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We present a fully nonlinear theory for dust acoustic (DA) shocks and DA solitary pulses in a strongly coupled
dusty plasma, which have been recently observed experimentally by Heinrich et al. [Phys. Rev. Lett. 103, 115002
(2009)], Teng et al. [Phys. Rev. Lett. 103, 245005 (2009)], and Bandyopadhyay et al. [Phys. Rev. Lett. 101,
065006 (2008)]. For this purpose, we use a generalized hydrodynamic model for the strongly coupled dust
grains, accounting for arbitrary large-amplitude dust number density compressions and potential distributions
associated with fully nonlinear nonstationary DA waves. Time-dependent numerical solutions of our nonlinear
model compare favorably well with the recent experimental works (mentioned above) that have reported the
formation of large-amplitude nonstationary DA shocks and DA solitary pulses in low-temperature dusty plasma
discharges.

DOI: 10.1103/PhysRevE.86.046402 PACS number(s): 52.27.Lw, 52.35.Fp, 52.35.Tc

I. INTRODUCTION

Charged dust grains and dusty plasmas [1–7] are ubiquitous
in astrophysical environments (e.g., interstellar media, molec-
ular dusty clouds, star forming clouds, and supernovae such
as the Eagle Nebula), in planetary ring systems [1,8] (e.g., the
spokes in Saturn’s rings recorded by the Voyager spacecraft
cameras), and in our solar system (e.g., interplanetary dust
particles produced by comets), as well as near the Sun’s and
Earth’s atmospheres (e.g., the mesospheric and ionospheric
regions). Charged dust particles are naturally formed in
industrial processing of nanotechnology and in magnetic
fusion reactors.

It is well known that charging of a neutral dust particle
occurs due to a variety of physical processes [9,10], including
the collection of electrons from the background plasma, photo
emissions, triboelectric effects, etc. In the remote past, it was
shown by Wuerker et al. [11] that an ensemble of electrically
charged iron and aluminum particles having diameters of a
few microns can be confined by three-dimensional focusing
forces of alternating and static electric fields and the Coulomb
repulsion, leading eventually to the formation of crystallized
arrays of ions and aluminum dust particles, which can be
melted and reformed. However, a dusty plasma is usually
composed of electrons, positive ions, negative or positive
dust grains, and neutral atoms. When the interaction potential
energy (which is equal to Z2

de
2/d, where Zd is the dust

charge state, e is the magnitude of the electron charge,
and d is the interdust grain distance or the Wigner-Seitz
radius) between two neighboring dust grains is much larger
(smaller) than the dust kinetic energy kBTd , where kB is the
Boltzmann constant and Td is the dust temperature, the dusty
plasma is in a strongly (weakly) coupled state. Following the
charged particle condensation idea [12] of a one-component
strongly correlated electron system, Ikezi [13] postulated
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the solidification of charged dust particles when the dusty
plasma � = Z2

de
2 exp(−d/λD)/dkBTd exceeds 172, taking

into account the plasma screening effect, where λD is the
plasma Debye radius [2]. Such values of � can be achieved in
low-temperature laboratory discharges at room temperatures
owing to the large Zd acquired by a micron-size dust grain by
absorbing electrons from the background plasma. There are
also Monte Carlo and molecular dynamics simulations that
accurately depict different states of ordered dust structures
[14–16] when dust grains are repelling each other according to
the Yukawa or Debye-Hückel force. The phase diagram for �s

against κ [= (average interdust grain spacing)/(dusty plasma
Debye radius)] indeed reveals dust solid face-centered-cubic,
dust solid body-centered-cubic, and dust fluid phases for a set
of �s and κ values, as given in Ref. [16], where an empirical
scaling for dust crystal melting is also given.

