12 research outputs found

    Vapor-Liquid Equilibrium of Ionic Liquid 7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-enium Acetate and Its Mixtures with Water

    Get PDF
    Ionic liquids have the potential to be used for extracting valuable chemicals from raw materials. These processes often involve water, and after extraction, the water or other chemicals must be removed from the ionic liquid, so it can be reused. To help in designing such processes, we present data on the vapor-liquid equilibrium of the system containing protic ionic liquid 7-methyl-1,5,7-triazabicyclo [ 4.4.0 ] dec-5-enium acetate, water, acetic acid, and 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene. Earlier studies have only focused on mixtures of water and an ionic liquid with a stoichiometric ratio of the ions. Here, we also investigated mixtures containing an excess of the acid or base component because in real systems with protic ionic liquids, the amount of acid and base in the mixture can vary. We modeled the data using both the ePC-SAFT and NRTL models, and we compared the performance of different modeling strategies. We also experimentally determined the vapor composition for a few of the samples, but none of the modeling strategies tested could accurately predict the concentration of the acid and base components in the vapor phase.Peer reviewe

    Physical Properties of 7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (mTBD)

    Get PDF
    7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (mTBD) has useful catalytic properties and can form an ionic liquid when mixed with an acid. Despite its potential usefulness, no data on its thermodynamic and transport properties are currently available in the literature. Here we present the first reliable public data on the liquid vapor pressure (temperature from 318.23K to 451.2K and pressure from 11.1Pa to 10000Pa), liquid compressed density (293.15K to 473.15K and 0.092MPa to 15.788MPa), liquid isobaric heat capacity (312.48K to 391.50K), melting properties, liquid thermal conductivity (299.0K to 372.9K), liquid refractive index (293.15K to 343.15K), liquid viscosity (290.79K to 363.00K), liquid-vapor enthalpy of vaporization (318.23K to 451.2K), liquid thermal expansion coefficient (293.15K to 473.15K), and liquid isothermal compressibility of mTBD (293.15K to 473.15). The properties of mTBD were compared with those of other relevant compounds, including 1,5-diazabicyclo(4.3.0)non-5-ene (DBN), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), and 1,1,3,3-tetramethylguanidine (TMG). We used the PC-SAFT equation of state to model the thermodynamic properties of mTBD, DBN, DBU, and TMG. The PC-SAFT parameters were optimized using experimental data.Peer reviewe

    A Predictive Approach towards Using PC-SAFT for Modeling the Properties of Shale Oil

    No full text
    Equations of state are powerful tools for modeling thermophysical properties; however, so far, these have not been developed for shale oil due to a lack of experimental data. Recently, new experimental data were published on the properties of Kukersite shale oil, and here we present a method for modeling the properties of the gasoline fraction of shale oil using the PC-SAFT equation of state. First, using measured property data, correlations were developed to estimate the composition of narrow-boiling-range Kukersite shale gasoline samples based on the boiling point and density. These correlations, along with several PC-SAFT equations of the states of various classes of compounds, were used to predict the PC-SAFT parameters of aromatic compounds present in unconventional oil-containing oxygen compounds with average boiling points up to 180 °C. Developed PC-SAFT equations of state were applied to calculate the temperature-dependent properties (vapor pressure and density) of shale gasoline. The root mean square percentage error of the residuals was 13.2%. The average absolute relative deviation percentages for all vapor pressure and density data were 16.9 and 1.6%, respectively. The utility of this model was shown by predicting the vapor pressure of various portions of the shale gasoline. The validity of this model could be assessed for oil fractions from different deposits. However, the procedure used here to model shale oil gasoline could also be used as an example to derive and develop similar models for oil samples with different origins

    Densities, Viscosities, and Thermal Conductivities of the Ionic Liquid 7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-enium Acetate and Its Mixtures with Water

    No full text
    7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-enium acetate (mTBD acetate) is a protic ionic liquid that is being investigated for use in industrial processes, such as for producing textiles from cellulose. To aid in designing such processes, we have measured the densities, viscosities, and thermal conductivities of mTBD acetate and aqueous mixtures containing mTBD acetate. We also investigated how excess amounts of mTBD or acetic acid affect the density, and found that in general an excess of either component decreases the density. However, when no water is present, the sample with excess acetic acid actually has a slightly higher density than when there is an equimolar amount of acid and base. The maximum density occurs when some water is present (around 30–40 mol%). We also modeled the density data using the ePC-SAFT equation of state and provide simple correlations for calculating the viscosity and thermal conductivity of these mixtures.Peer reviewe

    Vapor Pressures, Densities, and PC-SAFT Parameters for 11 Bio-compounds

    No full text
    One major sustainable development goal is to produce chemicals and fuels from renewable resources, such as biomass, rather than from fossil fuels. A key part of this development is data on the properties of chemicals that appear in this bio-based supply chain. Many of the chemicals have yet to be studied thoroughly, and data on their properties is lacking. Here, we present new experimental data on the properties of 11 bio-compounds, along with PC-SAFT parameters for modeling their properties. The measured data includes vapor pressures, compressed densities, and refractive indexes. The 11 bio-compounds are tetrahydrofuran, 2-pentanone, furfural, 2-methoxy-4-methylphenol, 2-methylfuran, dihydrolevoglucosenone, cyclopentyl methyl ether, 2-sec-butylphenol, levoglucosenone, γ-valerolactone, and 2,6-dimethoxyphenol.Peer reviewe
    corecore