5,178 research outputs found

    Hydraulic flow through a channel contraction: multiple steady states

    Get PDF
    We have investigated shallow water flows through a channel with a contraction by experimental and theoretical means. The horizontal channel consists of a sluice gate and an upstream channel of constant width b0b_0 ending in a linear contraction of minimum width bcb_c. Experimentally, we observe upstream steady and moving bores/shocks, and oblique waves in the contraction, as single and multiple steady states, as well as a steady reservoir with a complex hydraulic jump in the contraction occurring in a small section of the bc/b0b_c/b_0 and Froude number parameter plane. One-dimensional hydraulic theory provides a comprehensive leading-order approximation, in which a turbulent frictional parametrization is used to achieve quantitative agreement. An analytical and numerical analysis is given for two-dimensional supercritical shallow water flows. It shows that the one-dimensional hydraulic analysis for inviscid flows away from hydraulic jumps holds surprisingly well, even though the two-dimensional oblique hydraulic jump patterns can show large variations across the contraction channel

    Macroscopic and Local Magnetic Moments in Si-doped CuGeO3_3 with Neutron and μ\muSR Studies

    Full text link
    The temperature-concentration phase diagram of the Si-doped spin-Peierls compound CuGeO3_{3} is investigated by means of neutron scattering and muon spin rotation spectroscopy in order to determine the microscopic distribution of the magnetic and lattice dimerised regions as a function of doping. The analysis of the zero-field muon spectra has confirmed the spatial inhomogeneity of the staggered magnetisation that characterises the antiferromagnetic superlattice peaks observed with neutrons. In addition, the variation of the macroscopic order parameter with doping can be understood by considering the evolution of the local magnetic moment as well as of the various regions contributing to the muon signal

    Evaluation of a Revised Curriculum: A Four-Year Qualitative Study of Student Perceptions

    Get PDF
    Following curricular revisions at the Virginia Commonwealth University School of Dentistry, this longitudinal study was designed to determine students\u27 perceptions of their educational experience in the revised curriculum. A SWOT (Strengths, Weaknesses, Opportunities, and Threats) open-ended response questionnaire was administered to students in the class of 2011 (N=89) in January of each academic year, 2008 through 2011, followed by focus groups three months prior to graduation. The overall response rate for the questionnaire was 69 percent, and a total of fourteen students participated in four focus groups. Cumulatively, 1,382 responses (SWOT=984 and focus groups=398) were qualitatively analyzed, and five themes emerged: 1) early clinical experiences led to a perceived readiness for direct patient care; 2) the pace and organization of the revised condensed preclinical curriculum were perceived as hectic yet were appreciated as necessary preparation for patient care; 3) most faculty members were seen as committed to student learning, but a few were reported to have poor teaching skills and attitudes when interacting with students; 4) a perceived lack of patients led to fewer clinical experiences and a decrease in student confidence; and 5) some curricular content was seen to be redundant and irrelevant to future practice. The results indicate that the students were satisfied with aspects of their educational experience, suggesting the revised curriculum\u27s preliminary success in meeting its goals of earlier patient care, a condensed preclinical curriculum, and a student-friendly environment. As the curriculum is adapted in response to student feedback, ongoing evaluation is necessary and should be complemented by other evaluation indicators such as faculty perceptions and student learning outcomes

    Low temperature crystal structure and local magnetometry for the geometrically frustrated pyrochlore Tb2Ti2O7

    Full text link
    We report synchrotron radiation diffraction and muon spin rotation (muSR) measurements on the frustrated pyrochlore magnet Tb2Ti2O7. The powder diffraction study of a crushed crystal fragment does not reveal any structural change down to 4 K. The muSR measurements performed at 20 mK on a mosaic of single crystals with an external magnetic field applied along a three-fold axis are consistent with published a.c. magnetic-susceptibility measurements at 16 mK. While an inflection point could be present around an internal field intensity slightly above 0.3 T, the data barely support the presence of a magnetization plateau.Comment: To appear in the proceedings of the 13th International Conference on Muon Spin Rotation, Relaxation and Resonance, Grindelwald, Switzerland, 1-6 June 201

    Nonlinear dynamics of large amplitude dust acoustic shocks and solitary pulses in dusty plasmas

    Get PDF
    We present a fully nonlinear theory for dust acoustic (DA) shocks and DA solitary pulses in a strongly coupled dusty plasma, which have been recently observed experimentally by Heinrich et al. [Phys. Rev. Lett. 103, 115002 (2009)], Teng et al. [Phys. Rev. Lett. 103, 245005 (2009)], and Bandyopadhyay et al. [Phys. Rev. Lett. 101, 065006 (2008)]. For this purpose, we use a generalized hydrodynamic model for the strongly coupled dust grains, accounting for arbitrary large amplitude dust number density compressions and potential distributions associated with fully nonlinear nonstationary DA waves. Time-dependent numerical solutions of our nonlinear model compare favorably well with the recent experimental works (mentioned above) that have reported the formation of large amplitude non-stationary DA shocks and DA solitary pulses in low-temperature dusty plasma discharges.Comment: 9 pages, 4 figures. To be published in Physical Review

    Quenched crystal field disorder and magnetic liquid ground states in Tb2Sn2-xTixO7

