Similarly ξ(ρ) maps [ρmin, ρmax]
to [−1, 1]. The solution is then formally expressed as

ψ(ρ, φ, Z) =

∞∑

n=0

∞∑

p=0

ψ̃0npTn(ξ(ρ))Tp(χ(Z))

+

∞∑

k=1

∞∑

n=0

∞∑

p=0

[
ψ̃2k−1,np cos(kθ) + ψ̃2k,np sin(kθ)

]
Tn(ξ(ρ))Tp(χ(Z)), (54)

with corresponding numerical truncation (taking Nφ even for simplicity)

PNρ,Nφ,Nz
ψ(ρ, φ, Z) =

Nρ∑

n=0

Nz∑

p=0

ψ̃0npTn(ξ(ρ))Tp(χ(Z))

+

1

2
Nφ∑

k=1

Nρ∑

n=0

Nz∑

p=0

[
ψ̃2k−1,np cos(kφ) + ψ̃2k,np sin(kφ)

]
Tn(ξ(ρ))Tp(χ(Z)). (55)

The direct product structure in (53) has been determined by the convention

ψ̃(m(Nρ + 1)(Nz + 1) + n(Nz + 1) + p) = ψ̃mnp. (56)

We now take the matrix representation of the differential operator in (51), and “sparsify” it
via multiplication by B = B2

φ ⊗B2
ρ[2]⊗B2

Z[2]. In this operator the B2
ρ[2] and B

2
Z[2] correspond

to the usual B operators representing integration twice over a coordinate, and leaving two
empty rows to be filled by tau-conditions. The operator B2

φ applies to a coordinate with no
endpoints, and hence no applicable boundary conditions. It represents double integration
over all Fourier modes except the zero mode, which is left unchanged. The matrix that
accomplishes this has the explicit form B2

φ = diag(1,−1,−1,−1
4
,−1

4
,−1

9
,−1

9
, · · · ). Although

the operation on φ does not play a role in handling boundary conditions, it should further
enhance the spectrum clustering of the matrix that must be inverted.

With this B the sparsified form of (53) becomes

BA2
ρ∆ = B2

φ⊗(B2
ρ[2]+Iρ[2]A

2
ρ−3Bρ[2]Aρ)⊗B2

Z[2]+Iφ[1]⊗B2
ρ[2]⊗B2

Z[2]+B
2
φ⊗B2

ρ[2]A
2
ρ⊗IZ[2]. (57)

Our analysis of the terms in the HRWE proportional to Ω2 starts with the expressions

ρ2∂X = ρ2 cosφ∂ρ − ρ sinφ∂φ (58)

ρ2∂2X = ρ2 cos2 φ∂2ρ − 2ρ cosφ sinφ∂ρ∂φ + 2 cosφ sinφ∂φ + ρ sin2 φ∂ρ + sin2 φ∂2φ. (59)

With the operator identities ρ2∂2ρ = ∂2ρρ
2 − 4∂ρρ + 2, ρ∂ρ = ∂ρρ − 1, and ρ2∂ρ = ∂ρρ

2 − 2ρ,
we then find

ρ2∂X = ∂ρρ
2 cosφ− ρ(2 cosφ+ sin φ∂φ) (60)

ρ2∂2X = ∂2ρρ
2 cos2 φ+ ∂ρρ(1− 5 cos2 φ− 2 cosφ sinφ∂φ)

+ sin2 φ∂2φ + 4 cosφ sinφ∂φ + 3 cos2 φ− 1. (61)
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Still viewing these relationships as operator identities, we now exploit the product rule for
differentiation to rewrite the terms involving angular derivatives, with the results

ρ2∂X = ∂ρρ
2 cosφ− ρ(cosφ+ ∂φ sin φ) (62)

ρ2∂2X = ∂2ρρ
2 cos2 φ− ∂ρρ(1 + cos2 φ+ 2∂φ cosφ sinφ) + ∂2φ sin

2 φ+ sin2 φ. (63)

These equations then yield

ρ2∂XX = ∂ρρ
3 cos2 φ− ρ2(cos2 φ+ ∂φ cosφ sinφ) (64a)

ρ2∂2X = (∂2ρρ
2 − 3∂ρρ+ 1) cos2 φ

− ∂ρρ(1− 2 cos2 φ+ 2∂φ cosφ sinφ) + ∂2φ sin
2 φ+ 2 sin2 φ− 1, (64b)

expressions which prove useful in obtaining the matrix representation of the operator on the
righthand side of (51). To optimize the implementation, we have chosen the first term on
the righthand side of (64b) to match a similar term in the Laplacian part of the operator
[cf. Eq. (52)].

We split the HRWE operator on a cylindrical shell as ρ2L = ρ2∆− Ω2J , where

J = J1 + J2 + J3 + J4 = ρ2∂XX(1− 2∂ZZ)︸ ︷︷ ︸
J1

+ ρ2∂2XZ
2

︸ ︷︷ ︸
J2

+ ρ2∂ZZ︸ ︷︷ ︸
J3

+ ρ2∂2ZX
2

︸ ︷︷ ︸
J4

. (65)

The piece ρ2∆ was shown to lead to (57). We now focus on J whose matrix representation
stems from the representations of its constituents. Equations (63) and (64) give us

J1 = C2
φ ⊗DρA

3
ρ ⊗ (IZ − 2DZAZ)− (C2

φ +DφCφSφ)⊗A2
ρ ⊗ (IZ − 2DZAZ) (66)

J2 = C2
φ ⊗ (I +D2

ρA
2
ρ − 3DρAρ)⊗ A2

Z − (Iφ − 2C2
φ + 2DφCφSφ)⊗DρAρ ⊗A2

Z (67)

+ (D2
φS

2
φ + 2S2

φ − 1)⊗ Iρ ⊗ A2
Z

J3 = Iφ ⊗ A2
ρ ⊗DZAZ (68)

J4 = C2
φ ⊗A4

ρ ⊗D2
Z , (69)

where Sφ and Cφ are respectively the matrices in the Fourier basis which correspond to
multiplication by sin φ and cosφ. Applying the sparsifying matrix B = B2

φ ⊗ B2
ρ[2] ⊗ B2

Z[2],
we then have

BJ1 = B2
φC

2
φ ⊗Bρ[2]A

3
ρ ⊗ (B2

Z[2] − 2BZ[2]AZ) (70)

− (B2
φC

2
φ +Bφ[1]CφSφ)⊗ B2

ρ[2]A
2
ρ ⊗ (B2

Z[2] − 2BZ[2]AZ)

BJ2 = B2
φC

2
φ ⊗ (B2

r[2] + Iρ[2]A
2
ρ − 3Br[2]Aρ)⊗B2

Z[2]A
2
Z (71)

− (B2
φ − 2B2

φC
2
φ + 2Bφ[1]CφSφ)⊗ Bρ[2]Aρ ⊗B2

Z[2]A
2
Z

+ (Iφ[1]S
2
φ + 2B2

φS
2
φ − B2

φ)⊗B2
ρ[2] ⊗ B2

Z[2]A
2
Z

BJ3 = B2
φ ⊗ B2

ρ[2]A
2
ρ ⊗ BZ[2]AZ (72)

BJ4 = B2
φC

2
φ ⊗B2

ρ[2]A
4
ρ ⊗ IZ[2]. (73)

The sparsified matrix representing (51) is then BA2
ρL = BAρ∆−Ω2(BJ1+BJ2+BJ3+BJ4).
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Boundary Rows Index restrictions

ρ = ρmin m(Nρ + 1)(Nz + 1) + p 0 ≤ m ≤ Nφ, 2 ≤ p ≤ Nz

ρ = ρmax m(Nρ + 1)(Nz + 1) + (Nz + 1) + p 0 ≤ m ≤ Nφ, 2 ≤ p ≤ Nz

Z = Zmin m(Nρ + 1)(Nz + 1) + n(Nz + 1) + 0 0 ≤ n ≤ Nρ, 0 ≤ m ≤ Nφ

Z = Zmax m(Nρ + 1)(Nz + 1) + n(Nz + 1) + 1 0 ≤ n ≤ Nρ, 0 ≤ m ≤ Nφ

TABLE IV. Filling of empty rows for cylinders.

