726 research outputs found
Rare single gene disorders:estimating baseline prevalence and outcomes worldwide
As child mortality rates overall are decreasing, non-communicable conditions, such as genetic disorders, constitute an increasing proportion of child mortality, morbidity and disability. To date, policy and public health programmes have focused on common genetic disorders. Rare single gene disorders are an important source of morbidity and premature mortality for affected families. When considered collectively, they account for an important public health burden, which is frequently under-recognised. To document the collective frequency and health burden of rare single gene disorders, it is necessary to aggregate them into large manageable groupings and take account of their family implications, effective interventions and service needs. Here, we present an approach to estimate the burden of these conditions up to 5 years of age in settings without empirical data. This approaches uses population-level demographic data, combined with assumptions based on empirical data from settings with data available, to provide population-level estimates which programmes and policy-makers when planning services can use
A Bayesian adaptive design for biomarker trials with linked treatments.
BACKGROUND: Response to treatments is highly heterogeneous in cancer. Increased availability of biomarkers and targeted treatments has led to the need for trial designs that efficiently test new treatments in biomarker-stratified patient subgroups. METHODS: We propose a novel Bayesian adaptive randomisation (BAR) design for use in multi-arm phase II trials where biomarkers exist that are potentially predictive of a linked treatment's effect. The design is motivated in part by two phase II trials that are currently in development. The design starts by randomising patients to the control treatment or to experimental treatments that the biomarker profile suggests should be active. At interim analyses, data from treated patients are used to update the allocation probabilities. If the linked treatments are effective, the allocation remains high; if ineffective, the allocation changes over the course of the trial to unlinked treatments that are more effective. RESULTS: Our proposed design has high power to detect treatment effects if the pairings of treatment with biomarker are correct, but also performs well when alternative pairings are true. The design is consistently more powerful than parallel-groups stratified trials. CONCLUSIONS: This BAR design is a powerful approach to use when there are pairings of biomarkers with treatments available for testing simultaneously.This work was supported by the Medical Research Council (grant number G0800860) and the NIHR Cambridge Biomedical Research Centre.This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/bjc.2015.27
Whistle communication in mammal-eating killer whales (Orcinus orca): further evidence for acoustic divergence between ecotypes
Public signaling plays an important role in territorial and sexual displays in animals; however, in certain situations, it is advantageous to keep signaling private to prevent eavesdropping by unintended receivers. In the northeastern Pacific, two populations of killer whales (Orcinus orca), fish-eating “resident” killer whales and mammal-eating “transient” killer whales, share the same habitat. Previous studies have shown that residents use whistles as private signals during close-range communication, where they probably serve to coordinate behavioral interactions. Here, we investigated the whistling behavior of mammal-eating killer whales, and, based on divergent social structures and social behaviors between residents and transients, we predicted to find differences in both whistle usage and whistle parameters. Our results show that, like resident killer whales, transients produce both variable and stereotyped whistles. However, clear differences in whistle parameters between ecotypes show that the whistle repertoire of mammal-eating killer whales is clearly distinct from and less complex than that of fish-eating killer whales. Furthermore, mammal-eating killer whales only produce whistles during “milling after kill” and “surface-active” behaviors, but are almost completely silent during all other activities. Nonetheless, whistles of transient killer whales may still serve a role similar to that of resident killer whales. Mammal-eating killer whales seem to be under strong selection to keep their communication private from potential prey (whose hearing ranges overlap with that of killer whales), and they appear to accomplish this mainly by restricting vocal activity rather than by changes in whistle parameters
A rare exception to Haldane's rule: are X chromosomes key to hybrid incompatibilities?
This work was funded by NERC (NE/G014906/1, NE/L011255/1, NE/I027800/1). Additional funding from the Orthopterists’ Society to PM is also gratefully acknowledged.The prevalence of Haldane’s rule suggests that sex chromosomes commonly have a key role in reproductive barriers and speciation. However, the majority of research on Haldane’s rule has been conducted in species with conventional sex determination systems (XY and ZW) and exceptions to the rule have been understudied. Here we test the role of X-linked incompatibilities in a rare exception to Haldane’s rule for female sterility in field cricket sister species (Teleogryllus oceanicus and T. commodus). Both have an XO sex determination system. Using three generations of crosses, we introgressed X chromosomes from each species onto different, mixed genomic backgrounds to test predictions about the fertility and viability of each cross type. We predicted that females with two different species X chromosomes would suffer reduced fertility and viability compared with females with two parental X chromosomes. However, we found no strong support for such X-linked incompatibilities. Our results preclude X–X incompatibilities and instead support an interchromosomal epistatic basis to hybrid female sterility. We discuss the broader implications of these findings, principally whether deviations from Haldane’s rule might be more prevalent in species without dimorphic sex chromosomes.PostprintPeer reviewe
Global warming and recurrent mass bleaching of corals
During 2015–2016, record temperatures triggered a pan-tropical episode of coral bleaching, the third global-scale event since mass bleaching was first documented in the 1980s. Here we examine how and why the severity of recurrent major bleaching events has varied at multiple scales, using aerial and underwater surveys of Australian reefs combined with satellite-derived sea surface temperatures. The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year. Water quality and fishing pressure had minimal effect on the unprecedented bleaching in 2016, suggesting that local protection of reefs affords little or no resistance to extreme heat. Similarly, past exposure to bleaching in 1998 and 2002 did not lessen the severity of bleaching in 2016. Consequently, immediate global action to curb future warming is essential to secure a future for coral reefs
Recommended from our members
The development and validation of the Leiden Bother and Needs Questionnaire for patients with pituitary disease: the LBNQ-Pituitary
Background
Patients report persisting impairment in quality of life (QoL) after treatment for pituitary disease. At present, there is no questionnaire to assess (a) whether patients with pituitary disease are bothered by these consequences, and (b) their needs for support.