The formation of dust Coulomb crystals and ordered dust
structures has been observed in the sheath region of many
laboratory experiments [17–20], where charged dust grains
are kept together due to confining electrostatic potentials in
a plasma sheath. However, robust ordered dust structures
may also be formed due to attractive forces [2] between
negative dust grains associated with ion focusing and ion
wake fields [21,22] in a dusty plasma sheath with streaming
ions, shadowing forces due to collisions with ions [23,24], and
overlapping Debye spheres [25] and dipole-dipole interactions
[26–28]. The alignment of charged dust grains in an assembly
due to the attractive force associated with ion focusing and
ion wake field effects has been experimentally observed
[29]. Furthermore, the collective behavior of dusty plasmas
involving an ensemble of charged dust grains was recognized
through the prediction of the dust acoustic wave (DAW) by
Shukla [30], who suggested the existence of the nonlinear
DAW in the presence of Boltzmann distributed electrons and
ions and massive, charged dust particles. This idea was then
worked out in a paper [31] on the DAW. It must be stressed
that there does not exist a counterpart of the DAW in an
electron-ion plasma without charged dust grains since the
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DAW is supported by the dust particle inertia and the restoring
force comes from the pressures of the inertialess hot electron
and ions. Thus, similar to the Alfvén wave in a magnetized
plasma, the DAW is of fundamental importance in laboratory
and space plasmas physics. The DAW is usually excited by
an ion streaming instability and has a frequency much smaller
than the dusty plasma frequency, extending into the infrasonic
frequency range. Low-frequency (of the order of 10 Hz) dust
acoustic (DA) fluctuations were observed in the experiment
of Chu et al. [17] and have since been observed in many
laboratory experiments worldwide [2,6,17,32–35] and also in
the Earth’s ionosphere [36].

Ichimaru et al. [37] further extended the theory of strong
coupling and viscosity coefficients for a high-density one-
component electron plasma. Berkovsky [38] developed a
generalized hydrodynamic model for plasmas with strongly
coupled ions and degenerate electrons and used it to investigate
the linear properties of modified ion-acoustic waves. A similar
theory was developed for strongly correlated dust grains in
dusty plasmas by Kaw and Sen [39], who presented a general-
ized viscoelastic hydrodynamic model for strongly correlated
dust grains and investigated the linear properties of dust
acoustic waves, especially the low-frequency longitudinal and
transverse modes in a strongly coupled dusty plasma. The latter
model has also been extended to the weakly nonlinear regime
[40] to study the propagation of small-amplitude nonlinear
dust acoustic waves in a strongly coupled dusty plasma.

However, recently a number of laboratory experiments
[41–45] have reported observations of nonlinear DAWs in the
form of extremely large-amplitude DA shocks [41–43] and
DA solitary pulses [35,44,45] at kinetic levels. Physically, the
large-amplitude DA shocks are formed when nonlinearities
in plasmas balance the DAW dissipation caused by the dust
fluid viscosity coming from dust grain correlations in strongly
coupled dusty plasmas, while DA solitary pulses arise in the
collisionless regime due to the balance between the harmonic
generation nonlinearities and the DAW dispersion. We are
unaware of theories for arbitrary large-amplitude nonlinear,
nonstationary DA shocks and DA solitary pulses in dusty
plasmas with dust correlations. It should be stressed that
small-amplitude theories for DA shocks and DA solitary
pulses based on the Burgers [46], Korteweg–de Vries
(KdV), and KdV-Burgers equations [40] are not suitable for
explaining observations [33,42–45] that report anomalously
high (up to 40% and beyond) dust density compressions.
A large-amplitude theory of Eliasson and Shukla [47] for a
collisionless dusty plasma explains well the DAW steepening
and nonlinear wave speed [42,43], but is unable to predict the
shock width observed in the experiments.

In this paper we present a fully nonlinear, nonstationary
unified theory for arbitrary large-amplitude DA shocks and
DA solitary pulses in a dusty plasma, taking into account
the effects of strong coupling between charged dust grains,
the nonlinear polarization force acting on charged dust grains
due to thermal ions that shield negative dust grains, collisions
between charged dust grains and neutrals, dust correlations
decay rate, the dust fluid shear and bulk viscosities, etc. This
gives a more complete picture of various nonideal effects in
dusty plasmas, and we are thus able to provide a comparison
between our new nonstationary and fully nonlinear theory

with the recent laboratory observations of DA shocks and
DA solitary pulses [42–45]. Neglected are effects due to
attractive forces (ion focusing, wake fields, etc.) between dust
grains, which may affect the equation of state and transport
coefficients of the system. These effects, however, are either
small or depend on the moment transfer of streaming ions,
which we do not consider here.

