24 research outputs found
Team dynamics in emergency surgery teams: results from a first international survey
Background: Emergency surgery represents a unique context. Trauma teams are often multidisciplinary and need to operate under extreme stress and time constraints, sometimes with no awareness of the trauma\u2019s causes or the patient\u2019s personal and clinical information. In this perspective, the dynamics of how trauma teams function is fundamental to ensuring the best performance and outcomes. Methods: An online survey was conducted among the World Society of Emergency Surgery members in early 2021. 402 fully filled questionnaires on the topics of knowledge translation dynamics and tools, non-technical skills, and difficulties in teamwork were collected. Data were analyzed using the software R, and reported following the Checklist for Reporting Results of Internet E-Surveys (CHERRIES). Results: Findings highlight how several surgeons are still unsure about the meaning and potential of knowledge translation and its mechanisms. Tools like training, clinical guidelines, and non-technical skills are recognized and used in clinical practice. Others, like patients\u2019 and stakeholders\u2019 engagement, are hardly implemented, despite their increasing importance in the modern healthcare scenario. Several difficulties in working as a team are described, including the lack of time, communication, training, trust, and ego. Discussion: Scientific societies should take the lead in offering training and support about the abovementioned topics. Dedicated educational initiatives, practical cases and experiences, workshops and symposia may allow mitigating the difficulties highlighted by the survey\u2019s participants, boosting the performance of emergency teams. Additional investigation of the survey results and its characteristics may lead to more further specific suggestions and potential solutions
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
Disruption of tonic endocannabinoid signalling triggers cellular, behavioural and neuroendocrine responses consistent with a stress response
Background and Purpose: Endocannabinoid (eCB) signalling gates many aspects of the stress response, including the hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis is controlled by corticotropin releasing hormone (CRH) producing neurons in the paraventricular nucleus of the hypothalamus (PVN). Disruption of eCB signalling increases drive to the HPA axis, but the mechanisms subserving this process are poorly understood.Experimental Approach: Using an array of cellular, endocrine and behavioural readouts associated with activation of CRH neurons in the PVN, we evaluated the contributions of tonic eCB signalling to the generation of a stress response.Key Results: The CB1 receptor antagonist/inverse agonist AM251, neutral antagonist NESS243 and NAPE PLD inhibitor LEI401 all uniformly increased Fos in the PVN, unmasked stress-linked behaviours, such as grooming, and increased circulating CORT, recapitulating the effects of stress. Similar effects were also seen after direct administration of AM251 into the PVN, while optogenetic inhibition of PVN CRH neurons ameliorated stress-like behavioural changes produced by disruption of eCB signalling.Conclusions and Implications: These data indicate that under resting conditions, constitutive eCB signalling restricts activation of the HPA axis through local regulation of CRH neurons in the PVN.Molecular Physiolog
A Longitudinal Study of Chinese Cultural Beliefs About Adversity, Psychological Well-Being, Delinquency And Substance Abuse in Chinese Adolescents With Economic Disadvantage
adversity, Chinese adolescents, cultural beliefs, economic disadvantaged, longitudinal study, psychological well-being,
Early organ-specific mitochondrial dysfunction of jejunum and lung found in rats with experimental acute pancreatitis
AbstractIntroductionMultiple organ dysfunction is the main cause of death in severe acute pancreatitis. Primary mitochondrial dysfunction plays a central role in the development and progression of organ failure in critical illness. The present study investigated mitochondrial function in seven tissues during early experimental acute pancreatitis.MethodsTwenty-eight male Wistar rats (463 ± 2g; mean ± SEM) were studied. Group 1 (n= 8), saline control; Group 2 (n= 6), caerulein-induced mild acute pancreatitis; Group 3 (n= 7) sham surgical controls; and Group 4 (n= 7), taurocholate-induced severe acute pancreatitis. Animals were euthanased at 6h from the induction of acute pancreatitis and mitochondrial function was assessed in the heart, lung, liver, kidney, pancreas, duodenum and jejunum by mitochondrial respirometry.ResultsSignificant early mitochondrial dysfunction was present in the pancreas, lung and jejunum in both models of acute pancreatitis, however, the Heart, liver, kidney and duodenal mitochondria were unaffected.ConclusionsThe present study provides the first description of early organ-selective mitochondrial dysfunction in the lung and jejunum during acute pancreatitis. Research is now needed to identify the underlying pathophysiology behind the organ selective mitochondrial dysfunction, and the potential benefits of early mitochondrial-specific therapies in acute pancreatitis