5,020 research outputs found
Magnetic order in the quasi-one-dimensional spin 1/2 chain, copper pyrazine dinitrate
We present the first evidence of magnetic order in the quasi-one-dimensional
spin 1/2 molecular chain compound, copper pyrazine dinitrate Cu(C4H4N2)(NO3)2}.
Zero field muon-spin relaxation measurements made at dilution refrigerator
temperatures show oscillations in the measured asymmetry, characteristic of a
quasistatic magnetic field at the muon sites. Our measurements provide
convincing evidence for long range magnetic order below a temperature
T_N=107(1) mK. This leads to an estimate of the interchain coupling constant of
|J'|/k_B=0.046 K and to a ratio |J'/J| = 4.4 x 10^-3.Comment: 4 pages, 3 figures. Submitted to Physical Review Letter
Nodeless superconductivity in the noncentrosymmetric MoRhN superconductor: a SR study
The noncentrosymmetric superconductor MoRhN, with K,
adopts a -Mn-type structure (space group 432), similar to that of
MoAlC. Its bulk superconductivity was characterized by magnetization
and heat-capacity measurements, while its microscopic electronic properties
were investigated by means of muon-spin rotation and relaxation (SR). The
low-temperature superfluid density, measured via transverse-field (TF)-SR,
evidences a fully-gapped superconducting state with , very close to 1.76 - the BCS gap value for
the weak coupling case, and a magnetic penetration depth nm.
The absence of spontaneous magnetic fields below the onset of
superconductivity, as determined by zero-field (ZF)-SR measurements, hints
at a preserved time-reversal symmetry in the superconducting state. Both TF-and
ZF-SR results evidence a spin-singlet pairing in MoRhN.Comment: 5 figures and 5 pages. Accepted for publication as a Rapid
Communication in Phys. Rev.
Recommended from our members
Effects of X-Linkage and Sex-Biased Gene Expression on the Rate of Adaptive Protein Evolution in Drosophila
Patterns of polymorphism and divergence in Drosophila protein-coding genes suggest that a considerable fraction of amino acid differences between species can be attributed to positive selection and that genes with sex-biased expression, that is, those expressed predominantly in one sex, have especially high rates of adaptive evolution. Previous studies, however, have been restricted to autosomal sex-biased genes and, thus, do not provide a complete picture of the evolutionary forces acting on sex-biased genes across the genome. To determine the effects of X-linkage on sex-biased gene evolution, we surveyed DNA sequence polymorphism and divergence in 45 X-linked genes, including 17 with male-biased expression, 13 with female-biased expression, and 15 with equal expression in the 2 sexes. Using both single- and multilocus tests for selection, we found evidence for adaptive evolution in both groups of sex-biased genes. The signal of adaptive evolution was particularly strong for X-linked male-biased genes. A comparison with data from 91 autosomal genes revealed a ‘‘fast-X’’ effect, in which the rate of adaptive evolution was greater for X-linked than for autosomal genes. This effect was strongest for male-biased genes but could be seen in the other groups as well. A genome-wide analysis of coding sequence divergence that accounted for sex-biased expression also uncovered a fast-X effect for male-biased and unbiased genes, suggesting that recessive beneficial mutations play an important role in adaptation.Organismic and Evolutionary Biolog
Muon-spin-rotation measurements of the penetration depth in Li_2Pd_3B
Measurements of the magnetic field penetration depth in the ternary
boride superconductor LiPdB ( K) have been carried out by
means of muon-spin rotation (SR). The absolute values of , the
Ginzburg-Landau parameter , and the first and the second
critical fields at T=0 obtained from SR were found to be
nm, , mT, and
T, respectively. The zero-temperature value of the
superconducting gap 1.31(3) meV was found, corresponding to the
ratio . At low temperatures saturates and
becomes constant below , in agreement with what is expected for
s-wave BCS superconductors. Our results suggest that LiPdB is a s-wave
BCS superconductor with the only one isotropic energy gap.Comment: 6 pages, 7 figure
Does alcohol cue inhibitory control training survive a context shift?