II. MATHEMATICAL MODEL

We consider a dusty plasma composed of inertialess
electrons and ions, as well as strongly correlated negatively
charged micron-sized dust particles of uniform sizes, in the
presence of large-amplitude ultralow-frequency DA waves,
with ω � νen and νin � k2V 2

T e,T i/ω, where ω is the wave
frequency, νen (νin) is the electron- (ion)-neutral collision
frequency, k is the wave number, and VT e (VT i) is the
electron (ion) thermal speed. Both electrons and ions follow
the Boltzmann law since they can be considered inertialess
on the time scale of the DAW period and henceforth rapidly
thermalize under the action of collisions. Thus the electron and
ion number densities are, respectively, ne = ne0 exp(eφ/kBTe)
and ni = ni0 exp(−eφ/kBTi), where ne0 and ni0 are the
unperturbed electron and ion number densities, respectively, e

is the magnitude of the electron charge, φ is the electrostatic
potential, kB is the Boltzmann constant, and Te (Ti) is
the electron (ion) temperature. At equilibrium, we have the
quasineutrality condition ni0 = ne0 + Zdnd0, where Zd is the
average number of electrons residing on a dust grain and nd0

is the unperturbed dust number density.
The dust particle dynamics associated with fully nonlinear,

nonstationary DAWs in a strongly coupled dusty plasma is gov-
erned by the generalized hydrodynamic equations composed
of the dust continuity equation (∂nd/∂t) + ∇ · (ndvd ) = 0 and
the generalized dust momentum equation
(

1 + τr

d

dt

)[
dvd

dt
+ νdvd − Zde

md

∇φ + ZdeR

md

(
ni

ni0

)1/2

∇φ

+ kBTd

ρd

∇(μdnd )

]
= η

ρd

∇2vd + ξ + η

3

ρd

∇(∇ · vd ), (1)

taking into account finite-amplitude convective and pressure
nonlinearities [47], nonlinear ion polarization force,
strong dust coupling effects [37–39,48], and dust neutral
collisions [49]. Here d/dt = (∂t/∂t) + vd · ∇ is the total
time derivative; nd and vd are the dust number density
and dust fluid velocity, respectively; md is the dust mass;
ρd = ndmd is the dust mass density; R = Zde

2/4kBTiλDi

is a parameter determining the effect of the polarization
force [50], which reduces the phase speed of the DAW,
arising from interactions between thermal ions and negative
dust grains; and μdndkBTd ≡ Pd is the effective dust
thermal pressure for a one-component plasma [39], where
μd = 1 + (1/3)u(�) + (�/9)∂u(�)/∂� is the compressibility,
� = Z2

de
2/dkBTd is the ratio between the dust Coulomb and

dust thermal energies, d = (3/4πnd0)1/3 is the Wigner-Seitz
dust grain separation distance, and u(�) is a measure of the
excess internal energy of the system, which reads [51,52]
u(�) � −(

√
3/2)�3/2 for � � 1 (viz., a liquidlike state)

and u(�) = −0.80� + 0.95�1/4 + 0.19�−1/4 − 0.81 in a
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range 1 < � < 200. Furthermore, the effective dusty
plasma Debye radius λD = λDeλDi/(λ2

De + λ2
Di)

1/2, where
λDe = (kBTe/4πne0e

2)1/2 and λDi = (kBTi/4πni0e
2)1/2 are

the ion and electron Debye radii, respectively. The dust-neutral
collision frequency is given by the Epstein formula [49] νdn =
(8/3)