To enforce boundary conditions, we fill empty rows in the matrix BAρ∆ − Ω2BJ with
the tau-conditions. Let h+(φ, Z) = ψ(ρmax, φ, Z), h

−(φ, Z) = ψ(ρmin, φ, Z) and f
+(ρ, φ) =

ψ(ρ, φ, Zmax), f
−(ρ, φ, Zmin) = ψ(ρ, φ, Zmin). Then Dirichlet boundary conditions on the

inner and outer axial boundaries and on the top and bottom caps are expressible as

Nρ∑

n=0

ψ̃mnpδ
±
n = h̃±mp,

Nz∑

p=0

ψ̃mnpδ
±
p = f̃±

mn. (74)

There are (Nφ + 1)(Nz + 1) + (Nρ + 1)(Nφ + 1) such equations possible. However, owing to
the fact that the caps shares common edges with both the inner and outer axial boundaries,
there are 2(Nφ +1) linear dependencies amongst these equations, and in fact the number of
available empty rows is precisely

(Nφ + 1)(NZ + 1) + (Nρ + 1)(Nφ + 1)− 2(Nφ + 1).

Table IV shows how we fill zero rows to enforce the boundary conditions.

III. GLUING OF SUBDOMAINS

So far we have described individual shell, cylinder, and block subdomains (and their
associated tau-conditions) as if they were decoupled. All the subdomains are, of course,
coupled and we refer to the process of making them parts of a single problem as “gluing.”
Matching, or gluing, must be done for each subset of subdomains that touch, whether that
touching is a finite volume overlap or a lower-dimensional shared boundary. The global
problem requires matching for the following subdomain configurations:

(i) Two adjacent cylinders.

(ii) One inner shell and a combination of cylinders and blocks.

(iii) One cylinder and one block.

(iv) The outer shell and the combination of blocks B and D and all cylinders.

We describe (i) and (ii) in detail, provide a sketch of (iii), and omit a description of (iv)
altogether. Although more complicated, a description of (iv) would parallel that of (iii).

Before giving more details, we comment on how such gluing is reflected in the overall

linear system. Let, for example, ψ̃J and ψ̃B respectively represent the vectors of spherical-
harmonic Chebyshev and triple Chebyshev expansion coefficients corresponding to the inner
shell J and block B of Fig. 1. The overall set of unknowns is the concatenation

Ψ̃ = (ψ̃J , ψ̃H , ψ̃B, ψ̃C , ψ̃D, ψ̃1, ψ̃2, ψ̃3, ψ̃4, ψ̃5, ψ̃O)t,
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which satisfies a linear system stemming from Eq. (3),

MΨ̃ = BG̃, (75)

where G̃ is a similar concatenation of the sources g̃ on the individual subdomains. Here
B indicates integration “preconditioning” (sparsification) on all subdomains. Symbolically
then, the coefficient matrix M is BL, now with L standing for the spectral representation
of the HRWE operator L on the whole 2-center domain. In this symbolic view, we have
ignored multiplications by radial powers on spheres and cylinders.

Each of the eleven subdomains in Fig. 1 is represented by one of eleven super-blocks (J-J ,
H-H , · · · , O-O) which sit along the diagonal of the overall super-matrix M representing the
PDE on the whole 2-center domain. We use the term “super-block” here since the matrix
corresponding to each subdomain arises, as we have seen, from a direct product structure
(and so could be viewed as already in a block form). The supplementary equations needed for
gluing are placed within existing empty rows in the same manner as for the tau-conditions.
However, the gluing conditions stretch beyond the super-block diagonal, since they are
linear relationships between the spectral expansion coefficients on two (or more) separate
subdomains. For example, the gluing together of cylinders 1 and 2 (which share a common
cap) involves not only filling rows within the 1-1 and 2-2 super-blocks along the diagonal of
M, but also filling rows within the 1-2 and 2-1 off-diagonal super-blocks.

A. Gluing of cylinders to cylinders

As a specific example, let us consider the gluing of cylinders 1 and 2 in Fig. 1, which as
indicated share the cap Z = Z∗, where Z∗ is Zmax for cylinder 1 and Zmin for cylinder 2 (the
common cap has a hole in the middle, since 1 and 2 are cylindrical shells). Let, for example,
Pψ1 be shorthand for the numerical solution PN1

ρ ,N
1

φ
,N1

Z
ψ1 for cylinder 1, as expressed in (55).

The restriction Pψ1(ρ, φ, Z∗) is a two-variable function on the cap Z = Z∗, and it can be

expanded in a finite Fourier-Chebyshev series, with
∑N1

Z

k=0 ψ̃
1
qnkδ

+
k as the corresponding two-

index modal coefficients. Likewise, the restriction (dPψ1/dZ)(ρ, φ, Z∗) of the Z-derivative

has a Fourier-Chebyshev series with two-index modal coefficients
∑N1

Z

k=0 ψ̃
1
qnkα1ν

+
k . The α1

factor is a scaling of the Neumann vector ν+, and its presence is necessary since the range
of Z is not [−1, 1] (details are given in [6]).

On the Z = Z∗ cap we likewise consider the numerical solution Pψ2(ρ, φ, Z∗) and its
Z-derivative (dPψ2/dZ)(ρ, φ, Z∗), as determined by the numerical solution Pψ2 on cylinder
2. We distinguish between two cases: (i) both the Nρ and Nφ truncations are the same for
cylinders 1 and 2 (but N1

Z 6= N2
Z is allowed), and (ii) at least one of these truncations differs

between the two cylinders (i.e. either N1
ρ 6= N2

ρ or N1
φ 6= N2

φ, or both, hold). Let us first

consider case (i), returning to case (ii) in the next paragraph. For case (i) both Pψ1(ρ, φ, Z∗)
and Pψ2(ρ, φ, Z∗) have two-surface modes which are in one-to-one correspondence, and
likewise for the derivatives. Therefore, for this case we enforce4

N1

Z∑

k=0

ψ̃1
qnkδ

+
k =

N2

Z∑

k=0

ψ̃2
qnkδ

−
k ,

N1

Z∑

k=0

ψ̃1
qnkα1ν

+
k =

N2

Z∑

k=0

ψ̃2
qnkα2ν

−
k , (76)

4 We regret an error in the definition of ν− in Ref. [6], Eq. (42). The correct expressions are ν± =

[T ′
0
(±1), T ′

1
(±1), T ′

2
(±1), T ′

3
(±1), T ′

4
(±1), · · · ] = [0, 1,±4, 9,±16, · · · ] . In Ref. [6] the righthand side of the

second equation of (69) is also off by a sign.
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for each Fourier-Chebyshev index pair (q, n). Here, for case (i), the matching conditions
enforce continuity between the finite representations Pψ1 and Pψ2 across the cap, and
also continuity between the finite representations dPψ1/dZ and dPψ2/dZ. These matching
conditions are reflected in the overall matrixM as follows. As the super-block corresponding
to each of the subdomains 1 and 2 has been sparsified in the described fashion, each has
a collection of empty rows which are also empty throughout M. In, say, the empty rows
stretching across the 1-1 and 1-2 super-blocks, we insert the first set of conditions given in
(76). In the empty rows stretching across the 2-2 and 2-1 super-blocks, we similarly place
the Neumann conditions, the second set of conditions given in (76). This filling of empty
rows to achieve the required matching consists of relationships of modal coefficients with no
reference to any “sources”; they are homogeneous equations.

