22 research outputs found

    Habitat availability for amphibians and extinction threat: A global analysis

    Get PDF
    Aim: Habitat loss and degradation are the factors threatening the largest number of amphibian species. However, quantitative measures of habitat availability only exist for a small subset of them. We evaluated the relationships between habitat availability, extinction risk and drivers of threat for the world's amphibians. We developed deductive habitat suitability models to estimate the extent of suitable habitat and the proportion of suitable habitat (PSH) inside the geographic range of each species, covering species and areas for which little or no high-resolution distribution data are available. Location: Global. Methods: We used information on habitat preferences to develop habitat suitability models at 300-m resolution, by integrating range maps with land cover and elevation. Model performance was assessed by comparing model output with point localities where species were recorded. We then used habitat availability as a surrogate of area of occupancy. Using the IUCN criteria, we identified species having narrow area of occupancy, for which extinction risk is likely underestimated. Results: We developed models for 5363 amphibians. Validation success of models was high (94%), being better for forest specialists and generalists than for open habitat specialists. Generalists had proportionally more habitat than forest or open habitat specialists. The PSH was lower for species having small geographical ranges, currently listed as threatened, and for which habitat loss is recognized as a threat. Differences in habitat availability among biogeographical realms were strong. We identified 61 forest species for which the extinction risk may be higher that currently assessed in the Red List, due to limited extent of suitable habitat. Main conclusions: Habitat models can accurately predict amphibian distribution at fine scale and allow describing biogeographical patterns of habitat availability. The strong relationship between amount of suitable habitat and extinction threat may help the conservation assessment in species for which limited information is currently available

    Response: Where Might We Find Ecologically Intact Communities?

    Get PDF
    A Commentary on Where Might We Find Ecologically Intact Communities? by Plumptre, A. J., Baisero, D., Belote, R. T., Vázquez-Domínguez, E., Faurby, S., Jȩdrzejewski, W., Kiara, H., K, H., Benítez-López, A., Luna-Aranguré, C., Voigt, M., Wich, S., Wint, W., Gallego-Zamorano, J., and Boyd, C. (2021). Front. For. Glob. Change 4:626635. doi: 10.3389/ffgc.2021.62663

    A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios

    Get PDF
    To support the assessments of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), the IPBES Expert Group on Scenarios and Models is carrying out an intercomparison of biodiversity and ecosystem services models using harmonized scenarios (BES-SIM). The goals of BES-SIM are (1) to project the global impacts of land-use and climate change on biodiversity and ecosystem services (i.e., nature's contributions to people) over the coming decades, compared to the 20th century, using a set of common metrics at multiple scales, and (2) to identify model uncertainties and research gaps through the comparisons of projected biodiversity and ecosystem services across models. BES-SIM uses three scenarios combining specific Shared Socio-economic Pathways (SSPs) and Representative Concentration Pathways (RCPs)-SSP1xRCP2.6, SSP3xRCP6.0, SSP5xRCP8.6-to explore a wide range of land-use change and climate change futures. This paper describes the rationale for scenario selection, the process of harmonizing input data for land use, based on the second phase of the Land Use Harmonization Project (LUH2), and climate, the biodiversity and ecosystem services models used, the core simulations carried out, the harmonization of the model output metrics, and the treatment of uncertainty. The results of this collaborative modeling project will support the ongoing global assessment of IPBES, strengthen ties between IPBES and the Intergovernmental Panel on Climate Change (IPCC) scenarios and modeling processes, advise the Convention on Biological Diversity (CBD) on its development of a post-2020 strategic plans and conservation goals, and inform the development of a new generation of nature-centred scenarios

    Global trends in biodiversity and ecosystem services from 1900 to 2050

    Get PDF
    Despite the scientific consensus on the extinction crisis and its anthropogenic origin, the quantification of historical trends and of future scenarios of biodiversity and ecosystem services has been limited, due to the lack of inter-model comparisons and harmonized scenarios. Here, we present a multi-model analysis to assess the impacts of land-use and climate change from 1900 to 2050. During the 20th century provisioning services increased, but biodiversity and regulating services decreased. Similar trade-offs are projected for the coming decades, but they may be attenuated in a sustainability scenario. Future biodiversity loss from land-use change is projected to keep up with historical rates or reduce slightly, whereas losses due to climate change are projected to increase greatly. Renewed efforts are needed by governments to meet the 2050 vision of the Convention on Biological Diversity

    What spatial data do we need to develop global mammal conservation strategies?