    Full text link
    Solid-solutions of the "soft" quantum spin ice pyrochlore magnets Tb2B2O7 with B=Ti and Sn display a novel magnetic ground state in the presence of strong B-site disorder, characterized by a low susceptibility and strong spin fluctuations to temperatures below 0.1 K. These materials have been studied using ac-susceptibility and muSR techniques to very low temperatures, and time-of-flight inelastic neutron scattering techniques to 1.5 K. Remarkably, neutron spectroscopy of the Tb3+ crystal field levels appropriate to at high B-site mixing (0.5 < x < 1.5 in Tb2Sn2-xTixO7) reveal that the doublet ground and first excited states present as continua in energy, while transitions to singlet excited states at higher energies simply interpolate between those of the end members of the solid solution. The resulting ground state suggests an extreme version of a random-anisotropy magnet, with many local moments and anisotropies, depending on the precise local configuration of the six B sites neighboring each magnetic Tb3+ ion.Comment: 6 pages, 6 figure

    Forces on Dust Grains Exposed to Anisotropic Interstellar Radiation Fields

    Get PDF
    Grains exposed to anisotropic radiation fields are subjected to forces due to the asymmetric photon-stimulated ejection of particles. These forces act in addition to the ``radiation pressure'' due to absorption and scattering. Here we model the forces due to photoelectron emission and the photodesorption of adatoms. The ``photoelectric'' force depends on the ambient conditions relevant to grain charging. We find that it is comparable to the radiation pressure when the grain potential is relatively low and the radiation spectrum is relatively hard. The calculation of the ``photodesorption'' force is highly uncertain, since the surface physics and chemsitry of grain materials are poorly understood at present. For our simple yet plausible model, the photodesorption force dominates the radiation pressure for grains with size >~0.1 micron exposed to starlight from OB stars. We find that the anisotropy of the interstellar radiation field is ~10% in the visible and ultraviolet. We estimate size-dependent drift speeds for grains in the cold and warm neutral media and find that micron-sized grains could potentially be moved across a diffuse cloud during its lifetime.Comment: LaTeX(41 pages, 19 figures), submitted to Ap

    Role of the antisymmetric exchange in quantum spin liquids

    Get PDF
    The quantum critical state of organic quantum spin liquids (QSL) exhibits large sensitivity even to weak perturbations. For example, the antisymmetric exchange, the Dzyaloshinskii-Moriya (DM) interaction, which is present in all spin systems without inversion symmetry, could result in a phase transition from the quantum critical phase to an antiferromagnetic phase already at moderate magnetic fields. Using the combination of multi-frequency Electron Spin Resonance spectroscopy (ESR) in the 1-500 GHz frequency range and muon spin rotation (mSR), we studied the influence of the DM interaction in two-dimensional and quasi-one-dimensional organic QSL candidates. In the triangular lattice QSL, k-(ET)2Ag2(CN)3 (J’/J=0.94, J=175 K), our ESR measurements found a static staggered moment of 6×10-3 mB at T=1.5 K and at B=15 T [1]. The magnetic field dependence of the ESR linewidth, which measures the spectral density of the antiferromagnetic fluctuations, proves that this staggered moment stems from the DM interaction (DM0=4 K) in a perfectly crystalline two-dimensional structure. In a new quasi-one-dimensional QSL candidate, (EDT-TTF-CONH2)2+BABCO-, which is a weak Mott insulator with a distorted triangular lattice (J’/J=3, J=360 K), our combined ESR and mSR study confirmed the absence of magnetic ordering down to 20 mK [2]. This remarkable observation is partially attributed to a unique structural motif of the (EDT-TTF-CONH2)2+BABCO- salt. Here, the (EDT-TTF-CONH2)2+ conducting layers are separated by the highly disordered BABCO- molecular rotors. Importantly, despite the presence of a sizable DM interaction (DM0=0.6 K), the staggered moment is smaller than 4×10-4 mB at T=1.5 K and B=15 T. The magnetic field dependence of the ESR linewidth does not show the effect of the DM interaction. Instead, the linear dependence is indicative of the presence of fast spin fluctuations, which is supported by longitudinal-field mSR measurements that reveal the spin excitations to possess one-dimensional diffusive character. The quenching of the effect of the DM interaction is explained by the strong disorder introduced by the anion layer. Despite the fact that the magnitude of the DM interaction is 2 to 3 orders of magnitude weaker than the symmetric exchange, it can substantially alter the phase diagram of QSLs. Our work gives a novel explanation to the field-induced phase transitions, and it demonstrates that high-frequency ESR is a powerful technique to study the spin dynamics of QSLs

    Muon-Spin Rotation Study of the Ternary Noncentrosymmetric Superconductors Li2Pd x Pt3− x B

    Get PDF
    We investigated the superconducting state of the noncentrosymmetric superconductors Li2Pd x Pt3−x B with superconducting transition temperature T c=5.16(8)K (x=2.25), 3.56(8)K (x=1.5) and 2.60K (x=0) by means of muon-spin rotation (μSR) and specific heat experiments. The μSR relaxation rate σ sc was found to be constant at low temperatures for all the compounds. Data taken at different magnetic fields show that the magnetic penetration depth λ is field-independent for Li2Pd2.25Pt0.75B and Li2Pt3B. The electronic contribution to the specific heat measured in Li2Pd1.5Pt1.5B and Li2Pt3B increases exponentially at the lowest temperatures. These features suggest that the whole family of Li2Pd x Pt3−x B comprises single-gap s-wave superconductors across the entire doping regim
    • …
    corecore