To better understand the issues which will arise in matching volume-overlapping sub-
domains, we now consider case (ii), the case in which the cylinders 1 and 2 give rise to a
disparate set of surface modes on the Z = Z∗ cap. In this case, for example, we again have∑N1

Z

k=0 ψ̃
1
qnkδ

+
k as the modal coefficients determining Pψ1(ρ, φ, Z∗), and

∑N2

Z

k=0 ψ̃
2
qnkα2ν

−
k as the

modal coefficients determining (dPψ2/dZ)(ρ, φ, Z∗). Now, however, (76) is not applicable.
Instead, we now fix [cf. the first equation in (74)]

N1
z∑

k=0

ψ̃1
qnkδ

+
k = f̃+

qn ẽ−qn =

N2

Z∑

k=0

ψ̃2
qnkα2ν

−
k , (77)

where here f̃+
qn (for 0 ≤ q ≤ N1

φ and 0 ≤ n ≤ N1
ρ ) and ẽ

−
qn (for 0 ≤ q ≤ N2

φ and 0 ≤ n ≤ N2
ρ )

are not to be viewed as inhomogeneities, rather as expressions built respectively with the
modal coefficients for Pψ2(ρ, φ, Z∗) and (dPψ1/dZ)(ρ, φ, Z∗). Note that, as with Eqs. (76),
these equations have the form “cylinder 1 coefficients = cylinder 2 coefficients”.

Let us consider only f̃+
qn, since similar comments apply to ẽ−qn. First, we start with

cylinder 1 and define a Chebyshev-Lobatto/Fourier grid {(ρj , φi) : 0 ≤ j ≤ N1
ρ , 0 ≤ i ≤

N1
φ} on the Z = Z∗ cap of cylinder 1. The use of these points affords a double discrete

Fourier-Chebyshev transform, through numerical quadrature, relating function values at the
points and mode coefficients. (In practice, we have exploited the trigonometric form of the
Chebyshev polynomials and have used the FFT to define both the Fourier and Chebyshev
components of this transform.) The double discrete transform allows us to express the modal

coefficients f̃+
qn in terms of the function values f+

ij , at ρi, φj, for Z = Z∗ on cylinder 1, in a
form

f̃+
qn =

N1
ρ∑

i=0

N1

φ∑

j=0

Fqn,ijf
+
ij . (78)

Next, at the nodal points (ρj, φi) of cylinder 1, we evaluate f
+
ij in terms of the expansion for

the solution on cylinder 2, thereby finding

f+
ij = Pψ2(ρj , φi, Z∗) =

N2

φ∑

q=0

N2
ρ∑

n=0

Eij,qn
N2

Z∑

k=0

ψ̃2
qnkδ

−
k . (79)

Here, the values Eij,qn arise from the evaluations of the modal functions (Chebyshev and
Fourier) of cylinder 2 at the nodal points (ρj , φi) of cylinder 1. When the expressions for f+

ij

from (79) are substituted in (78), we get expressions for f̃+
qn in terms of the modal coefficients
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ψ̃2
qnk representing the solution in cylinder 2. Finally, we substitute this f̃+

qn into (77), which
yields relationships between the modal coefficients on cylinder 1 and cylinder 2 that express
continuity of the solution across Z = Z∗.

The linear relationships (77) would likewise be inserted into the overall coefficient matrix
M. Similar to before, the righthand side of the first equation in (77) would fill empty rows
stretching across the 1-2 super-block, with the δ+ vectors on the lefthand side filling empty
rows across the 1-1 super-block. The relationships expressed in the second equation in (77)
would fill empty rows stretching across the 2-2 and 2-1 super-blocks Finally, we note that
the equations (77) reduce to (76) when N1

φ = N2
φ and N1

ρ = N2
ρ .

B. Gluing of an inner shell to cylinders and blocks

The shells J and H depicted in Fig. 1 overlap multiple blocks and cylinders, and for this
overlap the issue of gluing is complicated. Since the issue is essentially the same for the
gluing of H to blocks C,D and cylinders 3,4,5 or J to blocks B,C and cylinders 1,2,3, let
us here focus on the first case. The issue here is that parts of the outer boundary ∂H+ of
H sit in blocks C,D and cylinders 3,4,5. Let # represent one of the tags C,D, 3, 4, 5, and
let us consider the portion ∂H+

# of ∂H+ which intersects subdomain #. At nodal points

on ∂H+
# we require that the values of ψ agree whether they are computed with the spectral

representation ψ̃H for H or the spectral representation ψ̃# for #. For nodal points (θj , φk)
this condition is [cf. Eq. (50)]

h+jk ≡ h+(θj , φk) = Pψ#(x(rmax, θk, φj)) for (rmax, θj , φk) ∈ ∂H+
# . (80)

Here Pψ# is the numerical solution (P indicates finite expansion) associated with ψ̃#, and
x are the relevant 3D coordinates on subdomain #. Looping over all of the subdomains
# = C,D, 3, 4, 5 defines the grid function h+jk at all nodal points of ∂H+

# . The explicit
matching conditions (equivalent to the + case in (50)) can then be realized by expressing

the spherical harmonic transform h̃+ℓq =
∑Nθ

j=0

∑2Nθ

k=0 Sℓq,jkh
+
jk as a matrix-vector product

involving all ψ̃#. The resulting equations are placed within empty rows of M which stretch
across the H-H and H-# super-blocks.

Again let # represent one of the tags C,D, 3, 4, 5. Then the boundary ∂# of subdomain
# includes a portion ∂#H overlapping shell H which gives rise to further gluing relations.
These equations will be inserted into empty rows of M which stretch across the #-# and
#-H super-blocks. For concreteness, we consider only the # = C case. Here the + case of
(12) is relevant, although the h̃+nm now arise as the double XY -Chebyshev transform of

h+jk =
Nr∑

n=0

Nθ∑

ℓ=0

ψ̃H
ℓ0nP ℓ0(cos θjk)Tn(ξ(rjk))

+

Nr∑

n=0

Nθ∑

ℓ=1

Nθ∑

m=1

P ℓm(cos θjk)
[
ψ̃H

ℓ,2m−1,n cos(mφjk) + ψ̃H
ℓ,2m,n sin(mφjk)

]
Tn(ξ(rjk)). (81)

The H point (rjk, θjk, φjk) corresponds to a Chebyshev-Gauss-Lobatto collocation point
(X(ξj), Y (ηk), Zmax) along the top XY -face of block C. Again, via a matrix representation

h̃+nm =
∑NX

j=0

∑NY

k=0Fnm,jkh
+
jk of the transform, we may express this matching condition more
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directly. As mentioned, these equations will be inserted into empty rows of M which stretch
across the C-C and C-H super-blocks.