    No full text
    Spatial data on species distributions are available in two main forms, point locations and distribution maps (polygon ranges and grids). The first are often temporally and spatially biased, and too discontinuous, to be useful (untransformed) in spatial analyses. A variety of modelling approaches are used to transform point locations into maps. We discuss the attributes that point location data and distribution maps must satisfy in order to be useful in conservation planning. We recommend that before point location data are used to produce and/or evaluate distribution models, the dataset should be assessed under a set of criteria, including sample size, age of data, environmental/geographical coverage, independence, accuracy, time relevance and (often forgotten) representation of areas of permanent and natural presence of the species. Distribution maps must satisfy additional attributes if used for conservation analyses and strategies, including minimizing commission and omission errors, credibility of the source/assessors and availability for public screening. We review currently available databases for mammals globally and show that they are highly variable in complying with these attributes. The heterogeneity and weakness of spatial data seriously constrain their utility to global and also sub-global scale conservation analyses

    Habitat availability for amphibians and extinction threat : a global analysis

    No full text
    Aim: Habitat loss and degradation are the factors threatening the largest number of amphibian species. However, quantitative measures of habitat availability only exist for a small subset of them. We evaluated the relationships between habitat availability, extinction risk and drivers of threat for the world's amphibians. We developed deductive habitat suitability models to estimate the extent of suitable habitat and the proportion of suitable habitat (PSH) inside the geographic range of each species, covering species and areas for which little or no high-resolution distribution data are available. Location: Global. Methods: We used information on habitat preferences to develop habitat suitability models at 300-m resolution, by integrating range maps with land cover and elevation. Model performance was assessed by comparing model output with point localities where species were recorded. We then used habitat availability as a surrogate of area of occupancy. Using the IUCN criteria, we identified species having narrow area of occupancy, for which extinction risk is likely underestimated. Results: We developed models for 5363 amphibians. Validation success of models was high (94%), being better for forest specialists and generalists than for open habitat specialists. Generalists had proportionally more habitat than forest or open habitat specialists. The PSH was lower for species having small geographical ranges, currently listed as threatened, and for which habitat loss is recognized as a threat. Differences in habitat availability among biogeographical realms were strong. We identified 61 forest species for which the extinction risk may be higher that currently assessed in the Red List, due to limited extent of suitable habitat. Main conclusions: Habitat models can accurately predict amphibian distribution at fine scale and allow describing biogeographical patterns of habitat availability. The strong relationship between amount of suitable habitat and extinction threat may help the conservation assessment in species for which limited information is currently available

    Biodiversity impacts of increased ethanol production in Brazil

    No full text
    Growing domestic and international ethanol demand is expected to result in increased sugarcane cultivation in Brazil. Sugarcane expansion currently results in land-use changes mainly in the Cerrado and Atlantic Forest biomes, two severely threatened biodiversity hotspots. This study quantifies potential biodiversity impacts of increased ethanol demand in Brazil in a spatially explicit manner. We project changes in potential total, threatened, endemic, and range-restricted mammals' species richness up to 2030. Decreased potential species richness due to increased ethanol demand in 2030 was projected for about 19,000 km2 in the Cerrado, 17,000 km2 in the Atlantic Forest, and 7000 km2 in the Pantanal. In the Cerrado and Atlantic Forest, the biodiversity impacts of sugarcane expansion were mainly due to direct land-use change; in the Pantanal, they were largely due to indirect land-use change. The biodiversity impact of increased ethanol demand was projected to be smaller than the impact of other drivers of land-use change. This study provides a first indication of biodiversity impacts related to increased ethanol production in Brazil, which is useful for policy makers and ethanol producers aiming to mitigate impacts. Future research should assess the impact of potential mitigation options, such as nature protection, agroforestry, or agricultural intensification

    The future of terrestrial mammals in the Mediterranean basin under climate change.

    No full text
    The Mediterranean basin is considered a hotspot of biological diversity with a long history of modification of natural ecosystems by human activities, and is one of the regions that will face extensive changes in climate. For 181 terrestrial mammals (68% of all Mediterranean mammals), we used an ensemble forecasting approach to model the future (approx. 2100) potential distribution under climate change considering five climate change model outputs for two climate scenarios. Overall, a substantial number of Mediterranean mammals will be severely threatened by future climate change, particularly endemic species. Moreover, we found important changes in potential species richness owing to climate change, with some areas (e.g. montane region in central Italy) gaining species, while most of the region will be losing species (mainly Spain and North Africa). Existing protected areas (PAs) will probably be strongly influenced by climate change, with most PAs in Africa, the Middle East and Spain losing a substantial number of species, and those PAs gaining species (e.g. central Italy and southern France) will experience a substantial shift in species composition
    corecore