11 research outputs found
Molecular dynamics simulation of surface phenomena due to high electronic excitation ion irradiation in amorphous silica
We studied by means of an atomistic model based on molecular dynamics the thermal evolution of surface atoms in amorphous silica under high electronic excitation produced by irradiation with swift heavy ions. The model was validated with the total and differential yields measured in sputtering experiments with different ions and ion energies showing a very good quantitative prediction capability. Three mechanisms are behind the evolution of the surface region: (1) an ejection mechanism of atoms and clusters with kinetic energy exceeding their binding energy to the sample surface, which explains the experimentally observed angular distributions of emitted atoms, and the correlation of the total sputtering yield with the electronic stopping power and the incidence angle. (2) A collective mechanism of the atoms in the ion track originated by the initial atom motion outwards the track region subsequently followed by the return to the resulting low-density region in the track center. The collective mechanism describes the energy dissipation of bulk atoms and the changes in density, residual stress, defect formation and optical properties. (3) A flow mechanism resulting from the accumulation and subsequent evolution of surface atoms unable to escape. This mechanism is responsible for the crater rim formation.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was funded by the projects Radiafus-5 (PID2019-105325RB-C32) of Spanish Ministry of Science, Technofusion (S2018/EMT-4437) of Madrid Regional Government and Eurofusion (EH150531176). The authors acknowledge the computer resources and technical assistance provided by the Centro de SupercomputaciĂłn y VisualizaciĂłn de Madrid (CeSViMa) CESVIMA-MAGERIT. AP acknowledges the support of FONDECYT under grants 3190123. EMB thanks support from grant ANPCyT PICTO-UUMM-2019-00048. JK was supported by the Beatriz Galindo Program (BEAGAL18/00130) from the Ministerio de EducaciĂłn y FormaciĂłn Profesional of Spain
Forts champs magnétiques et décharges de courants intenses générés par laser : mesures et applications au transport de particules chargées
The problem of strong quasi-static magnetic field generation is a challenge in laser-plasma interaction physics. Proposed 30 years ago, the use of the laser-driven capacitor-coil scheme, which stands out for its compact design while not needing any additional pulsed power source besides the laser power, only recently demonstrated its potential.This thesis work aims at characterizing the underlying physics and at developing this scheme. We demonstrated the generation of strong quasi-static magnetic fields by laser (500 J, 1 ns-duration and ~10^17 W/cm^2 intensity) of several hundreds of Teslas and duration of 2-3 ns. The B-field space- and time-evolutions were characterized using three independent diagnostics: B-dot probes, Faraday rotation and proton-deflectometry). The characterization of the underlying physical processes involved also X-ray diagnostics of the laser-irradiated zone and optical shadowgraphy of the coil rod expansion.A novel application of externally applied magnetic fields to guide relativistic electron beam in dense matter has been carried out and the obtained results set the ground for improved high-energy-density transport in matter. Indeed, allowing sufficient time for the dense target magnetization, a factor 5 improvement of the electron energy-density flux at 50µm-depth was evidenced.Besides, the generation of high discharge currents consecutive to short laser pulse irradiation (50 J, <1 ps-duration and ~10^19 W/cm^2 intensity) was also pointed out. Proton imaging of the discharge permitted to measure the propagation of an electromagnetic wave at a velocity close to the speed of light. This wave, of ~40ps-duration, was used as an electromagnetic lens to focalize and energy-select a narrow energy range within a multi-MeV proton beam (up to 12 MeV) passing through the coil.All-above experimental measurements and application results were thoroughly compared to both computer simulations and analytic modeling.The applications of this thesis work in a near future will concern:- inertial confinement fusion, by guiding relativistic electron beams up to the dense core nuclear fuel, and by confining particles depositing their energy in it, or even those resulting from the fusion reactions;- laboratory planetology and astrophysics, by generating secondary sources of energetic particles and radiation to reach the warm-dense-matter state or by magnetizing plasmas to reproduce astrophysical phenomena in scaled experiments;- and finally, the control of charged particle beams in vacuum, useful in particular for the development of laser-driven sources for distant applications in science, industry or even medecine.La problématique de génération de champs magnétiques quasi-statiques intenses constitue un défi pour la physique de l’interaction laser-plasma. Proposé il y a 30 ans, l’utilisation de cibles "boucles" irradiées par laser se distinguent par leur design compact ne nécessitant aucune génération de courant pulsé