C. Gluing of a cylinder to a block

Here we sketch either the gluing of block B and cylinder 1, block C and cylinder 3, or
block D and cylinder 5. We focus on the middle case as a representative example. This
process involves both (a) gluing two Y Z and two XZ faces of block C to cylinder 3, and (b)
gluing the inner radial boundary of the cylinder to the block. The process for (a) is similar
to the gluing described in the last paragraph (in which a face of C is glued to H), and we
omit a description. To express the matching equations which enforce (b), we first define

q−jk =

NX∑

n=0

NY∑

m=0

NZ∑

p=0

ψ̃C
nmpTn(ξ(Xjk))Tm(η(Yjk))Tp(χ(Zjk)). (82)

Here we use the following points:
(
Xjk, Yjk, Zjk

)
=
(
X(ρmin, φj, zk), Y (ρmin, φj, zk), Z(ρmin, φj, zk)

)
, (83)

where (ρmin, φj, zk) are nodal points along the inner radial boundary of cylinder 3. Next,

we consider the Fourier-Chebyshev transform q̃−mp =
∑Nφ

j=0

∑Nz

k=0 Cmp,jkq
−
jk. In terms of the

transform the matching equations are

Nρ∑

n=0

ψ̃3
mnpδ

−
n = q̃−mp. (84)

These equations are inserted into empty rows of M which stretch across the 3-3 and 3-C
superblocks.

IV. NUMERICAL SOLUTION OF THE 3D HRWE

Both on single subdomains and on the global 2-center multidomain D, this section con-
siders numerical solution of the HRWE for the field of two point sources in a circular binary
orbit. For this problem we have an essentially closed-form exact solution, a superposition of
the fields for two point sources, each point source in a circular orbit and described by the
Liénard-Wiechert solution (A11) found in the appendix. A numerical solution is a collection
of modal expansion coefficients; however, comparisons with the exact solution are always
computed in physical space on the nodal grid (or grids in the multidomain case) dual to the
modal expansion.5 All numerical solves are performed iteratively with preconditioned GM-
RES [35], and this section also describes the relevant preconditioning (both for subdomain
solves and for the global multidomain solve).

Using the sparse representations described in Sec. II, in Sec. IVA we numerically solve the
HRWE on the following subdomains (cf. Fig. 1 and Table I): the outer shell O, (inner) spher-
ical shell J , (inner) cylindrical shell 5, and (inner) block D. For each subdomain labeled (in-
ner) the HRWE operator is implemented as a matrix-vector multiply within preconditioned

5 As these nodal grids are coarse, the L2 and L∞ norms reported in the tables do not settle down quickly.
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(a) Cylinder experiment. (b) Block experiment.

FIG. 2. Individual subdomains. We consider cylindrical shell 5 highlighted in the left figure,

block D highlighted in the right, and the bottom inner spherical shell J shown in both.

GMRES without restarts. For these subdomain solves, Dirichlet boundary conditions are
taken from the exact Liénard-Wiechert solution, but the outer shell also problem involves
the radiation boundary conditions given in Eq. (25). The particular subdomains considered
in Sec. IVA are representative, and similar experimentation on each subdomain has de-
termined the chosen truncations for the 2-center multidomain tests described in Sec. IVB.
Such experiments empirically yield appropriate truncations necessary to achieve a desired
accuracy. All tests in Secs. IVA and IVB involve the following configuration: two charges,
one with zH = 1, QH = 1 and the other with zJ = −0.9, QJ = 0.5. Sec. IVA considers
Ω = 0.1, 0.3, 0.5, 0.7. The rotation rate Ω = 0.3 is large for an astrophysical problem, while
Ω = 0.5, 0.7 are very large rates chosen to “break” our numerical methods.

A. Numerical solution on individual subdomains

We consider the outer shell first, since results for this subdomain are the most disappoint-
ing. The solve for this subdomain differs from the rest. Indeed, since the representation
of the HRWE on the outer shell is comprised of (ℓ,m) blocks along the block diagonal,
we invert each of these physical modes using LU -factorization [the “physical modes” are
those not annihilated by the projection operator P defined in (17)]. Let Nθ = ℓmax, so that
N = (Nθ+1)(2Nθ+1)(Nr+1) is the system size, with N 2 ∼ 4N4

θN
2
r the storage requirement

for the full coefficient matrix. However, storage of all blocks involves (Nθ + 1) matrices of
size (Nr + 1)-by-(Nr + 1), one for each zero mode, in addition to 1

2
Nθ(Nθ + 1) matrices of

size 2(Nr + 1)-by-2(Nr + 1), one for each fixed-m cos/sin pair. Therefore, storage for this
solve scales like

(Nθ + 1)(Nr + 1)2 + 2Nθ(Nθ + 1)(Nr + 1)2 ∼ 2N2
θN

2
r = O(Nr · N ). (85)

Table V collects results for the outer shell experiment. While excellent for Ω = 0.1, they
exhibit marked degradation as Ω increases. A splitting of the single outer shell into multiple
concentric shells would likely yield improved accuracy for large Ω.
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Ω = 0.1

Nr ℓmax L2 error L2 norm L∞ error L∞ norm

65 10 1.1899E-05 1.8977E-01 2.7970E-04 1.1808E+00

85 18 2.1320E-07 1.8725E-01 3.6548E-06 1.1810E+00

125 28 2.4580E-10 1.8472E-01 5.4193E-09 1.1810E+00

185 42 2.2846E-13 1.8297E-01 2.7858E-12 1.1810E+00

Ω = 0.3

Nr ℓmax L2 error L2 norm L∞ error L∞ norm

65 10 7.4142E-04 1.9030E-01 1.0557E-02 1.2624E+00

85 18 9.4481E-04 1.8777E-01 1.3180E-02 1.2628E+00

125 28 1.2701E-04 1.8523E-01 2.0861E-03 1.2628E+00

185 42 5.1221E-06 1.8347E-01 1.2307E-04 1.2628E+00

Ω = 0.5

Nr ℓmax L2 error L2 norm L∞ error L∞ norm

65 10 1.4622E-02 1.9196E-01 1.9489E-01 1.4875E+00

85 18 5.6234E-02 1.9726E-01 7.8285E-01 1.4904E+00

125 28 6.7047E-03 1.8689E-01 1.4751E-01 1.4996E+00

185 42 3.6457E-03 1.8503E-01 7.6831E-02 1.5055E+00

Ω = 0.7

Nr ℓmax L2 error L2 norm L∞ error L∞ norm

65 10 1.8330E-01 2.6488E-01 4.2561E+00 4.9750E+00

85 18 3.8033E-02 1.9502E-01 7.1574E-01 2.0804E+00

125 28 3.9821E-02 1.9408E-01 1.0589E+00 2.2504E+00

185 42 2.7380E-02 1.9029E-01 7.3279E-01 2.2182E+00

TABLE V. Outer spherical shell O test

We next consider the inner spherical shell J . Note that Ω = 0.5 corresponds to a shell
just within the elliptic region, but Ω = 0.7 corresponds to a shell which does not lie fully
within the elliptic region. Tables VI and VII list errors, without and with precondition-
ing. For the sake of comparison, in both these and subsequent tables we have chosen the
same requested tolerances (for the GMRES solve) uniformly in Ω, although for larger Ω the
achieved accuracy could likely be attained with a weaker tolerance and fewer iterations. The
chosen preconditioner is block-Jacobi. Namely, we invert physical (ℓ,m) modes along the
block diagonal using a precomputed LU -factorization. The storage and scaling properties for
this preconditioner are exactly the same as described for the direct solve on the outer shell.
However, for inner shells the HRWE representation is not block diagonal in (ℓ,m) pairs (as
on the outer shell), rather the operator has significant bandwidth in both indices. Therefore,
storage of the full matrix for an inner shell would require correspondingly larger memory
relative to the preconditioner storage. Further, the preconditioner storage requirement could
be reduced by inverting each sin/cos block mode independently. Moreover, were the precon-
ditioner chosen to correspond to only the Laplacian part of the operator, then it could be
used for the solves on both shells if their dimensions and truncations were the same. In any
case, the chosen preconditioner notably improves the convergence of the GMRES solver.