Inhibitory control training (ICT) is a novel psychological intervention that aims to improve inhibitory control in response to alcohol-related cues through associative learning. Laboratory studies have demonstrated reductions in alcohol consumption following ICT compared with control/sham training, but it is unclear if these effects are robust to a change of context. In a preregistered study, we examined whether the effects of ICT would survive a context shift from a neutral context to a seminaturalistic bar setting. In a mixed design, 60 heavy drinkers (40 female) were randomly allocated to receive either ICT or control/sham training in a neutral laboratory over 2 sessions. We developed a novel variation of ICT that used multiple stop signals to establish direct stimulus–stop associations. The effects of ICT/control were measured once in the same context and once following a shift to a novel (alcohol-related) context. Our dependent variables were ad libitum alcohol consumption following training, change in inhibitory control processes, and change in alcohol value. ICT did not reduce alcohol consumption in either context compared with the control group. Furthermore, we demonstrated no effects of ICT on inhibitory control processes or alcohol value. Bayesian analyses demonstrated overall support for the null hypotheses. This study failed to find any effects of ICT on alcohol consumption or candidate psychological mechanisms. These findings illustrate the difficulty in training alcohol-inhibition associations and add to a growing body of literature suggesting that ICT holds little evidential value as a psychological intervention for alcohol use disorders
Quenched crystal field disorder and magnetic liquid ground states in Tb2Sn2-xTixO7
Solid-solutions of the "soft" quantum spin ice pyrochlore magnets Tb2B2O7
with B=Ti and Sn display a novel magnetic ground state in the presence of
strong B-site disorder, characterized by a low susceptibility and strong spin
fluctuations to temperatures below 0.1 K. These materials have been studied
using ac-susceptibility and muSR techniques to very low temperatures, and
time-of-flight inelastic neutron scattering techniques to 1.5 K. Remarkably,
neutron spectroscopy of the Tb3+ crystal field levels appropriate to at high
B-site mixing (0.5 < x < 1.5 in Tb2Sn2-xTixO7) reveal that the doublet ground
and first excited states present as continua in energy, while transitions to
singlet excited states at higher energies simply interpolate between those of
the end members of the solid solution. The resulting ground state suggests an
extreme version of a random-anisotropy magnet, with many local moments and
anisotropies, depending on the precise local configuration of the six B sites
neighboring each magnetic Tb3+ ion.Comment: 6 pages, 6 figure
Controlling magnetic order and quantum disorder in molecule-based magnets.
We investigate the structural and magnetic properties of two molecule-based magnets synthesized from the same starting components. Their different structural motifs promote contrasting exchange pathways and consequently lead to markedly different magnetic ground states. Through examination of their structural and magnetic properties we show that [Cu(pyz)(H 2 O)(gly) 2 ](ClO 4 ) 2 may be considered a quasi-one-dimensional quantum Heisenberg antiferromagnet whereas the related compound [Cu(pyz)(gly)](ClO 4 ) , which is formed from dimers of antiferromagnetically interacting Cu 2+ spins, remains disordered down to at least 0.03 K in zero field but shows a field-temperature phase diagram reminiscent of that seen in materials showing a Bose-Einstein condensation of magnons
Magnetic Order In The Quasi-One-Dimensional Spin-1/2 Molecular Chain Compound Copper Pyrazine Dinitrate
We present evidence of magnetic order in the quasi-one-dimensional spin-1/2 molecular chain compound, copper pyrazine dinitrate Cu(C4H4N2)(NO3)(2). Zero field muon-spin relaxation measurements made at dilution refrigerator temperatures show oscillations in the measured asymmetry characteristic of a quasistatic magnetic field at the muon sites. Our measurements provide convincing evidence for long-range magnetic order below a temperature T-N=107(1) mK. This leads to an estimate of the interchain coupling constant of vertical bar J\u27vertical bar/k(B)=0.046 K and to a ratio of vertical bar J\u27/J vertical bar=4.4x10(-3)
Muons as Local Probes of Three-body Correlations in the Mixed State of Type-II Superconductors
The vortex glass state formed by magnetic flux lines in a type-II
superconductor is shown to possess non-trivial three-body correlations. While
such correlations are usually difficult to measure in glassy systems, the
magnetic fields associated with the flux vortices allow us to probe these via
muon-spin rotation measurements of the local field distribution. We show via
numerical simulations and analytic calculations that these observations provide
detailed microscopic insight into the local order of the vortex glass and more
generally validate a theoretical framework for correlations in glassy systems.Comment: 4+ pages, high-quality figures available on reques
- …