Objective
To develop and validate a disease-specific questionnaire for patients with pituitary disease which incorporates patient perceived bother related to the consequences of the disease, and their needs for support.
Methods
Items for the Leiden Bother and Needs Questionnaire for patients with pituitary disease (LBNQ-Pituitary) were formulated based on results of a recent focus group study (n = 49 items). 337 patients completed the LBNQ-Pituitary and six validated QoL questionnaires (EuroQoL-5D, SF-36, MFI-20, HADS, AcroQol, CushingQoL). Construct validity was examined by exploratory factor analysis. Reliabilities of the subscales were calculated with Cronbach’s alphas, and concurrent validity was assessed by calculating Spearman’s correlations between the LBNQ-Pituitary and the other measures.
Results
Factor analyses produced five subscales (i.e., mood problems, negative illness perceptions, issues in sexual functioning, physical and cognitive complaints, issues in social functioning) containing a total of 26 items. All factors were found to be reliable (Cronbach’s alphas all ≥.765), and the correlations between the dimensions of the LBNQ-Pituitary and other questionnaires (all P ≤ .0001) demonstrated convergent validity.
Conclusions
The LBNQ-Pituitary can be used to assess the degree to which patients are bothered by the consequences of the pituitary disease, as well as their needs for support. It could also facilitate an efficient assessment of patients’ needs for support in clinical practice. We postulate that paying attention to needs for support will lead to optimal patient care (e.g., improvement in psychosocial care), and positively affect QoL
Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia.
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesOver the past decade genome-wide association studies (GWAS) have been applied to aid in the understanding of the biology of traits. The success of this approach is governed by the underlying effect sizes carried by the true risk variants and the corresponding statistical power to observe such effects given the study design and sample size under investigation. Previous ASD GWAS have identified genome-wide significant (GWS) risk loci; however, these studies were of only of low statistical power to identify GWS loci at the lower effect sizes (odds ratio (OR) <1.15).We conducted a large-scale coordinated international collaboration to combine independent genotyping data to improve the statistical power and aid in robust discovery of GWS loci. This study uses genome-wide genotyping data from a discovery sample (7387 ASD cases and 8567 controls) followed by meta-analysis of summary statistics from two replication sets (7783 ASD cases and 11359 controls; and 1369 ASD cases and 137308 controls).We observe a GWS locus at 10q24.32 that overlaps several genes including PITX3, which encodes a transcription factor identified as playing a role in neuronal differentiation and CUEDC2 previously reported to be associated with social skills in an independent population cohort. We also observe overlap with regions previously implicated in schizophrenia which was further supported by a strong genetic correlation between these disorders (Rg = 0.23; P = 9 × 10(-6)). We further combined these Psychiatric Genomics Consortium (PGC) ASD GWAS data with the recent PGC schizophrenia GWAS to identify additional regions which may be important in a common neurodevelopmental phenotype and identified 12 novel GWS loci. These include loci previously implicated in ASD such as FOXP1 at 3p13, ATP2B2 at 3p25.3, and a 'neurodevelopmental hub' on chromosome 8p11.23.This study is an important step in the ongoing endeavour to identify the loci which underpin the common variant signal in ASD. In addition to novel GWS loci, we have identified a significant genetic correlation with schizophrenia and association of ASD with several neurodevelopmental-related genes such as EXT1, ASTN2, MACROD2, and HDAC4.National Institutes of Mental Health (NIMH, USA)
ACE Network
Autism Genetic Resource Exchange (AGRE) is a program of Autism Speaks (USA)
The Autism Genome Project (AGP) from Autism Speaks (USA)
Canadian Institutes of Health Research (CIHR), Genome Canada
Health Research Board (Ireland)
Hilibrand Foundation (USA)
Medical Research Council (UK)
National Institutes of Health (USA)
Ontario Genomics Institute
University of Toronto McLaughlin Centre
Simons Foundation
Johns Hopkins
Autism Consortium of Boston
NLM Family foundation
National Institute of Health grants
National Health Medical Research Council
Scottish Rite
Spunk Fund, Inc.
Rebecca and Solomon Baker Fund
APEX Foundation
National Alliance for Research in Schizophrenia and Affective Disorders (NARSAD)
endowment fund of the Nancy Pritzker Laboratory (Stanford)
Autism Society of America
Janet M. Grace Pervasive Developmental Disorders Fund
The Lundbeck Foundation
universities and university hospitals of Aarhus and Copenhagen
Stanley Foundation
Centers for Disease Control and Prevention (CDC)
Netherlands Scientific Organization
Dutch Brain Foundation
VU University Amsterdam
Trinity Centre for High Performance Computing through Science Foundation Ireland
Autism Genome Project (AGP) from Autism Speak
Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.
Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage
Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders
Autism spectrum disorder (ASD) risk is influenced by common polygenic and de novo variation. We aimed to clarify the influence of polygenic risk for ASD and to identify subgroups of ASD cases, including those with strongly acting de novo variants, in which polygenic risk is relevant. Using a novel approach called the polygenic transmission disequilibrium test and data from 6,454 families with a child with ASD, we show that polygenic risk for ASD, schizophrenia, and greater educational attainment is over-transmitted to children with ASD. These findings hold independent of proband IQ. We find that polygenic variation contributes additively to risk in ASD cases who carry a strongly acting de novo variant. Lastly, we show that elements of polygenic risk are independent and differ in their relationship with phenotype. These results confirm that the genetic influences on ASD are additive and suggest that they create risk through at least partially distinct etiologic pathways
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figuresMajor update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figuresThe preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess
- …