Table VIII list the results for the corresponding single cylinder experiment, with block
LU–preconditioning similar to before. That is, for each Fourier mode we invert the associated
diagonal block. Our choice (56) of direct product structure for the cylinders determines
that each block is (Nρ + 1)(NZ + 1)-by-(Nρ + 1)(NZ + 1). For cylinders, preconditioning
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Ω = 0.1

Nr ℓmax L2 error L2 norm L∞ error L∞ norm iterations tolerance

12 12 3.4702E-06 1.3516E+00 2.2656E-05 1.9143E+00 54 1.0000E-07

18 23 9.9814E-09 1.3499E+00 3.6488E-08 1.9168E+00 129 1.0000E-09

20 33 6.0107E-11 1.3498E+00 2.6944E-10 1.9173E+00 238 1.0000E-11

30 46 6.2864E-13 1.3481E+00 2.8333E-12 1.9176E+00 415 1.0000E-13

Ω = 0.3

Nr ℓmax L2 error L2 norm L∞ error L∞ norm iterations tolerance

12 12 7.6593E-06 1.3566E+00 7.8541E-05 1.9255E+00 57 1.0000E-07

18 23 2.1272E-08 1.3550E+00 3.8188E-07 1.9278E+00 138 1.0000E-09

20 33 1.1806E-10 1.3550E+00 2.4707E-09 1.9283E+00 255 1.0000E-11

30 46 4.3184E-13 1.3532E+00 5.2289E-12 1.9286E+00 442 1.0000E-13

Ω = 0.5

Nr ℓmax L2 error L2 norm L∞ error L∞ norm iterations tolerance

12 12 2.3588E-05 1.3782E+00 2.7337E-04 1.9561E+00 61 1.0000E-07

18 23 8.3249E-08 1.3769E+00 1.5539E-06 1.9579E+00 146 1.0000E-09

20 33 4.9181E-10 1.3770E+00 1.1765E-08 1.9583E+00 271 1.0000E-11

30 46 7.9161E-13 1.3752E+00 1.8530E-11 1.9585E+00 471 1.0000E-13

Ω = 0.7

Nr ℓmax L2 error L2 norm L∞ error L∞ norm iterations tolerance

12 12 4.7252E-04 1.4267E+00 3.1710E-03 2.2326E+00 87 1.0000E-07

18 23 1.1589E-05 1.4259E+00 1.2079E-04 2.2356E+00 461 1.0000E-09

20 33 8.3186E-08 1.4262E+00 6.8077E-07 2.2353E+00 1459 1.0000E-11

30 46 1.3484E-09 1.4243E+00 1.4001E-08 2.2351E+00 5215 1.0000E-13

TABLE VI. Inner spherical shell test J without preconditioning.

amounts to direct inversion of each Fourier mode along the block diagonal. With N =
(Nφ + 1)(Nρ + 1)(Nz + 1) the system size, the storage requirement for the preconditioner
requires Nφ + 1 matrices of size (Nρ + 1)(Nz + 1)-by-(Nρ + 1)(Nz + 1), and so scales like so

(Nρ + 1)2(Nz + 1)2(Nφ + 1) = O(NρNz · N ). (86)

While NρNzN < N 2, this requirement is somewhat memory intensive. However, we have
observed essentially the same performance when using the corresponding Laplacian part of
the operator to define the preconditioner. Provided that the dimensions and truncations of
two individual cylinders match, the same preconditioner could then be used for both.

Table IX list errors for the block experiment, and again with a block-Jacobi precondi-
tioner. In this case there are Nx + 1 blocks with size (Ny + 1)(Nz + 1)-by-(Ny + 1)(Nz + 1).
Storage of the block preconditioner therefore scales as

(Nx + 1)(Ny + 1)2(Nz + 1)2 = O(NyNz · N ). (87)

Again, were the preconditioner based on the Laplacian part of the operator, it might be
reused for the solves on different blocks.

B. Numerical solution on the 2-center multidomain

We have also used GMRES [35] to solve the linear systemMΨ̃ = BG̃ given in Eq. (75) and
corresponding to the HRWE on the full 2-center multidomain D. Section II has described
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Ω = 0.1

Nr ℓmax L2 error L2 norm L∞ error L∞ norm iterations tolerance

12 12 3.4196E-06 1.3516E+00 2.2499E-05 1.9143E+00 3 1.0000E-07

18 23 3.4877E-09 1.3499E+00 3.6560E-08 1.9168E+00 4 1.0000E-09

20 33 1.3949E-11 1.3498E+00 2.1394E-10 1.9173E+00 4 1.0000E-11

30 46 3.0104E-14 1.3481E+00 3.0975E-13 1.9176E+00 5 1.0000E-13

Ω = 0.3

Nr ℓmax L2 error L2 norm L∞ error L∞ norm iterations tolerance

12 12 7.6487E-06 1.3566E+00 7.8536E-05 1.9255E+00 4 1.0000E-07

18 23 2.0798E-08 1.3550E+00 3.8215E-07 1.9278E+00 6 1.0000E-09

20 33 1.0362E-10 1.3550E+00 2.4686E-09 1.9283E+00 7 1.0000E-11

30 46 1.0361E-13 1.3532E+00 3.1604E-12 1.9286E+00 9 1.0000E-13

Ω = 0.5

Nr ℓmax L2 error L2 norm L∞ error L∞ norm iterations tolerance

12 12 2.3577E-05 1.3782E+00 2.7330E-04 1.9561E+00 7 1.0000E-07

18 23 8.3163E-08 1.3769E+00 1.5545E-06 1.9579E+00 10 1.0000E-09

20 33 4.9053E-10 1.3770E+00 1.1755E-08 1.9583E+00 13 1.0000E-11

30 46 6.2389E-13 1.3752E+00 1.8454E-11 1.9585E+00 17 1.0000E-13

Ω = 0.7

Nr ℓmax L2 error L2 norm L∞ error L∞ norm iterations tolerance

12 12 4.7262E-04 1.4267E+00 3.1713E-03 2.2326E+00 30 1.0000E-07

18 23 1.1596E-05 1.4259E+00 1.2093E-04 2.2356E+00 154 1.0000E-09

20 33 8.3367E-08 1.4262E+00 6.8017E-07 2.2353E+00 429 1.0000E-11

30 46 1.3430E-09 1.4243E+00 1.3999E-08 2.2351E+00 1390 1.0000E-13

TABLE VII. Inner spherical shell J test with preconditioning.

the coefficient matrix M, and therefore also implementation of the “matrix-vector multiply”

Ψ̃ → MΨ̃. Implementation of this multiply is required by the GMRES algorithm (with or
without preconditioning). However, a simple unpreconditioned GMRES strategy results in
extremely poor convergence. Therefore, we have implemented (left) preconditioned GMRES

which further requires implementation of the operation Ψ̃ → M−1
approxΨ̃ in terms of a suitable

approximate inverse M−1
approx ≃ M−1. In this section we describe application of M−1

approx,
and document tests of the full global solve. We stress that the preconditioning afforded
by M−1

approx is neither (i) the integration “preconditioning” technique used to achieve sparse
representations of (4) on each of the basic subdomains nor (ii) the preconditioning (typically
a form of block-LU) used for individual subdomain solves. However, type (ii) preconditioning
does define part of the M−1

approx application.