√
2πmnnnr

2
d vT n/md , where mn is the neutral mass, nn

is the neutral number density, rd is the dust grain radius,
VT n = (kBTn/mn)1/2 is the neutral thermal speed, and Tn is
the neutral gas temperature. The viscoelastic properties of the
dust fluids are characterized by the dust correlation relaxation
time [37,38] τr = [(ξ + 4η/3)/nd0Td ]/[1 − μd + 4u(�)/15],
involving the shear and bulk viscosities η and ξ , respectively.
There are various approaches for calculating η and ξ ,
which are widely discussed in the literature [52]. The
DA wave potential φ is obtained from Poisson’s equation
∇2φ = 4πe(ne − ni + Zdnd ), taking into account the
dispersive effect due to the departure from quasineutrality.
The ion drag force [53–55] acting on a dust grain has been
neglected in Eq. (1), which is justified since the ions are
assumed to follow the Boltzmann distribution with no ion
momentum flow. However, in a dusty plasmas with large dust
particles and equilibrium ion flows, there can be an instability
with a growth rate much smaller than the DAW frequency [2].

III. ONE-DIMENSIONAL QUASISTATIONARY SHOCKS
AND SOLITARY WAVES

Let us now consider the simplest problem of one-
dimensional nonlinear DAWs propagating along the x axis
in a Cartesian coordinate system. We define the dimen-
sionless variables N = nd/nd0, U = x̂ · vd/Cd , and � =
eφ/kBTi , where Cd = ωpdλD is the dust acoustic speed,
ωpd = (4πnd0Z

2
de

2/md0)1/2 is the dust plasma frequency, and
x̂ the unit vector along the x axis. We then have the dust
continuity equation

DN

DT
+ N

∂U

∂X
= 0, (2)

the generalized viscoelastic dust momentum equation(
1 + a

D

DT

) [
DU

DT
+ νU − [1 − R exp(−�/2)]

γ

P

∂�

∂X

+ T0
∂lnN

∂X

]
− β

�

∂2U

∂X2
= 0, (3)

and Poisson’s equation

γ
∂2�

∂X2
= (1 − P ) exp(τ�) − exp(−�) + PN, (4)

where a = ωpdτr , ν = νdn/ωpd , D/DT = ∂/∂T + U∂/∂X,
T = ωpdt , X = x/λD , � = λ2

D/d2, β = (ξ + 4η/3)/
mdnd0ωpdd

2 (typical values [37] of β are roughly 1.04,
0.08, and 0.3 for � = 1, 10, and 160, respectively),
T0 = μdTdγ /ZdTiP , γ = 1 + τ (1 − P ), P = Zdnd0/ni0,
and τ = Ti/Te. We are assuming here that the constant
parameter P is given for a set of experiments; however, it has
been experimentally shown [9] that Zd is typically reduced for
closely packed (d < λD) dust grains. This effect, which can be
important at high dust number densities, will be neglected here
for simplicity. Furthermore, the dust charge fluctuation effect
has been neglected since the dust charging time period ν−1

1 is

usually much shorter than the time period for the formation of
nonlinear DAWs we are concerned with [56] and the fugacity
parameter F = 4πnd0λ

2
Dirdν2/ν1(1 + ne0Ti/ni0Te) is smaller

than 1, with the expressions for ν1 and ν2 given in Refs. [2,56].
In a stationary frame such that all physical variables depend

only on ζ = X − MT with M = U/Cd , where U is the
constant speed of the nonlinear DA waves. We have U =
M(N − 1)/N , so that the dust momentum equation (3) reads(

1 − aM

N

∂

∂ζ

)[
M2

2

∂

∂ζ

(
1

N2

)
+ νM

N − 1

N

−[1 − R exp(−�/2)]
γ

P

∂�

∂ζ
+ T0

∂ lnN

∂ζ

]

+ βM

�

∂2

∂ζ 2

(
1

N

)
= 0, (5)

which couples with Poisson’s equation

γ
∂2�

∂ζ 2
= (1 − P ) exp(τ�) − exp(−�) + PN. (6)