en plus de la puissance laser et ont dévoilé récemment leur grand potentiel.Ce travail de thèse s’attache à la caractérisation des phénomènes physiques et au développement de cette technique. On a ainsi montré la génération de forts champs magnétiques quasi-statiques par interaction laser-matière (500 J, durée laser de 1 ns et intensité ~10^17 W/cm^2) atteignant une amplitude de plusieurs centaines de Teslas pendant 2 à 3 ns. L'évolution temporelle et la distribution spatiale des champs magnétiques ont été mesurés par trois diagnostics indépendants : sondes B-dot, rotation de Faraday et défléctométrie de protons. La caractérisation des mécanismes physiques sous-jacents ont aussi fait appel à des diagnostics de rayonnements X de la région irradiée par laser ainsi qu’à des mesures d’ombroscopie optique du fil de la boucle en expansion.Une application de ces champs au guidage magnétique d’électrons relativistes dans la matière dense a permis d'ouvrir de nouvelles perspectives au transport de hautes densités d’énergies dans la matière. En effet, en laissant suffisamment de temps pour que le champ magnétique pénètre dans la cible dense, une amélioration d’un facteur 5 de la densité d’énergie portée par les électrons après 50 µm de propagation a été mise en évidence.En outre, des décharges de courants intenses consécutives à l'irradiation par impulsion laser courtes (50 J, durée laser < 1 ps et intensité ~10^19 W/cm^2) ont été observées. Une imagerie protonique de la décharge a permis de mesurer la propagation d’une onde électromagnétique à des vitesses proches de la vitesse de la lumière. Cette onde d’une durée de ~ 40 ps a été utilisée comme lentille électromagnétique pour focaliser et sélectionner sur une bande étroite d'énergie un faisceau de protons de plusieurs MeV (jusqu’à 12 MeV) passant dans la boucle.Les résultats de ces différentes mesures et applications expérimentales ont été par ailleurs confrontées à des simulations et à des modèles analytiques.Les applications de cette thèse se déploient sur des aspects comme :- la fusion par confinement inertiel, en guidant des faisceaux d'électrons relativistes jusqu'au cœur de la capsule de combustible, tout en confinant les particules qui y déposent leur énergie ainsi que celles créées par les réactions de fusion nucléaire;- l'astrophysique et la planétologie de laboratoire, en générant des sources secondaires de particules énergétiques ou de rayonnement afin de porter la matière dense a de très hautes températures (matière tiède et dense), ou en magnétisant des plasmas pour reproduire des phénomènes astrophysiques à plus petite échelle au laboratoire;- et enfin le contrôle de faisceaux de particules chargées dans le vide pour le développement de sources laser dans le cadre d'applications s'effectuant à distance de la source notamment en science, dans l'industrie, ou même en médecine
Laser-driven strong magnetic fields and high discharge currents : measurements and applications to charged particle transport
La problématique de génération de champs magnétiques quasi-statiques intenses constitue un défi pour la physique de l’interaction laser-plasma. Proposé il y a 30 ans, l’utilisation de cibles "boucles" irradiées par laser se distinguent par leur design compact ne nécessitant aucune génération de courant pulsé en plus de la puissance laser et ont dévoilé récemment leur grand potentiel.Ce travail de thèse s’attache à la caractérisation des phénomènes physiques et au développement de cette technique. On a ainsi montré la génération de forts champs magnétiques quasi-statiques par interaction laser-matière (500 J, durée laser de 1 ns et intensité ~10^17 W/cm^2) atteignant une amplitude de plusieurs centaines de Teslas pendant 2 à 3 ns. L'évolution temporelle et la distribution spatiale des champs magnétiques ont été mesurés par trois diagnostics indépendants : sondes B-dot, rotation de Faraday et défléctométrie de protons. La caractérisation des mécanismes physiques sous-jacents ont aussi fait appel à des diagnostics de rayonnements X de la région irradiée par laser ainsi qu’à des mesures d’ombroscopie optique du fil de la boucle en expansion.Une application de ces champs au guidage magnétique d’électrons relativistes dans la matière dense a permis d'ouvrir de nouvelles perspectives au transport de hautes densités d’énergies dans la matière. En effet, en laissant suffisamment de temps pour que le champ magnétique pénètre dans la cible dense, une amélioration d’un facteur 5 de la densité d’énergie portée par les électrons après 50 µm de propagation a été mise en évidence.En outre, des décharges de courants intenses consécutives à l'irradiation par impulsion laser courtes (50 J, durée laser < 1 ps et intensité ~10^19 W/cm^2) ont été observées. Une imagerie protonique de la décharge a permis de mesurer la propagation d’une onde électromagnétique à des vitesses proches de la vitesse de la lumière. Cette onde d’une durée de ~ 40 ps a été utilisée comme lentille électromagnétique pour focaliser et sélectionner sur une bande étroite d'énergie un faisceau de protons de plusieurs MeV (jusqu’à 12 MeV) passant dans la boucle.Les résultats de ces différentes mesures et applications expérimentales ont été par ailleurs