The action of M−1
approx is defined through the simple alternating Schwarz method [42].

Application of this preconditioner relies on independent numerical solves over (i) the inner
shells J and H , (ii) the glued subregion6 R comprised of blocks and cylinders depicted in
Fig. 3, and (iii) the outer spherical shell O. More precisely, starting with a vanishing initial

vector Ψ̃ we perform the following iteration.

1. Solve (also by GMRES, as described in Sec. IVA) the HRWE on the inner shells J and
H . For these solves inner Dirichlet boundary conditions are the fixed physical ones,

6 Whereas the basic spectral elements (such as shell J , block B, and cylinder 1) have been called subdomains,

we informally refer to the multidomains R and G (defined later) as a subregions.
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Ω = 0.1

Nr Nφ Nz L2 error L2 norm L∞ error L∞ norm iterations tolerance

13 5 7 7.9884E-08 9.0116E-01 4.6388E-07 1.5004E+00 3 1.0000E-08

19 9 9 5.2802E-10 8.9887E-01 2.7463E-09 1.5006E+00 4 1.0000E-10

23 13 13 5.6239E-13 8.9775E-01 4.4170E-12 1.5006E+00 5 1.0000E-12

29 19 18 8.3992E-15 8.9680E-01 9.3259E-14 1.5007E+00 6 1.0000E-14

Ω = 0.3

Nr Nφ Nz L2 error L2 norm L∞ error L∞ norm iterations tolerance

13 5 7 6.2980E-06 9.4046E-01 3.8531E-05 1.5817E+00 6 1.0000E-08

19 9 9 1.2577E-07 9.3796E-01 5.9139E-07 1.5841E+00 10 1.0000E-10

23 13 13 4.9307E-09 9.3677E-01 4.0773E-08 1.5849E+00 14 1.0000E-12

29 19 18 3.2422E-10 9.3574E-01 1.3965E-09 1.5861E+00 18 1.0000E-14

Ω = 0.5

Nr Nφ Nz L2 error L2 norm L∞ error L∞ norm iterations tolerance

13 5 7 7.3178E-04 1.0239E+00 3.9733E-03 1.7886E+00 59 1.0000E-08

19 9 9 2.1193E-04 1.0218E+00 1.2227E-03 1.8228E+00 161 1.0000E-10

23 13 13 4.0853E-05 1.0203E+00 1.8564E-04 1.8303E+00 531 1.0000E-12

29 19 18 7.0259E-06 1.0190E+00 7.7578E-05 1.8285E+00 1576 1.0000E-14

Ω = 0.7

Nr Nφ Nz L2 error L2 norm L∞ error L∞ norm iterations tolerance

13 5 7 3.2460E+00 3.4276E+00 2.2390E+01 2.1481E+01 130 1.0000E-08

19 9 9 2.3293E-02 1.1548E+00 1.9059E-01 2.5635E+00 503 1.0000E-10

23 13 13 1.1546E+00 1.6568E+00 9.4853E+00 1.1688E+01 1420 1.0000E-12

29 19 18 1.1305E-02 1.1512E+00 1.1635E-01 2.5463E+00 10816 1.0000E-14

TABLE VIII. Cylindrical shell 5 test with preconditioning.

while outer boundary conditions stem from interpolation of the numerical solution on
R (which is initially zero). The tolerance for these solves is typically 0.1*tol, where

tol is the tolerance for the global GMRES solve of MΨ̃ = BG̃.

2. Solve (also by GMRES) the HRWE on R. For this solve inner Dirichlet boundary
conditions stem from interpolation of the solutions on J and H , while outer Dirichlet
boundary conditions stem from interpolation of the solution on the outer shell O
(which is initially zero). This GMRES solve must also be preconditioned, as discussed
shortly. The tolerance for this solve is typically 0.2*tol.

3. Solve the HRWE on the outer spherical shell O, with inner Dirichlet boundary con-
ditions stemming from interpolation of the numerical solution on R and the outer
radiation boundary conditions described in Sec. IIA. As described in Sec. IVA, this
solve is performed via direct block-by-block LU factorization (note that the factor-
ization of each block mode is precomputed and then used over and over in this third
step).

This three-step iteration may be viewed as the Gauss-Seidel method, here applied in block
form to J

⋃
H , R, O. Typically, we have chosen 4 sweeps of this block Gauss-Seidel method.

Step 2 requires its own preconditioning to enhance convergence. Here we have again em-
ployed the alternating Schwarz method, now with blocks corresponding to B, C, D, and the
subregion G which is the composite of glued cylinders (1-5). This “inner” preconditioning
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Ω = 0.1

Nx Ny Nz L2 error L2 norm L∞ error L∞ norm iterations tolerance

14 14 7 3.7513E-07 1.1367E+00 4.2360E-06 1.7854E+00 41 1.0000E-08

19 19 9 6.3235E-09 1.1394E+00 1.3616E-07 1.8098E+00 62 1.0000E-10

28 28 13 1.4351E-11 1.1418E+00 3.0822E-10 1.8040E+00 102 1.0000E-12

32 32 18 1.2749E-13 1.1421E+00 5.3182E-12 1.8054E+00 141 1.0000E-14

Ω = 0.3

Nx Ny Nz L2 error L2 norm L∞ error L∞ norm iterations tolerance

14 14 7 3.9020E-07 1.1955E+00 4.2789E-06 1.8911E+00 42 1.0000E-08

19 19 9 6.4495E-09 1.1986E+00 1.4194E-07 1.9176E+00 65 1.0000E-10

28 28 13 1.4448E-11 1.2013E+00 4.9319E-10 1.9116E+00 109 1.0000E-12

32 32 18 8.4807E-14 1.2017E+00 2.9017E-12 1.9131E+00 154 1.0000E-14

Ω = 0.5

Nx Ny Nz L2 error L2 norm L∞ error L∞ norm iterations tolerance

14 14 7 7.5596E-07 1.3306E+00 4.0594E-06 2.1990E+00 77 1.0000E-08

19 19 9 9.7796E-09 1.3351E+00 1.6231E-07 2.2244E+00 266 1.0000E-10

28 28 13 2.2103E-10 1.3391E+00 2.8426E-09 2.2217E+00 1495 1.0000E-12

32 32 18 4.3594E-12 1.3399E+00 5.1787E-11 2.2231E+00 3089 1.0000E-14

Ω = 0.7

Nx Ny Nz L2 error L2 norm L∞ error L∞ norm iterations tolerance

14 14 7 4.0731E-03 1.5016E+00 1.9997E-02 3.0390E+00 454 1.0000E-08

19 19 9 3.9332E-04 1.5065E+00 2.1243E-03 3.1084E+00 1349 1.0000E-10

28 28 13 2.3057E-06 1.5118E+00 1.3776E-05 3.1019E+00 5337 1.0000E-12

32 32 18 1.0375E-06 1.5133E+00 6.6072E-06 3.0967E+00 20000∗ 1.0000E-14

TABLE IX. Block D test with preconditioning. The asterisk on 20000∗ indicates the

convergence was halted before the tolerance had been achieved; the achieved tolerance 1.3× 10−14

was close to that requested.

typically involves 5 sweeps, with appropriate interpolation. Each individual GMRES solve
on B, C, D, and G uses the tolerance 0.1*tol. Table X depicts the overall multilevel
preconditioning scheme.