Quasistationary DA shock waves exist only for ν = 0, when
the dust-neutral collisions can be neglected. Furthermore,
it is possible to derive a simple condition for the DA shock
wave amplitudes depending on other parameters when the
relaxation time for dust grain correlations is much smaller
than the dust plasma period. Hence, for a = ν = 0, Eq. (5)
can be integrated once to obtain

M2

2

(
1

N2
− 1

)
− γ

P
� + 2γR

P
[1 − exp(−�/2)] + T0lnN

+ βM

�

∂

∂ζ

(
1

N

)
= 0, (7)

where we have used the boundary conditions N = 1,
� = 0, and ∂/∂ξ = 0 at ζ = +∞. The DA shock amplitude
at ζ = −∞, where ∂/∂ξ = 0, N = Nshock > 1, and
� = �shock < 0, is now obtained from Eq. (7) as

M2

2

(
1

N2
shock

− 1

)
− γ

P
�shock + 2γR

P
[1 − exp(−�shock/2)]

+T0lnNshock = 0, (8)

while Eq. (6) yields

Nshock = exp(−�shock) − (1 − P ) exp(τ�shock)

P
. (9)

Using Eq. (9) we can eliminate Nshock from Eq. (8) to obtain
M as a function of the shock wave potential �shock for the
parameters R, T0, P , and τ . The term proportional to β/� in
Eq. (7) works to smooth the shock front, but does not influence
the shock amplitude. The DA shocks are associated with a
positive jump of the dust number density Nshock > 1 and a
decrease of the potential �shock < 0 for M > Ca , where Ca =
(1 − R + T0)1/2 is the linear DAW speed in the long-wave
limit ∂/∂ζ = 0. Hence the DA shocks are propagating with
super-DA speeds in comparison with the upstream plasma.

IV. COMPARISON WITH EXPERIMENTS

In Figs. 1 and 2 we have used the plasma parameters
of Refs. [42,43] to study the nonlinear dynamics and the
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FIG. 1. (Color online) The DA shock potential and associated
dust number density as a function of M for P = 0.3, τ = 0.012,
R = 0.28, and T0 = 0.01. The DA shock potential is negative for
increasing dust number density. The amplitudes increase with the
increase of M .

formation of shocks involving large-amplitude DA pulses.
The parameters of the experiment [42] are ni = 2 ×
1014 m−3, Ti = 0.03 eV, Te = 2.5 eV, Zd = 2 × 103, nd =
3 × 1010 m−3, md = 10−15 kg, and rd = 0.5 μm, giving
ωpd = 590 s−1, λD ≈ 85 μm, Cd = 50 mm/s, and d ≈ 2 ×
10−4 m. The used gas (argon, mn = 3.6 × 10−29 kg) at a
pressure of 13 Pa and temperature Tn = 0.03 eV gives a
neutral number density nn = 3 × 1021 m−3 and a dust-neutral
collision frequency νdn ≈ 1 s−1. It was observed in the
experiment [42] that a large-amplitude dust density pulse self-
steepened and formed a shocklike structure, which propagated
with a mean speed of about 75 mm/s, somewhat higher than
the estimated dust acoustic speed. For the given parameters,
we have � = 0.18, R = 0.28, P = 0.3, and τ = 0.012. The
normalized dust-neutral collision frequency ν ≈ 3 × 10−3 is

0 20 40 60 80 100
0.5

1

1.5

2

2.5

X

N

0 20 40 60 80 100
−0.4

−0.3

−0.2

−0.1

0

X

φ

(a)

(b)

T=0 12 18 24 30

6 12 18
T=0

24 30

6

FIG. 2. (Color online) Time and space evolution of (a) the dust
number density and (b) the DA wave potential for a = 0.01, β =
0.15, � = 0.18, ν = 0.002, P = 0.3, R = 0.28, T0 = 0.01, and τ =
0.012, corresponding to the plasma parameters of Refs. [42,43].