confrontées à des simulations et à des modèles analytiques.Les applications de cette thèse se déploient sur des aspects comme :- la fusion par confinement inertiel, en guidant des faisceaux d'électrons relativistes jusqu'au cœur de la capsule de combustible, tout en confinant les particules qui y déposent leur énergie ainsi que celles créées par les réactions de fusion nucléaire;- l'astrophysique et la planétologie de laboratoire, en générant des sources secondaires de particules énergétiques ou de rayonnement afin de porter la matière dense a de très hautes températures (matière tiède et dense), ou en magnétisant des plasmas pour reproduire des phénomènes astrophysiques à plus petite échelle au laboratoire;- et enfin le contrôle de faisceaux de particules chargées dans le vide pour le développement de sources laser dans le cadre d'applications s'effectuant à distance de la source notamment en science, dans l'industrie, ou même en médecine.The problem of strong quasi-static magnetic field generation is a challenge in laser-plasma interaction physics. Proposed 30 years ago, the use of the laser-driven capacitor-coil scheme, which stands out for its compact design while not needing any additional pulsed power source besides the laser power, only recently demonstrated its potential.This thesis work aims at characterizing the underlying physics and at developing this scheme. We demonstrated the generation of strong quasi-static magnetic fields by laser (500 J, 1 ns-duration and ~10^17 W/cm^2 intensity) of several hundreds of Teslas and duration of 2-3 ns. The B-field space- and time-evolutions were characterized using three independent diagnostics: B-dot probes, Faraday rotation and proton-deflectometry). The characterization of the underlying physical processes involved also X-ray diagnostics of the laser-irradiated zone and optical shadowgraphy of the coil rod expansion.A novel application of externally applied magnetic fields to guide relativistic electron beam in dense matter has been carried out and the obtained results set the ground for improved high-energy-density transport in matter. Indeed, allowing sufficient time for the dense target magnetization, a factor 5 improvement of the electron energy-density flux at 50µm-depth was evidenced.Besides, the generation of high discharge currents consecutive to short laser pulse irradiation (50 J, <1 ps-duration and ~10^19 W/cm^2 intensity) was also pointed out. Proton imaging of the discharge permitted to measure the propagation of an electromagnetic wave at a velocity close to the speed of light. This wave, of ~40ps-duration, was used as an electromagnetic lens to focalize and energy-select a narrow energy range within a multi-MeV proton beam (up to 12 MeV) passing through the coil.All-above experimental measurements and application results were thoroughly compared to both computer simulations and analytic modeling.The applications of this thesis work in a near future will concern:- inertial confinement fusion, by guiding relativistic electron beams up to the dense core nuclear fuel, and by confining particles depositing their energy in it, or even those resulting from the fusion reactions;- laboratory planetology and astrophysics, by generating secondary sources of energetic particles and radiation to reach the warm-dense-matter state or by magnetizing plasmas to reproduce astrophysical phenomena in scaled experiments;- and finally, the control of charged particle beams in vacuum, useful in particular for the development of laser-driven sources for distant applications in science, industry or even medecine
Laser-driven strong magnetic fields and high discharge currents : measurements and applications to charged particle transport
La problématique de génération de champs magnétiques quasi-statiques intenses constitue un défi pour la physique de l’interaction laser-plasma. Proposé il y a 30 ans, l’utilisation de cibles "boucles" irradiées par laser se distinguent par leur design compact ne nécessitant aucune génération de courant pulsé en plus de la puissance laser et ont dévoilé récemment leur grand potentiel.Ce travail de thèse s’attache à la caractérisation des phénomènes physiques et au développement de cette technique. On a ainsi montré la génération de forts champs magnétiques quasi-statiques par interaction laser-matière (500 J, durée laser de 1 ns et intensité ~10^17 W/cm^2) atteignant une amplitude de plusieurs centaines de Teslas pendant 2 à 3 ns. L'évolution temporelle et la distribution spatiale des champs magnétiques ont été mesurés par trois diagnostics indépendants : sondes B-dot, rotation de Faraday et défléctométrie de protons. La caractérisation des mécanismes physiques sous-jacents ont aussi fait appel à des diagnostics de rayonnements X de la région irradiée par laser ainsi qu’à des mesures d’ombroscopie optique du fil de la boucle en expansion.Une application de ces champs au guidage magnétique d’électrons relativistes dans la matière dense a permis d'ouvrir de nouvelles perspectives au transport de hautes densités d’énergies dans la matière. En effet, en laissant suffisamment de temps pour que le champ magnétique pénètre dans la cible dense, une amélioration d’un facteur 5 de la