Before turning to tests of the full solve, we consider the solve on the multidomain sub-
region G comprised of the glued cylinders (1-5). Again, this solve is performed as part of
the preconditioner for step 2 of the global preconditioner (see Table X). Table XI collects
errors and iteration counts associated with this solve for increasing truncations. Each solve
documented in the table has been started with the zero vector as initial iterate, and here we
employ restarting after 20 iterations. The reported iteration counts in Table XI are cumula-
tive over restarts. The individual block-LU preconditioning on each subdomain (1-5) is the
only preconditioning used for this solve. Nevertheless, it suffices to drastically reduce the
number of iterations (which would otherwise be in the thousands, with or without restarts).

Results for the full solve appear in Table XII. Notice that the largest truncation involves
more than half a million unknowns (597788 to be precise). In fact the number of unknowns is
larger, since we add modes to shells, but here count only the “physical modes” for allowable
(ℓ,m) pairs (cf. Sec. IIA). Each solve in the table is used as the initial guess for the next,
which is why the count of outer GMRES iterations goes down.
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(a) Inner shells J and H . (b) Glued subregion R. (c) Outer shell O.

FIG. 3. Alternating Schwarz preconditioner. Numerical solution of the HRWE each subdo-

main/subregion above defines the preconditioner. Boundary conditions for the solves are obtained

through subdomain/subregion interpolation as described in the text. For the outer shell shown in

(c), the small dot in the center is, to scale, the inner configuration comprised of (a) and (b).

D (GMRES solve, alternating Schwarz method as PC)

✲ J,H (GMRES solve with block-LU PC)

✲ R (GMRES solve, alternating Schwarz method as PC)

✲ O (direct block-LU solve)

interpolation
between solves

✲ B (GMRES solve with block-LU PC)

✲ C (GMRES solve with block-LU PC)

✲ D (GMRES solve with block-LU PC)

✲ G (GMRES solve with block-LU PC)

interpolation
between solves

TABLE X. Multilevel preconditioning scheme.

V. CONCLUSION

We close by summarizing the results of this paper and describing our outlook on future
work. In both the summary and description, we discuss both our numerical methods and
the physical problem we aim to solve.

A. Results

We have demonstrated the feasibility of solving a partial differential equation in three
independent variables by modal spectral methods based on the technique of integration
preconditioning. As designed, the technique yields an algorithmic way to achieve a sparse
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Ω = 0.1

N1
r N1

φ
N1

z N2
z N3

z N4
z N5

z L2 error L2 norm L∞ error L∞ norm iterations tolerance

13 5 7 17 7 17 7 2.2251E-06 9.8806E-01 2.7804E-05 2.4773E+00 17 1.0000E-06

19 9 9 23 9 23 9 3.5812E-08 1.0077E+00 2.2023E-07 2.4781E+00 22 1.0000E-08

23 13 14 31 16 31 14 1.2344E-10 1.0063E+00 1.2046E-09 2.4782E+00 28 1.0000E-10

29 19 15 35 15 35 15 6.6478E-12 1.0083E+00 7.4462E-11 2.4783E+00 42 1.0000E-12

29 19 18 39 21 39 18 4.9252E-13 1.0063E+00 5.3570E-12 2.4783E+00 45 1.0000E-13

TABLE XI. Solution of the HRWE on the glued cylinder subregion G. The reported

truncations N1
r and N1

φ were also used for cylinders 2,3,4, and 5.

Ω = 0.1

MPSPD L2 error L2 norm L∞ error L∞ norm iterations tolerance

15.7 3.7532E-06 7.0509E-01 9.9579E-05 3.6556E+00 5 1.0000E-05

23.9 4.2440E-08 7.8382E-01 5.8222E-07 3.6563E+00 3 1.0000E-07

31.0 2.6333E-10 8.3492E-01 4.0406E-09 3.6564E+00 3 1.0000E-09

37.2 4.1855E-12 9.3982E-01 8.6696E-11 3.6565E+00 3 1.0000E-11

37.9 4.7733E-13 9.5252E-01 8.2254E-12 3.6565E+00 2 1.0000E-12

TABLE XII. Solution of the HRWE on the 2-center multidomain D. Here MPSPD

stands for modes per subdomain per dimension. Note that an MPSPD of 37.9 corresponds to

(11 subdomains)× (37.93) ≃ 599000 unknowns.

spectral formulation of the PDE problem with consistent incorporation of boundary condi-
tions. However, particularly in higher dimensional settings, an integration “preconditioner”
may not be an optimal approximate inverse in any known sense; as a result the technique
would not seem practical in and of itself. Here we mean that, for a higher dimensional prob-
lem like ours, the sole use of integration preconditioning will likely lead to prohibitively large
iteration counts when using Krylov methods and/or loss of accuracy due to poor condition-
ing. At least for our problem, we have demonstrated that both issues may be surmounted by
further preconditioning. In particular, studying our problem on a given subdomain (spec-
tral element), we have empirically demonstrated that block Jacobi preconditioning (with
each block inverted by LU factorization) is effective for the banded matrix produced by
integration preconditioning. Moreover, for the matching of subdomains in our multidomain
approach the alternating Schwarz method (an elementary domain decomposition precondi-
tioner) works well. Given that little seems known about preconditioning for modal methods,
whereas preconditioning for nodal methods is well developed, we believe that our demon-
stration of effective modal preconditioning based on rather standard methods is remarkable.

In addition to modal preconditioning, other aspects of our work are new from the stand-
point of modal spectral methods, in particular its multidomain character and focus on a
mixed-type problem. Ref. [1] already presented the outline for applying the integration pre-
conditioning technique to higher dimensional problems, that is to PDEs. While we have
carried out and presented the details of such an application, our work has gone further in
developing a 3D multidomain version of the technique (Ref. [6] consider the multidomain

case in 2D). In particular, we have presented the details of gluing constituent subdomains,
and how this gluing is reflected in the overall linear system. As another new, and un-
usual, aspect, our work is the first successful application of integration preconditioning to a
three dimensional mixed-type problem, a problem with both elliptic and hyperbolic regions.
Whence it has numerically confirmed once more (cf. [6, 26, 27, 29]) that such problems can
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be well-posed; see [44] for a theoretical discussion. The use of a multidomain decomposition
is of special interest for mixed problems like ours, since the type change need not occur in all
subdomains. Indeed, for our example, it occurs on a cylinder that intersects only the outer
spherical shell. When the nonlinearities of the actual physical problem are included, this
feature of our domain decomposition may prove useful, because the true physical equations
will be only mildly nonlinear on the outer shell, with the strongest nonlinearities confined to
subdomains on which the equations are elliptic. Our work therefore suggests that we might
treat the outer shell differently from the inner subdomains when solving the full nonlinear
problem.

B. Outlook

While we have demonstrated that our mix of methods delivers efficiency and remarkable
accuracy when applied to a nontrivial 3D model problem, a number of issues merit further
investigation. These include both particular challenges in the application of this paper’s
methods to helically symmetric general relativistic binary fields (the problem of our interest),
and numerical analysis questions pertaining to integration preconditioning as a method for
more general problems.