quite small, while the dust fluid viscosity due to strong dust
coupling effects is more prominent. We choose β = 0.15,
which is compatible with the experimental � � 1. In addition,
we choose a = T0 = 0.01. Figure 1 displays M as a function
of dust number density and associated potential, obtained
from Eqs. (8) and (9). In the small-amplitude limit, viz.,
Nshock → 1 and �shock → 0, we have M → Ca ≈ 0.85. The
DA shock speed M increases with increasing DA shock
wave amplitudes, with an increase of the dust density and
an associated negative potential. Figure 2 shows a simu-
lation of the time-dependent system of equations (5)–(8).
As initial conditions we used N = 1 + exp[−(X − 20)2/100]
and U = 0.7 exp[−(X − 20)2/100]. The profiles of the dust
number density and DAW potential in Fig. 2 show that the
initial DA pulse steepens and a monotonic DA shock is
formed, similar to the one in Fig. 5 of Ref. [42]. The large-
amplitude (100%) dust density perturbations are associated
with a negative potential � ≈ −0.25. The average speed
of the DA density pulse is M ≈ 1.4, in good agreement
with Fig. 1 for Nshock ≈ 2, M ≈ 1.3, and φshock ≈ −0.25.
We found that monotonic (oscillatory) DA shocks exist for
β � � (β � �) and solitary waves in the limit β � �. In
dimensional units, the simulated nonlinear wave speed is
about 70 mm/s, which is close to the experimental value
in Ref. [42].

We next turn to laboratory observations of large-amplitude
localized DA solitary pulses in weakly collisional plasma
discharges. Teng et al. [45] and Chang et al. [35] observed the
formation of large-amplitude localized dust density structures,
driven by a flow of ions towards the bottom of the plasma
discharge. From the given parameters [35,45] ne = 109 cm−3,
Te = 4 eV, ni = 1.2 × 109 cm−3, Ti = 0.05 eV, Zd = 5000,
nd ≈ 3.7 × 104 cm−3 (interdust distance about 0.3 mm), and
md = 6.9 × 10−11 g, we have ωpd = 200 s−1, λD ≈ 45 μm,
and Cd = 9 mm/s. The observed nonlinear DA solitary pulses
in Fig. 1(c) of Ref. [45] had a periodicity of about 2 mm, a
mean speed of about 45 mm/s, and a crest width (measured at
the height of N where N = 1) in the range 0.4–0.5 mm, with
higher-amplitude pulses having smaller widths. We believe
that there are some uncertainties in the plasma parameters
that could explain the relatively low value of Cd compared
to the observed wave speed: Increasing the values of Ti to
0.10 eV and using the dust charging equation [e.g., Eq. (11)
of Shukla and Eliasson [6]], we obtain Zd = 13 800 for ni =
109 cm−3 and ne = 4.9 × 108 cm−3, giving ωpd = 540 s−1,
λD = 76 μm, and Cd = 41 mm/s, which is compatible with
the experiment. Using these parameters in our model, we have
P = 0.51 and τ = 0.025, which we use in the simulation of
the time-dependent system of equations (2)–(4). The results
are displayed in Fig. 3. We drive the DAW resonantly by an
external force of the form F = −0.01 sin[2π (X − T )/L] −
0.001 sin[2π (X − T )/5L], added to the terms in the large
square brackets in Eq. (3), where L = 26.3 is the observed
wave periodicity (2 mm) normalized by λD . The result in Fig. 3
shows almost periodic wave trains that develop into narrow
peaks, very similar to the ones observed by Teng et al. [45],
with density maxima about twice the ambient density and a
typical width of about 4–5 Debye radii corresponding to about
0.3–0.4 mm. These spikes may be interpreted as driven large-
amplitude solitary DAW structures due to a balance between
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FIG. 3. (Color online) (a) Time and space evolution of the dust
number density for a = β = ν = R = T0 = 0, P = 0.51, and τ =
0.025. (b) Time variation of N at X = 0. The driven DAW develops
into spiky solitary DAW structures similar to those observed by Teng
et al. [45].

the harmonic generation nonlinearities of the system and the
dispersion provided by the departure from the quasineutrality
condition.

