659 research outputs found

    User's manual for the Shuttle Electric Power System analysis computer program (SEPS), volume 2 of program documentation

    Get PDF
    The Shuttle Electric Power System Analysis SEPS computer program which performs detailed load analysis including predicting energy demands and consumables requirements of the shuttle electric power system along with parameteric and special case studies on the shuttle electric power system is described. The functional flow diagram of the SEPS program is presented along with data base requirements and formats, procedure and activity definitions, and mission timeline input formats. Distribution circuit input and fixed data requirements are included. Run procedures and deck setups are described

    Program manual for the Shuttle Electric Power System analysis computer program (SEPS), volume 1 of program documentation

    Get PDF
    The Shuttle Electric Power System (SEPS) computer program is considered in terms of the program manual, programmer guide, and program utilization. The main objective is to provide the information necessary to interpret and use the routines comprising the SEPS program. Subroutine descriptions including the name, purpose, method, variable definitions, and logic flow are presented

    BIOSIGNATURE GASES IN H₂-DOMINATED ATMOSPHERES ON ROCKY EXOPLANETS

    Get PDF
    Super-Earth exoplanets are being discovered with increasing frequency and some will be able to retain stable H2-dominated atmospheres. We study biosignature gases on exoplanets with thin H2 atmospheres and habitable surface temperatures, using a model atmosphere with photochemistry and a biomass estimate framework for evaluating the plausibility of a range of biosignature gas candidates. We find that photochemically produced H atoms are the most abundant reactive species in H2 atmospheres. In atmospheres with high CO2 levels, atomic O is the major destructive species for some molecules. In Sun-Earth-like UV radiation environments, H (and in some cases O) will rapidly destroy nearly all biosignature gases of interest. The lower UV fluxes from UV-quiet M stars would produce a lower concentration of H (or O) for the same scenario, enabling some biosignature gases to accumulate. The favorability of low-UV radiation environments to accumulate detectable biosignature gases in an H2 atmosphere is closely analogous to the case of oxidized atmospheres, where photochemically produced OH is the major destructive species. Most potential biosignature gases, such as dimethylsulfide and CH3Cl, are therefore more favorable in low-UV, as compared with solar-like UV, environments. A few promising biosignature gas candidates, including NH3 and N2O, are favorable even in solar-like UV environments, as these gases are destroyed directly by photolysis and not by H (or O). A more subtle finding is that most gases produced by life that are fully hydrogenated forms of an element, such as CH4 and H2S, are not effective signs of life in an H2-rich atmosphere because the dominant atmospheric chemistry will generate such gases abiologically, through photochemistry or geochemistry. Suitable biosignature gases in H2-rich atmospheres for super-Earth exoplanets transiting M stars could potentially be detected in transmission spectra with the James Webb Space Telescope

    Sequencing by Hybridization of Long Targets

    Get PDF
    Sequencing by Hybridization (SBH) reconstructs an n-long target DNA sequence from its biochemically determined l-long subsequences. In the standard approach, the length of a uniformly random sequence that can be unambiguously reconstructed is limited to due to repetitive subsequences causing reconstruction degeneracies. We present a modified sequencing method that overcomes this limitation without the need for different types of biochemical assays and is robust to error

    Reduction of aerobic and lactic acid bacteria in dairy desludge using an integrated compressed CO2 and ultrasonic process

    Get PDF
    International audienceAbstractCurrent treatment routes are not suitable to reduce and stabilise bacterial content in some dairy process streams such as separator and bactofuge desludges which currently present a major emission problem faced by dairy producers. In this study, a novel method for the processing of desludge was developed. The new method, elevated pressure sonication (EPS), uses a combination of low frequency ultrasound (20 kHz) and elevated CO2 pressure (50 to 100 bar). Process conditions (pressure, sonicator power, processing time) were optimised for batch and continuous EPS processes to reduce viable numbers of aerobic and lactic acid bacteria in bactofuge desludge by ≥3-log fold. Coagulation of proteins present in the desludge also occurred, causing separation of solid (curd) and liquid (whey) fractions. The proposed process offers a 10-fold reduction in energy compared to high temperature short time (HTST) treatment of milk

    Measurement of Angular Distributions and R= sigma_L/sigma_T in Diffractive Electroproduction of rho^0 Mesons