densité d’énergie portée par les électrons après 50 µm de propagation a été mise en évidence.En outre, des décharges de courants intenses consécutives à l'irradiation par impulsion laser courtes (50 J, durée laser < 1 ps et intensité ~10^19 W/cm^2) ont été observées. Une imagerie protonique de la décharge a permis de mesurer la propagation d’une onde électromagnétique à des vitesses proches de la vitesse de la lumière. Cette onde d’une durée de ~ 40 ps a été utilisée comme lentille électromagnétique pour focaliser et sélectionner sur une bande étroite d'énergie un faisceau de protons de plusieurs MeV (jusqu’à 12 MeV) passant dans la boucle.Les résultats de ces différentes mesures et applications expérimentales ont été par ailleurs confrontées à des simulations et à des modèles analytiques.Les applications de cette thèse se déploient sur des aspects comme :- la fusion par confinement inertiel, en guidant des faisceaux d'électrons relativistes jusqu'au cœur de la capsule de combustible, tout en confinant les particules qui y déposent leur énergie ainsi que celles créées par les réactions de fusion nucléaire;- l'astrophysique et la planétologie de laboratoire, en générant des sources secondaires de particules énergétiques ou de rayonnement afin de porter la matière dense a de très hautes températures (matière tiède et dense), ou en magnétisant des plasmas pour reproduire des phénomènes astrophysiques à plus petite échelle au laboratoire;- et enfin le contrôle de faisceaux de particules chargées dans le vide pour le développement de sources laser dans le cadre d'applications s'effectuant à distance de la source notamment en science, dans l'industrie, ou même en médecine.The problem of strong quasi-static magnetic field generation is a challenge in laser-plasma interaction physics. Proposed 30 years ago, the use of the laser-driven capacitor-coil scheme, which stands out for its compact design while not needing any additional pulsed power source besides the laser power, only recently demonstrated its potential.This thesis work aims at characterizing the underlying physics and at developing this scheme. We demonstrated the generation of strong quasi-static magnetic fields by laser (500 J, 1 ns-duration and ~10^17 W/cm^2 intensity) of several hundreds of Teslas and duration of 2-3 ns. The B-field space- and time-evolutions were characterized using three independent diagnostics: B-dot probes, Faraday rotation and proton-deflectometry). The characterization of the underlying physical processes involved also X-ray diagnostics of the laser-irradiated zone and optical shadowgraphy of the coil rod expansion.A novel application of externally applied magnetic fields to guide relativistic electron beam in dense matter has been carried out and the obtained results set the ground for improved high-energy-density transport in matter. Indeed, allowing sufficient time for the dense target magnetization, a factor 5 improvement of the electron energy-density flux at 50µm-depth was evidenced.Besides, the generation of high discharge currents consecutive to short laser pulse irradiation (50 J, <1 ps-duration and ~10^19 W/cm^2 intensity) was also pointed out. Proton imaging of the discharge permitted to measure the propagation of an electromagnetic wave at a velocity close to the speed of light. This wave, of ~40ps-duration, was used as an electromagnetic lens to focalize and energy-select a narrow energy range within a multi-MeV proton beam (up to 12 MeV) passing through the coil.All-above experimental measurements and application results were thoroughly compared to both computer simulations and analytic modeling.The applications of this thesis work in a near future will concern:- inertial confinement fusion, by guiding relativistic electron beams up to the dense core nuclear fuel, and by confining particles depositing their energy in it, or even those resulting from the fusion reactions;- laboratory planetology and astrophysics, by generating secondary sources of energetic particles and radiation to reach the warm-dense-matter state or by magnetizing plasmas to reproduce astrophysical phenomena in scaled experiments;- and finally, the control of charged particle beams in vacuum, useful in particular for the development of laser-driven sources for distant applications in science, industry or even medecine
Forts champs magnétiques et décharges de courants intenses générés par laser : mesures et applications au transport de particules chargées
