343 research outputs found

    A Hamiltonian Approach to the Mass of Isolated Black Holes

    Get PDF
    Boundary conditions defining a non-rotating isolated horizon are given in Einstein-Maxwell theory. A spacetime representing a black hole which itself is in equilibrium but whose exterior contains radiation admits such a horizon. Inspired by Hamiltonian mechanics, a (quasi-)local definition of isolated horizon mass is formulated. Although its definition does not refer to infinity, this mass takes the standard value in a Reissner-Nordstrom solution. Furthermore, under certain technical assumptions, the mass of an isolated horizon is shown to equal the future limit of the Bondi energy.Comment: 5 pages, LaTeX 2.09, 1 eps figure. To appear in the proceedings of the Eighth Canadian Conference on General Relativity and Relativistic Astrophysic

    Isolated Horizons: A Generalization of Black Hole Mechanics

    Get PDF
    A set of boundary conditions defining a non-rotating isolated horizon are given in Einstein-Maxwell theory. A space-time representing a black hole which itself is in equilibrium but whose exterior contains radiation admits such a horizon . Physically motivated, (quasi-)local definitions of the mass and surface gravity of an isolated horizon are introduced. Although these definitions do not refer to infinity, the quantities assume their standard values in Reissner-Nordstrom solutions. Finally, using these definitions, the zeroth and first laws of black hole mechanics are established for isolated horizons.Comment: 9 pages, LaTeX2e, 3 eps figure

    Entropy of generic quantum isolated horizons

    Full text link
    We review our recent proposal of a method to extend the quantization of spherically symmetric isolated horizons, a seminal result of loop quantum gravity, to a phase space containing horizons of arbitrary geometry. Although the details of the quantization remain formally unchanged, the physical interpretation of the results can be quite different. We highlight several such differences, with particular emphasis on the physical interpretation of black hole entropy in loop quantum gravity.Comment: 4 pages, contribution to loops '11 conference proceedings; 2 references added, a sentence remove

    Towards a novel wave-extraction method for numerical relativity. I. Foundations and initial-value formulation

    Get PDF
    The Teukolsky formalism of black hole perturbation theory describes weak gravitational radiation generated by a mildly dynamical hole near equilibrium. A particular null tetrad of the background Kerr geometry, due to Kinnersley, plays a singularly important role within this formalism. In order to apply the rich physical intuition of Teukolsky's approach to the results of fully non-linear numerical simulations, one must approximate this Kinnersley tetrad using raw numerical data, with no a priori knowledge of a background. This paper addresses this issue by identifying the directions of the tetrad fields in a quasi-Kinnersley frame. This frame provides a unique, analytic extension of Kinnersley's definition for the Kerr geometry to a much broader class of space-times including not only arbitrary perturbations, but also many examples which differ non-perturbatively from Kerr. This paper establishes concrete limits delineating this class and outlines a scheme to calculate the quasi-Kinnersley frame in numerical codes based on the initial-value formulation of geometrodynamics.Comment: 11 pages, 1 figur

    Towards wave extraction in numerical relativity: the quasi-Kinnersley frame

    Get PDF
    The Newman-Penrose formalism may be used in numerical relativity to extract coordinate-invariant information about gravitational radiation emitted in strong-field dynamical scenarios. The main challenge in doing so is to identify a null tetrad appropriately adapted to the simulated geometry such that Newman-Penrose quantities computed relative to it have an invariant physical meaning. In black hole perturbation theory, the Teukolsky formalism uses such adapted tetrads, those which differ only perturbatively from the background Kinnersley tetrad. At late times, numerical simulations of astrophysical processes producing isolated black holes ought to admit descriptions in the Teukolsky formalism. However, adapted tetrads in this context must be identified using only the numerically computed metric, since no background Kerr geometry is known a priori. To do this, this paper introduces the notion of a quasi-Kinnersley frame. This frame, when space-time is perturbatively close to Kerr, approximates the background Kinnersley frame. However, it remains calculable much more generally, in space-times non-perturbatively different from Kerr. We give an explicit solution for the tetrad transformation which is required in order to find this frame in a general space-time.Comment: 13 pages, 3 figure

    The periodic standing-wave approximation: eigenspectral computations for linear gravity and nonlinear toy models

    Full text link
    The periodic standing wave approach to binary inspiral assumes rigid rotation of gravitational fields and hence helically symmetric solutions. To exploit the symmetry, numerical computations must solve for ``helical scalars,'' fields that are functions only of corotating coordinates, the labels on the helical Killing trajectories. Here we present the formalism for describing linearized general relativity in terms of helical scalars and we present solutions to the mixed partial differential equations of the linearized gravity problem (and to a toy nonlinear problem) using the adapted coordinates and numerical techniques previously developed for scalar periodic standing wave computations. We argue that the formalism developed may suffice for periodic standing wave computations for post-Minkowskian computations and for full general relativity.Comment: 21 pages, 10 figures, RevTe
    • …
    corecore