    Full text link
    Production and decay angular distributions were extracted from measurements of exclusive electroproduction of the rho^0(770) meson over a range in the virtual photon negative four-momentum squared 0.5< Q^2 <4 GeV^2 and the photon-nucleon invariant mass range 3.8< W <6.5 GeV. The experiment was performed with the HERMES spectrometer, using a longitudinally polarized positron beam and a ^3He gas target internal to the HERA e^{+-} storage ring. The event sample combines rho^0 mesons produced incoherently off individual nucleons and coherently off the nucleus as a whole. The distributions in one production angle and two angles describing the rho^0 -> pi+ pi- decay yielded measurements of eight elements of the spin-density matrix, including one that had not been measured before. The results are consistent with the dominance of helicity-conserving amplitudes and natural parity exchange. The improved precision achieved at 47 GeV, reveals evidence for an energy dependence in the ratio R of the longitudinal to transverse cross sections at constant Q^2.Comment: 15 pages, 15 embedded figures, LaTeX for SVJour(epj) document class Revision: Fig. 15 corrected, recent data added to Figs. 10,12,14,15; minor changes to tex

    Beam-Induced Nuclear Depolarisation in a Gaseous Polarised Hydrogen Target

    Get PDF
    Spin-polarised atomic hydrogen is used as a gaseous polarised proton target in high energy and nuclear physics experiments operating with internal beams in storage rings. When such beams are intense and bunched, this type of target can be depolarised by a resonant interaction with the transient magnetic field generated by the beam bunches. This effect has been studied with the HERA positron beam in the HERMES experiment at DESY. Resonances have been observed and a simple analytic model has been used to explain their shape and position. Operating conditions for the experiment have been found where there is no significant target depolarisation due to this effect.Comment: REVTEX, 6 pages, 5 figure

    Clinical effectiveness of gasless laparoscopic surgery for abdominal conditions: systematic review and meta-analysis

    Get PDF
    Background In high-income countries, laparoscopic surgery is the preferred approach for many abdominal conditions. Conventional laparoscopy is a complex intervention that is challenging to adopt and implement in low resource settings. This systematic review and meta-analysis evaluate the clinical effectiveness of gasless laparoscopy compared to conventional laparoscopy with CO2 pneumoperitoneum and open surgery for general surgery and gynaecological procedures. Methods A search of the MEDLINE, EMBASE, Global Health, AJOL databases and Cochrane Library was performed from inception to January 2021. All randomised (RCTs) and comparative cohort (non-RCTs) studies comparing gasless laparoscopy with open surgery or conventional laparoscopy were included. The primary outcomes were mortality, conversion rates and intraoperative complications. Secondary outcomes: operative times and length of stay. The inverse variance random-effects model was used to synthesise data. Results 63 studies were included: 41 RCTs and 22 non-RCTs (3,620 patients). No procedure-related deaths were reported in the studies. For gasless vs conventional laparoscopy there was no difference in intraoperative complications for general RR 1.04 [CI 0.45–2.40] or gynaecological surgery RR 0.66 [0.14–3.13]. In the gasless laparoscopy group, the conversion rates for gynaecological surgery were high RR 11.72 [CI 2.26–60.87] when compared to conventional laparoscopy. For gasless vs open surgery, the operative times were longer for gasless surgery in general surgery RCT group MD (mean difference) 10 [CI 0.64, 19.36], but significantly shorter in the gynaecology RCT group MD − 18.74 [CI − 29.23, − 8.26]. For gasless laparoscopy vs open surgery non-RCT, the length of stay was shorter for gasless laparoscopy in general surgery MD − 3.94 [CI − 5.93, − 1.95] and gynaecology MD − 1.75 [CI − 2.64, − 0.86]. Overall GRADE assessment for RCTs and Non-RCTs was very low. Conclusion Gasless laparoscopy has advantages for selective general and gynaecological procedures and may have a vital role to play in low resource settings

    The Flavor Asymmetry of the Light Quark Sea from Semi-inclusive Deep-inelastic Scattering

    Get PDF
    The flavor asymmetry of the light quark sea of the nucleon is determined in the kinematic range 0.02<x<0.3 and 1 GeV^2<Q^2<10 GeV^2, for the first time from semi-inclusive deep-inelastic scattering. The quantity (dbar(x)-ubar(x))/(u(x)-d(x)) is derived from a relationship between the yields of positive and negative pions from unpolarized hydrogen and deuterium targets. The flavor asymmetry dbar-ubar is found to be non-zero and x dependent, showing an excess of dbar over ubar quarks in the proton.Comment: 7 Pages, 2 figures, RevTeX format; slight revision in text, small change in extraction of dbar-ubar and comparison with a high q2 parameterizatio
    corecore