La problématique de génération de champs magnétiques quasi-statiques intenses constitue un défi pour la physique de l’interaction laser-plasma. Proposé il y a 30 ans, l’utilisation de cibles "boucles" irradiées par laser se distinguent par leur design compact ne nécessitant aucune génération de courant pulsé en plus de la puissance laser et ont dévoilé récemment leur grand potentiel.Ce travail de thèse s’attache à la caractérisation des phénomènes physiques et au développement de cette technique. On a ainsi montré la génération de forts champs magnétiques quasi-statiques par interaction laser-matière (500 J, durée laser de 1 ns et intensité ~10^17 W/cm^2) atteignant une amplitude de plusieurs centaines de Teslas pendant 2 à 3 ns. L'évolution temporelle et la distribution spatiale des champs magnétiques ont été mesurés par trois diagnostics indépendants : sondes B-dot, rotation de Faraday et défléctométrie de protons. La caractérisation des mécanismes physiques sous-jacents ont aussi fait appel à des diagnostics de rayonnements X de la région irradiée par laser ainsi qu’à des mesures d’ombroscopie optique du fil de la boucle en expansion.Une application de ces champs au guidage magnétique d’électrons relativistes dans la matière dense a permis d'ouvrir de nouvelles perspectives au transport de hautes densités d’énergies dans la matière. En effet, en laissant suffisamment de temps pour que le champ magnétique pénètre dans la cible dense, une amélioration d’un facteur 5 de la densité d’énergie portée par les électrons après 50 µm de propagation a été mise en évidence.En outre, des décharges de courants intenses consécutives à l'irradiation par impulsion laser courtes (50 J, durée laser < 1 ps et intensité ~10^19 W/cm^2) ont été observées. Une imagerie protonique de la décharge a permis de mesurer la propagation d’une onde électromagnétique à des vitesses proches de la vitesse de la lumière. Cette onde d’une durée de ~ 40 ps a été utilisée comme lentille électromagnétique pour focaliser et sélectionner sur une bande étroite d'énergie un faisceau de protons de plusieurs MeV (jusqu’à 12 MeV) passant dans la boucle.Les résultats de ces différentes mesures et applications expérimentales ont été par ailleurs confrontées à des simulations et à des modèles analytiques.Les applications de cette thèse se déploient sur des aspects comme :- la fusion par confinement inertiel, en guidant des faisceaux d'électrons relativistes jusqu'au cœur de la capsule de combustible, tout en confinant les particules qui y déposent leur énergie ainsi que celles créées par les réactions de fusion nucléaire;- l'astrophysique et la planétologie de laboratoire, en générant des sources secondaires de particules énergétiques ou de rayonnement afin de porter la matière dense a de très hautes températures (matière tiède et dense), ou en magnétisant des plasmas pour reproduire des phénomènes astrophysiques à plus petite échelle au laboratoire;- et enfin le contrôle de faisceaux de particules chargées dans le vide pour le développement de sources laser dans le cadre d'applications s'effectuant à distance de la source notamment en science, dans l'industrie, ou même en médecine.The problem of strong quasi-static magnetic field generation is a challenge in laser-plasma interaction physics. Proposed 30 years ago, the use of the laser-driven capacitor-coil scheme, which stands out for its compact design while not needing any additional pulsed power source besides the laser power, only recently demonstrated its potential.This thesis work aims at characterizing the underlying physics and at developing this scheme. We demonstrated the generation of strong quasi-static magnetic fields by laser (500 J, 1 ns-duration and ~10^17 W/cm^2 intensity) of several hundreds of Teslas and duration of 2-3 ns. The B-field space- and time-evolutions were characterized using three independent diagnostics: B-dot probes, Faraday rotation and proton-deflectometry). The characterization of the underlying physical processes involved also X-ray diagnostics of the laser-irradiated zone and optical shadowgraphy of the coil rod expansion.A novel application of externally applied magnetic fields to guide relativistic electron beam in dense matter has been carried out and the obtained results set the ground for improved high-energy-density transport in matter. Indeed, allowing sufficient time for the dense target magnetization, a factor 5 improvement of the electron energy-density flux at 50µm-depth was evidenced.Besides, the generation of high discharge currents consecutive to short laser pulse irradiation (50 J, <1 ps-duration and ~10^19 W/cm^2 intensity) was also pointed out. Proton imaging of the discharge permitted to measure the propagation of an electromagnetic wave at a velocity close to the speed of light. This wave, of ~40ps-duration, was used as an electromagnetic lens to focalize and energy-select a narrow energy range within a multi-MeV proton beam (up to 12 MeV) passing through the coil.All-above experimental measurements and application results were thoroughly compared to both computer simulations and analytic modeling.The applications of this thesis work in a near future will concern:- inertial confinement fusion, by guiding relativistic electron beams up to the dense core nuclear fuel, and by confining particles depositing their energy in it, or even those resulting from the fusion reactions;- laboratory planetology and astrophysics, by generating secondary sources of energetic particles and radiation to reach the warm-dense-matter state or by magnetizing plasmas to reproduce astrophysical phenomena in scaled experiments;- and finally, the control of charged particle beams in vacuum, useful in particular for the development of laser-driven sources for distant applications in science, industry or even medecine
Recommended from our members
Ionization injection of highly-charged copper ions for laser driven acceleration from ultra-thin foils.