Bandyopadhyay et al. [44] studied how the speeds of
DA solitary pulses depend on their amplitudes. The exper-
imental plasma parameters were ni = 7 × 1013 m−3, Ti =
0.3 eV, Te = 8 eV, nd = 1010 m−3, Zd = 3 × 103, and md =
10−13 kg, giving ωpd = 51 s−1, λD = 490 μm, and Cd =
25 mm/s, which corresponds to P = 0.43 and τ = 0.038 in
our model. The DA solitary pulses propagated with superdust
acoustic speeds, increasing with increasing amplitudes. In

FIG. 4. (Color online) (a) Time and space evolution of the dust
number density N for a = β = ν = R = T0 = 0, P = 0.43, and
τ = 0.038. The initial broad pulse breaks up into three separate DA
solitary pulses propagating with superacoustic speed, similar to those
observed by Bandyopadhyay et al. [44]. (b) Comparison between the
soliton amplitude obtained numerically (circles) and the theoretical
amplitude N0 (solid line).

Fig. 1(b) of Ref. [44] a pulse of 100% density amplitude
propagates about 8 × 10−3 m in 0.24 s, giving a mean speed of
vd ≈ 0.033 m/s, which corresponds to M = vd/Cd = 1.33.
Figure 4 shows a simulation result, where the initial condition
consists of a wide pulse of the form N = 1 + 0.5 exp[−(X −
20)2/100], U = 0.5 exp[−(X − 20)2/100]. The DA pulse
breaks up into three DA solitary wave structures propagat-
ing with the superdust acoustic speed M > Ca = 1. Small-
but finite-amplitude DA solitary pulses have the density
profile N = 1 + N0sech2(C1/2

0 ζ/2) and the associated DAW
potential � = −(M2PN0/γ )sech2(C1/2

0 ζ/2), where N0 =
3C0γ /2BM2P is the amplitude, C0 = 1 − 1/M2, and B =
(1/2γ )[(1 − P )τ 2 − 1 + 3γ 2/M4P ]. Figure 4(b) exhibits that
the numerically obtained amplitudes of the three DA solitary
pulses compare favorably well with the theoretical amplitude
N0. A pulse with a density amplitude of N0 = 2 would have a
speed of M ≈ 1.3, which is also in good agreement with the
experiment of Ref. [44].

V. CONCLUSION

In summary, we have presented a fully nonlinear, non-
stationary unified theory for arbitrary large-amplitude DA
shocks and DA solitary pulses in a strongly coupled dusty
plasma. Our nonlinear theory is based on the Boltzmann
distributed inertialess warm electrons and ions, Poisson’s
equation, the dust continuity equation, and the generalized
viscoelastic dust momentum equation for strongly correlated
charged dust grains. The governing nonlinear equations have
been numerically solved to obtain the profiles of nonlinear
DA waves, including the development of the DA shocks and
DA solitary pulses. A comparison between our simulation
results and recent experimental observations [42,43] of the
DA shocks in laboratory dusty plasma discharges reveals very
good agreement with respect to the nonlinear DA wave speeds
and DA shock wave smoothing due to strong coupling effects
between charged dust particles. From the width of the DA
shocks, one may, as suggested by Heinrich et al. [42], infer
the dust fluid viscosity. Furthermore, our simulation results of
large-amplitude DA solitary pulses also compare favorably
well with the observations of Bandyopadhyay et al. [44]
and Teng et al. [45]. Future experiments of nonlinear DAWs
with higher-precision measurements of the plasma parameters
would be very valuable to benchmark the theoretical model.
In closing, we stress that our fully nonlinear unified theory for
DA shocks and DA solitary pulses remains valid for a dusty
plasma with a weak magnetic field (of the order of 100 G)
since the latter is unable to magnetize micron-sized charged
dust particles and would not affect the trajectories of electrons
and ions that follow the Boltzmann law on the spatiotemporal
scales of our interest. A weak magnetic field just provides
confinement for the electrons, which are coupled with ions and
negative dust grains through the space charge electric field of
the DAW.
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