The numerical analysis issues center on the value of integration preconditioning, or spar-
sification, in the solution of higher dimensional PDEs, particularly in the context of a mul-
tidomain approach. Here we have applied the method to only one linear PDE, with an
empirical demonstration of its success. For any given linear equation, a fuller investigation
of integration sparsification for multidomain scenarios would focus on the interplay between
condition number, field of values (Rayleigh quotients), and computational efficiency (iter-
ation counts). All of these issues would be examined both before and after some form of
“ordinary” preconditioning, e.g. the combination of block-LU and alternating Schwarz pre-
conditioning used in this paper. The sparse matrices produced by integration sparsification
allow for quicker matrix multiplies in a Krylov method like GMRES. Our work suggests that
this advantage might be gained without large iteration counts, but the issue deserves more
careful study. The efficient treatment of nonlinearities is also worthy of investigation, and
any such study would build upon the results already given in Ref. [1]. At present, we are
in process of evaluating integration sparsification in the context of these issues, mostly with
2D model problems.

Several challenges remain if we are to apply some variant of our method to the problem
of helically symmetric general relativistic binary fields. First, we must test the efficiency of
our method in solving a nonlinear HRWE. In practice, this should not be a problem. The
strongest nonlinearities will occur closest to the black hole sources, i.e. near the surfaces on
which the inner boundary conditions are set. By choosing these boundaries some distance
from the sources, we can, at the cost of accuracy in mathematically representing the physical
problem, reduce the severity of the nonlinearities. The real question, then, is not whether we
can handle nonlinearities, but how close to the sources the inner boundaries can be placed.
Second, we must replace the outgoing radiative boundary conditions with “standing wave
boundary conditions,” as described in Ref. [25]. This change is straightforward in a linearized
problem, and, as explained in Ref. [25], should not pose great difficulty in nonlinear general
relativity. Third, we must move from the scalar problem considered here to the actual tensor
problem. Solution of the helically symmetric problem of a binary in full general relativity
will require all the information in the tensorial fields, and the coupling of those fields. This
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proved to be the greatest challenge for the solution method presented in Ref. [29], and it
severely limited the achievable accuracy. We are confident that the method described in this
paper will deliver the accuracy needed to find useful solutions.

The methods developed here have been motivated by the problem of binary inspiral in
general relativity. However, our methods may find broader use; they might be applied to
problems distinct from the helically symmetric mixed PDEs of the periodic standing wave
approximation. As a salient example, multidomain spectral methods are already being used
in the elliptical problem of generating binary black hole initial data [30, 31]. Our set of
methods, with integration sparsification, might be used as an alternative approach.
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Appendix A: Explicit solution for a point source.

This appendix presents two representations for an exact solution to the HRWE, namely
the solution for a point source in a circular orbit. Superposition of two such solutions
yields the binary field exploited in our numerical tests. As before, let (x̃, ỹ, z = z̃) =
(r sin θ cosϕ, r sin θ sinϕ, r cos θ) represent the comoving Cartesian coordinates, where ϕ =
φ − Ωt. In terms of the comoving coordinates, we define the Laplacian ∇̃2 ≡ ∂2x̃ + ∂2ỹ + ∂2z
and ∂ϕ operators and consider the inhomogeneous HRWE

(
∇̃2 − Ω2∂2ϕ)ψ = −4π

δ(r − a)

a2
δ(cos θ)δ(ϕ− ϕ0), (A1)

where (a, π/2, ϕ0) specifies the location of the source point in the spherical polar system
associated with (x̃, ỹ, z). We set ϕ0 = 0, since this shift can always be reinserted via the
replacement ϕ→ ϕ−ϕ0 in the representations (A2) and (A11) given below. Using standard
methods of separation of variables and one-dimensional Green’s functions, we find the series
representation for a particular solution to (A1),

ψ(x̃, ỹ, z) = 2

∞∑

ℓ=0

1

2ℓ+ 1
P ℓ0(cos θ)P ℓ0(0)

rℓ<
rℓ+1
>

−4Ω
∞∑

ℓ=1

ℓ∑

m=1

mP ℓm(cos θ)P ℓm(0)jℓ(mΩr<)
[
nℓ(mΩr>) cos(mϕ) + jℓ(mΩr>) sin(mϕ)

]
.

(A2)

Here P ℓm(u) is a normalized associated Legendre function, and jℓ(z) and nℓ(z) are respec-
tively spherical Bessel functions of the first and second kind [38]. Moreover, we adopt the
standard notations r< = min(a, r) and r> = max(a, r). The series is poorly convergent near
r = a; however, for Ω ≪ 1 it converges rapidly for r ≫ a.
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To derive a separate representation of the same series which can be used near r = a, we
consider the equivalent problem for the 3+1 wave equation written in inertial, rather than
comoving coordinates,

(
∇2 − ∂2t )Ψ = −4π

δ(r − a)

a2
δ(cos θ)δ(φ− Ωt). (A3)

In the inertial frame the source point has the time-dependent location

ξ(t) = a cos(Ωt)ex + a sin(Ωt)ey . (A4)

Therefore, we wish to find the retarded solution to

(
∇2 − ∂2t )Ψ = −4πδ(3)(x− ξ(t)), (A5)

and then evaluate it at the field point

x(t) = zez + ρ cos(φ+ Ωt)ex + ρ sin(φ+ Ωt)ey, (A6)

where ρ2 = x2+ y2 = x̃2+ ỹ2. Notice that the evaluation point x(t) rotates with the source;
whence this latter evaluation will effectively remove the time dependence. The retarded-time
Green’s function for the wave operator is

Gret(t,x; t
′,x′) =

1

4π

δ(t− t′ − |x− x′|)
|x− x′| , (A7)

and it obeys (
∇2 − ∂2t )Gret(t,x; t

′,x′) = −δ(t− t′)δ(3)(x− x′). (A8)

We obtain the desired solution to (A5) via spacetime convolution of 4πδ(3)(ξ(t)) with
Gret(t,x; t

′,x′). The details of this calculation are given in the textbook by Matthews and
Walker [43], and the result is

Ψ(t,x) =
1

|x− ξ(t′)| − ξ̇(t′) · (x− ξ(t′))
, (A9)

where ξ̇ denotes the derivative of ξ(t′) with respect to its argument. Here t′ is retarded time
which obeys t− t′ = |x− ξ(t′)|. Setting x = x(t), we find

(t− t′) =
[
z2 + ρ2 + a2 − 2aρ cos(φ− Ωt′)

]1/2

=
[
z2 + ρ2 + a2 − 2aρ cos(ϕ+ Ω(t− t′))

]1/2
. (A10)

With (ρ, z, ϕ) near (a, 0, 0), we may use the last formula to numerically compute t − t′ via
fixed-point iteration. Finally, since ψ(x̃, ỹ, z) = Ψ(t,x(t)), we then have

ψ(x̃, ỹ, z) =
1

[
z2 + ρ2 + a2 − 2aρ cos(ϕ+ Ω(t− t′))

]1/2 − aρΩ sin(ϕ+ Ω(t− t′))
(A11)
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as a concrete expression for (A9). With both Eqs. (A2) and (A11) at our disposal, we
can evaluate the retarded solution to (A1) with enough accuracy (uniformly over the entire
2-center domain) to make the comparisons reported in Sec. IV.
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