Laser-driven ion acceleration is often analyzed assuming that ionization reaches a steady state early in the interaction of the laser pulse with the target. This assumption breaks down for materials of high atomic number for which the ionization occurs concurrently with the acceleration process. Using particle-in-cell simulations, we have examined acceleration and simultaneous field ionization of copper ions in ultra-thin targets (20-150 nm thick) irradiated by a laser pulse with intensity 1 × 1021 W/cm2. At this intensity, the laser pulse drives strong electric fields at the rear side of the target that can ionize Cu to charge states with valence L-shell or full K-shell. The highly-charged ions are produced only in a very localized region due to a significant gap between the M- and L-shells' ionization potentials and can be accelerated by strong, forward-directed sections of the field. Such an "ionization injection" leads to well-pronounced bunches of energetic, highly-charged ions. We also find that for the thinnest target (20 nm) a push by the laser further increases the ion energy gain. Thus, the field ionization, concurrent with the acceleration, offers a promising mechanism for the production of energetic, high-charge ion bunches
Ionization injection of highly-charged copper ions for laser driven acceleration from ultra-thin foils
Abstract Laser-driven ion acceleration is often analyzed assuming that ionization reaches a steady state early in the interaction of the laser pulse with the target. This assumption breaks down for materials of high atomic number for which the ionization occurs concurrently with the acceleration process. Using particle-in-cell simulations, we have examined acceleration and simultaneous field ionization of copper ions in ultra-thin targets (20–150 nm thick) irradiated by a laser pulse with intensity 1 × 1021 W/cm2. At this intensity, the laser pulse drives strong electric fields at the rear side of the target that can ionize Cu to charge states with valence L-shell or full K-shell. The highly-charged ions are produced only in a very localized region due to a significant gap between the M- and L-shells’ ionization potentials and can be accelerated by strong, forward-directed sections of the field. Such an “ionization injection” leads to well-pronounced bunches of energetic, highly-charged ions. We also find that for the thinnest target (20 nm) a push by the laser further increases the ion energy gain. Thus, the field ionization, concurrent with the acceleration, offers a promising mechanism for the production of energetic, high-charge ion bunches
A laser parameter study on enhancing proton generation from microtube foil targets
The interaction of an intense laser with a solid foil target can drive [Formula: see text] TV/m electric fields, accelerating ions to MeV energies. In this study, we experimentally observe that structured targets can dramatically enhance proton acceleration in the target normal sheath acceleration regime. At the Texas Petawatt Laser facility, we compared proton acceleration from a [Formula: see text] flat Ag foil, to a fixed microtube structure 3D printed on the front side of the same foil type. A pulse length (140-450 fs) and intensity ((4-10) [Formula: see text] W/cm[Formula: see text]) study found an optimum laser configuration (140 fs, 4 [Formula: see text] W/cm[Formula: see text]), in which microtube targets increase the proton cutoff energy by 50% and the yield of highly energetic protons ([Formula: see text] MeV) by a factor of 8[Formula: see text]. When the laser intensity reaches [Formula: see text] W/cm[Formula: see text], the prepulse shutters the microtubes with an overcritical plasma, damping their performance. 2D particle-in-cell simulations are performed, with and without the preplasma profile imported, to better understand the coupling of laser energy to the microtube targets. The simulations are in qualitative agreement with the experimental results, and show that the prepulse is necessary to account for when the laser intensity is sufficiently high